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CONNECTIVITY OF TOPOLOGICAL LATTICES

ELDON DYER AND ALLEN SHIELDS

In this note we show that compact connected topological lattices
have strong acyclicity properties, both globally and locally. This yields
a proof of a conjecture of A. D. Wallace [6] in the finite dimensional
case.

A topological lattice is a topological space (Hausdorff) upon which is
imposed a lattice structure compatible with the topology. More explicitly,
the topological space M is a topological lattice if there are maps

( 1 ) A' M x M - > M a n d V : Jlf x M-+M

which define a lattice structure on M. This means that for x,y,z e M

( 2 ) A(x, x) — x and \f(x, x) = x ,

( 3 ) Λ(α» y) = Λ(y>χ) a n d VO> v) = V(y,%) >

( 4 )

,V),t), and

, 2/)) = α and V(^

It is customary to write xΛy in place of A(x>v) a n d ^VT/ in place of
Y(x, 7/). Relation (5) implies that XΛy — x if and only if xvy = y.
We shall say that x ^ y if and only if xAy = x. It is easily seen that
the relation # ̂  i/ induces a partial ordering on Λf. The element l e i l ί
is a unit in M provided m ^ 1 for all m e M. Similarly, an element
0 e M is a zero in M if 0 g m for all me M. Clearly, if such elements
exist they are unique.

We shall need several elementary lemmas on topological lattices.
Lemmas 2 and 4 were proved in [1], however for completeness we prove
them here. Lemma 1 was proven by A. D. Wallace [7].

LEMMA 1. If M is a compact topological lattice, then it has a unit
and a zero.

LEMMA 2. If M is a topological lattice, then

(a) if U is a neighborhood of x e M, there is a neighborhood V

of x such that if y,z e V, then yvzeU and y A Z e U, and
(b) ify^x and Ux is a neighborhood of x, there are neighbor-
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hoods Vx of x and Vy of y such that if xf e Vx and y' e Vy, then
xf vyr e Ux.

To prove (a) we observe that Λ~W) Π y~\U) is a neighborhood
of (x, x) e M x M and that there there is a neighborhood V of x such
that V x Vd A~\U) Π V~W). T h e n if y and z lie in V, (y, z) lies in
this intersection, and so yvze U, y Λ Z e U.

In (b) y "1(J7a?) is a neighborhood of (x, y) e M x M and there are
neighborhoods Vx x Vy a V " " 1 ^ ) . Clearly these neighborhoods have
the asserted properties.

LEMMA 3. If M is a compact topological lattice and U is a neighbor-
hood of x 6 M, there is a neighborhood W of x such that if y, z e W and
m 6 My then (m A y) v z e U.

For m e M let V{m) and N{m) be neighborhoods of x and x A m as
in Lemma 2(b). Let P(m) and Q(m) be neighborhoods of m and cc such
that P{m) x Q(m) c A^Wm)) and let B(m) = V(m) n Q(m). Then if
mr e P(m) and /̂, z e R{m)y m' Λ y e JV(m) and (m' Ay)\ί z e U. Since Λf
is compact, there is a finite set [mj? of points of M such that U? ^(m«) =
M. Let TF= Π ? ^ ( m 0 Then W is the required neighborhood of x.

For x,y e M, x ^ y, we define

( 6 ) Cx,y = {ze M\x ^z Sy] .

Such sets CXtV will be called convex sets. It is clear that if M is a com-
pact topological lattice, then its convex subsets are also compact topo-
logical lattices in their natural lattice and topological structures.

LEMMA 4. If M is a compact topological lattice and U is a neighbor-
hood of x, then there is a nighborhood V of x such that if y e V, then

Let W be a neighborhood of x as in Lemma 3 and V be a neighbor-
hood of x for W as in Lemma 2(a). Then if ye V, y vxe W. If y ^
z ^yy x, then ^ = (^Λ{i/vx})vί/e C7 and if x ^ ^ i / v ί i ; , then 2 =
(ZΛ { 2 / V B } ) Vβ 6 EΛ

A space X i s acyclic if H*(X) = 0, where if*( ) denotes the reduced
cohomology ring X is cic if for each x e X and closed neighborhood U
of x, there is a closed neighborhood V7 of x, V a U, such that the
homomorphism of reduced groups H*(U)-> H*(V) induced by inclusion
is trivial.

Before proceding to the proof of Theorem 1 we recall a well-known
generalization of the fact that homotopic maps induce the same homo-
morphisms of cohomology,
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THEOREM. If X and Y are compact, N is compact and connected,
nlf nt are two points of N, f, g: X —> Y, and F: X x N-^ Y are given
such that F\Xxnx=f and F\X x n2=g, then f* = g*: H*(Y)-+H*(X).

THEOREM 1. // the compact topological lattice M is connected, then
it is acyclic and clc.

The fact that Λf is acyclic was first proven by A. D. Wallace [8],
We give here a slightly different proof.

Let M = (Λf x 1) U (1 x M) c M x Λf. Since Λf is connected and

1 x 1 e ( I x 1) n (1 x Λf), Λf is connected. For x,y e M define

Jx,y •"*• > ^y,yVx U ^x,y\/x

by

fx>y(m, 1) = (m Λ {y v x}) v y and fXtV(l, m) = (m Λ {y v x}) v x .

Note that

( 1 Λ { P a?}) v y = yv x — (1Λ{?/V α?}) v a? .

Define G: M x Λf-> JkΓ by G{m, m) = fo,Jm). Then

G(m, (0,1)) = /0iW(0,1) - (0 Λ {m v 0}) v m = m

and

G(m, (1, 0)) = /0,m(l, 0) = (0 v {m v 0}) Λ 0 = 0 .

If i : ΛΓ-> Λf is the identity and i : M-> 0 -^ M, then ΐ = Gjikf x (0,1)
and j = G\M x (1,0). Hence i* = j * . But i* is the identity isomorphism
of H*(M), and j * is trivial. Hence, Λf is acyclic.

For a closed neighborhood ?7 of x e M, let V be a closed neighbor-

hood of x as in Lemma 4. Define .P: F x M—> U by

F(v, m) = /a,β(m) c CβfflVίB U Cx,υvx c 17 .

Note that F\ V x (0,1) is the inclusion map of V into Z7 and that
F\ V x (0,1) is the trivial map of V onto x. It follows as before that
the inclusion map induces the trivial cohomology homomorphism, and
hence, that Λf is clc.

In this connection we remark that Lee Anderson [1] has shown that
a locally compact connected lattice is locally connected.

An immediate consequence of Theorem 1 and results of E, G. Begle
[2] is the following.



446 E. DYER AND A. SHIELDS

COROLLARY 1. If M is a finite dimensional, compact connected
topological lattice, then M has the fixed point property.

A slightly stronger statement is also true; namely, if M is such
a lattice and / is an upper semi-continuous mapping of M into the set
of its convex subsets, then some element of M lies in its image.

THEOREM 2. // the compact metric topological lattice M is con-
nected, then it is contractible and locally contractible.

Since M is clc°, it is locally connected. Thus, M is a compact,
connected, locally connected metric space. It follows that there is a map-
ping h:I-»M such that h(0) = (0,1) e M and h(l) = (1, 0) 6 M. Here
/ denotes the unit interval.

Define H:M x I-+M by H(m, t) = G(m, h). Then H is the con-
tracting homotopy sought. For V c U as in the proof of Theorem 1,
define J: V x /-> U by J(v, t) — F(v, h(t)). Then J is a contraction of
V to x within U.

A consequence of this theorem and standard results on absolute
neighborhood retracts (see, for example, [5] Propositions 12.2b, 16.4,
19.2) is the following.

COROLLARY 2. If M is a finite dimensional, compact metric, con-
nected topological lattice, then it is an absolute retract.

Any convex subset of a compact connected topological lattice has
these same properties itself, and is thus acyclic and clc. Furthermore,
the intersection of finitely many convex subsets is a convex subset. We
shall show that if M satisfies certain additional conditions, it has
a neighborhood basis of convex subsets.

A lattice M is said to be distributive if for x,y,z e M

( 7 ) (X V y) A Z = (X A Z) V (y A Z) .

A lattice M is said to be of breadth b if for each finite set [x,] of
more than b elements of M, there is a subset [j/J of b elements such
that xx A x2 A = yλ A y2 A Λ yb, and b is the least number for which
this holds. Similarly, one can define the breadth, bu using joins instead
of meets. It is then a simple fact that b — b± (see [3] p. 20).

THEOREM 3. If M is a compact distributive topological lattice of
finite breadth and U is a neighborhood of a point x e M, then there is
a convex set CVyZ that is a neighborhood of x and lies in U\
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Let b denote the breadth of M, let W1 denote a closed neighborhood
of x as in Lemma 3 for the neighborhood U, and let W2, , W2b denote
neighborhoods of x such that for 2 <̂  i % 2b, if y, z e Wt then yvze Wt-λ

and y ι\z e Wi-1. Let R denote the union of the ranges of all lattice
polynomials over the domain W2b. By Theorem 12, p. 145 of [3], any
such polynomial can be written in the form

n(h)r ΓraOO

A V
/i = l | _ f c = l

Since each V #*(&,*) * s ^ e Join of not more than b elements of W2b,

every such element lies in Wb. Hence, any element in the range of

a lattice polynomial over W2b is the meet of not more than b elements

of Wb and so lies in Wλ. Thus, R c Wλ. Since R is a sublattice of M,

the closure R of R is a sublattice of M, and R a W±. R is a compact

topological lattice and by Lemma 1 has a unit a and a zero b. By

Lemma 3, Cδ)α c U. C6>α is a neighborhood of x since TF2δ cRcRc CbtCb.
In closing we would like to note the following conjectures.
Suppose M is a compact, metric, connected, distributive topological

lattice. Then

(i) M admits sufficiently many lattice homomorphisms onto the unit
interval to separate points;

(ii) M is an absolute retract;
(iii) d i m M = breadth of M; and
(iv) if dim M = n, M is homeomorphic to a subset of an n-ce\\.

D. E. Edmondson has announced [4] an example of a compact,
metric connected two dimensional lattice that is modular but not dis-
tributive, and that cannot be imbedded in the plane. Lee Anderson
has a proof (unpublished) that breadth M ^ dim M. Therefore in
Theorem 3 the hypothesis that M has finite breadth may be replaced
by the hypothesis that M is finite dimensional.
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