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A MAXIMAL PROBLEM IN HARMONIC ANALYSIS, II

I. I. HIRSCHMAN, JR.

1. Introduction, Let G be a compact topological group with elements
x, x0, etc. We denote by dx the Haar measure of G normalized by the
condition that the measure of G is 1. Let the matrices

(1) \g{μ, i, h x)]?f-i aeA

be a complete set1 of inequivalent unitary representations of G. We
recall that this implies that2

( g(a, i, h χ)g(β, k, l, xTdx = δ ( α > ί f j ; β> ^ l) .
JG r(a)

Here S(a, i, j ; β,k,l) is 1 if a = β, i = k and j = I; otherwise it is zero.
Further if f(x) e L\G) and if

, if J> f) = t

then

() Σ( 2 )

Let 1 < p ^ 2, 1/p + 1/g = 1. The object of the present paper is to
demonstrate the inequalities

Ϊ
Γ r(cύ) -\qβ\ljq

Σr(α)2-H Σ \c{a,i,j,f)\Λ S 11/11, ,
* LiJ-1 J )

(3") J Σ Φ ) 2 - 4 r Σ Ic(α, i, i,/)!1!"1}1" ^ 11/11,,

and to determine for p Φ 2 all cases in which equality occurs. (If
p = q = 2 then (3') and (3") reduce to (2) and equality holds for every
/ ) . The inequalities (3') and (3") are an extension to compact groups of
the Young-Hausdorff-Riesz inequalities for Fourier series. The corre-
sponding problem for locally compact Abelian groups has been discussed
by E. Hewitt and the author in [2], and the present paper may be
considered as a continuation of [2]. Closely related results are also
contained in a paper of A. Calderόn and A. Zygmund [1],

Note that the r(a) x r(a) matrix [g(a, ί, j , x)] is not uniquely

Received May 15, 1958. Presented to the Amer. Math. Soc, April 1956. Research
supported in part by the Office of Scientific Research and Development Command of the
United States Air Force under contract No. AF18(600)-568.

1 For the definitions of the group theoretic terms used here see [3].
2 If γ is a complex number then γ* denotes its conjugate.

525



526 I. I. HIRSCHMAN, JR.

specified. Indeed if [ί(i, j)] is any r(a) x r(a) unitary matrix then
[g(a, i, j . x)] may be replaced by

[Qi(a, ί, j , x)1 = [ί(i, j)][g(a, i, j , x)Jt(ί, i)]"1 .

Let

i(«, h 3, f) = I f(x)9i(a, i, j , x)*dx .
Jo

C

We assert that

that is the left hand side of (3') and (3") remains unchanged if some
representations are replaced by equivalent representations. This is an
immediate consequence of the easily verified matrix equation

[Ci(α, i, i, /)] = ίt(i, j)λ\c{ay i, j , /)][t(i, i)]"1 .

This property, which is clearly essential if the extremal functions are
to have group theoretic significance, explains the appearance of the terms

l ί \c(a,ί,j,f)\2

in the inequalities (3') and (3").

2. The inequalities* We begin by demonstrating the inequality (3')
of § 1. Essentially this result is a consequence of the Riesz-Thorin
convexity theorem. However we will give the demonstration in full,
first because the proof differs slightly from the proofs of the previously
known special cases, and secondly because we shall need the apparatus
of the proof in order later to identify the extremal functions.

THEOREM 2a. // fix) e LP(G) 1 < p ^ 2 then the inequality (3') of
§ 1 holds.

Let sgn reίθ — eίθ if r Φ 0 and let sgn 0 = 0. Let w be a complex
number. We define3

(a, i, j , Tx{w)f) = f ΉM/ίaOM", i, i, x)*dx .

Let

3 If /(a?) ^ 0 we define |/(a?)|(»/»α+«O to be exp flog|/(a?)|γp(l + w)l where log |/(ί»)| is

taken as real.
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C(a, ί, j , f) = [s(a, /)/r(α)]«-1>'2 c(a, i, j , / ) * ,

S(a, f) = ' Σ \C {a, i, j , / ) | 2 = s(a, f)-1 r(a)^ .

We further define

T2(w)C(a, i, j,f) = lr(a)IS(a,f)Ίt'*-w+» C(a, i,j,f) ,

if s(a,f)Φ0. If s(α,/) = 0 we set T2(w)C(a,i, j,f) = 0. Suppose
first that / is a finite simple function; that is, there exist disjoint
measurable sets Jly , Jm in G such that f(x) = αfc =£ 0 for x e Jk

k = 1, , m, while /(#) = 0 for a; 6 G - (Jx u J2 U U Jm). Then

TO r

c(a, i, j , T.iw)/) = Σ \ak l^wίi*-) B g n α , flf(α, ΐ, i, «)*cίa; .

Let Ao be a finite subset of A and define

Fr(w, Λ) = Σ r(α) 2 [c(α, ΐ, j , T
iClearly F^w, AQ) is an exponential polynomial with real exponents

that is F^w, Ao) is of the form Σf=i Φ^m with the φv real. Thus
Fλ(w, Ao) is an entire function of w bounded in every vertical strip
ux fg $lw ̂  u2. By Schwarz's inequality

( r(a) \l/2

αΣ r(a)^\c(a, i, j, T,{w)f)η

Σ Φ\Sj Uw)C(a, i, j,f)fΓ .

Suppose IRw = 0; that is w = 0 + iv. Then we have

By BesseFs inequality

Σ r(a) 5 \c(a, i,j, T ^ ) / ) ! 2 ^ \ \ Tx(iv)f(x)\>dx = \\f\\> .

On the other hand

I Uiv)C(a, i, j , /) I = I C(a, ί, j , /)|[r(α)/S(α, /)]*-«"«>

and hence

Σ* I Wv)C(a, i, j , f) I2 = [r(a)IS(a, /)]*-'/» f I C(α, ΐ, j , f) |2

= r(ay-pl2S(a,f)Pl2 = r(af'ql28(a9fY
1

Thus
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[ ηi/2

«6X0 J

Next suppose ?Rw — 1, that is w = 1 + ίv. Then we have

\T1(l + iv)f(x))\ = \f(x)\" .

Now

c(a, ί, j, T,(l + iv)f) = ( [2\(1 + « ) / ( * ) ] # , i, j, x)*dx ,

\c(a,i,j, Zil + iv)/)?

^ \ I Tx(l + iv)f(x)\ I g(a, i, j , xWdx\ | 2\(1+it;)/(α;)|da; ,
Jβ Jβ

and thus

Σ' k(α, ί. i. ^(1 + w)/)|2 ^ H/Hϊ ί \f{x)\* "Σ lflf(«, i, J, *)l2

Since

Σ lfl̂ («, ί,i, «)l2 = r(a)

this implies that

15 k(α, i, J, 2\(1 + ™,/)|2 ^ ||/||?r(«)

On the other hand we have

I Γ2(l + iv)C(a, i, j , f) I = r(a)IS(a, f)]1'2^'2 \ C(a, ί, j , f) \

r% I T2(l + iv)C{a, ί, jf)\2 = r(ay-pS(a,f)* = r f α ) 1 - ^ ^ , /

By Schwarz's inequality

( r(Λ) Λ l / 2

IF^w, Λ ) | ^ Σ r(α)-1 Σ k(α, i, j , Tλ(w)f H
<x€AQ { ί ,J = 1 j

Ϊ
r(oύ) Λ l / 2

ij = l i

and from this it follows that

ί
r(a) \ l/2

l.iα.b. τ{a)-ι^\e{a, i, j, ^(w)/)!1}

x Σ
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Using the above estimates we obtain

IFX(1 + iv,A0)\ ^

Finally since

Γ/A - l) f{x) - f(x), Γ/A - l)C(a, i, j, f) = C(a, i, j, f)
\p J \p /

we have

/ O \ r(oύ)

F l & 1 Λ \ — V τ(rγ\ V P(/Ύ i o F\C(rv ό ή f\ll — -L> ΆQ I — 2-ι * vα/ 2-ι ^Xyί, i, J, J )^\W> ^, J» / / >

= Σ

By the three lines theorem, see [1 p. 169],

\p
<± [l.u.b.

Thus if

we find that

which implies that x ^ 11/11,. This has been established under the

assumption that / is a simple function however this restriction can be

removed as follows. Let {fn(x)}n=i be a sequence of simple functions

such that | | / - fn \\p -• 0 as n -* co. We have

Σ r(α)2-"2s(α, Λ ) ^ 4 S IIΛ II, (% = 1, 2, •)

Since c(a, ί, j , fn) -> c(α, i, i, /) as n -> CXD we obtain in the limit

( \ l/<2

\ Σ r(ay-"'s(a,f)w\ ^\\f\\P.

Finally, Ao being an arbitrary finite subset of A this implies the validity
of (30 of § 1.

The second of our two inequalities can be deduced from the first
by a familiar duality argument.

THEOREM 2b. If f(x) e Lq(G)2 ^ q < co then (3") of § 1 holds.
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Let Lp be the class of functions g(x) for which c(a, i, j , g) is different
from 0 for only a finite number of indices and for which ||̂ (ίu)HP ^ 1.
We have if g e Lp

Γ r(cύ)

\ f{x)g{x)*dx = Σ r(a) Σ c(a, i, j,f)c(a, i, j , g)* ,
JG aβA i,j = i

and hence

I! f(x)g(x)*dx
I JG

Σ
ΛEA

,gy
i/α

since by Theorem 2a

ΛβA

Since Lp is dense in the unit ball of LP(G)

it follows that

dx

I l / I l β -Lli r (

as desired.
It should be noted that the inequality is valid (3') for p = 1 in the

form
Γ r(a) ηi/2

l .u .b . r ( α ) " 1 Σ \c(a,iyjyf)n ^\\f\\19
<* L ίj-i J

the (elementary) proof of this result being one of the steps in the
demonstration of Theorem 2a. Similarly (3") is valid for q — oo in the
form

r(oύ) -]i/2

Σ \c{a,ί,3,m^ Σ H

Here | | / | U = ess. sup. \f{x)\.

3. An order relation. If the group G is commutative then the
following result reduces to the Riemann-Lebesgue lemma.

THEOREM 3. If f(x) e L\G) then s(a,f) = o[r(a)~].
This means, of course, that given any δ > 0 the set of values a

for which s(α,/) > δr(α) is finite. We can write f(x) = fλ{x) + f2(x)
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where f2(x) e L\G) and where H/JL ^ ε, ε being any positive number
given in advance. A familiar inequality implies that s(a, f) <̂
2s(a,f1) + 2s(a,f2). Since

it follows that s(α,/2) = o\τ{a)'\-1 and thus a fortiori

s(a, f2) = o[r(a)] .

On the other hand

c(a, i, j, /i) = \ fi(%)g(a, i, j, xTdx ,

\c{a,ij,fι)\^ί\ \fx{x)\ \g(a,i,j,x)\2dx\ \A(x)\dx ,

β(α,/i) ^ IIΛ Hit 1/iWI Σ \9(a, i,3, x)\2 ^ WfiWl r(a) £ εV(α) .

Thus

2εV(α) .

4. A duality property* A function f(x) e LP(G) (1 < p < 2) is said
to be maximal in LP(G) if equality obtains in the inequality (3') of § 1
a function f(x) e Lq(G) (2 < q < CXD ) is said to be maximal in Lq(G) if
equality obtains in (3") of § 1.

THEOREM 4a. Let \\f\\p = 1 wftere 1 < p < 2 and ίeί F(x) = l/^)! 2 ' " 1

. // / is maximal in LP(G) then F is maximal in Lq(G) and

c(a,ί,j,F)=:C(a,i,j,f)* .

Let B be the collection of all finite subsets B of A, partially ordered
by inclusion. For B e B we define

φ(Xf B) = Σ r(α) " Σ C(a, i, j , f)*g{a, i, j , x) .
βB ij l

By Theorem 2b

Now

from which it follows that
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Σ r(af-w*s(a, / W ^ 11/ IIS" = 1
cύβB )

Also if Bx 6 B and if B Δ Bx denotes the symmetric difference of B and
Bλ then

ί

\\φ(x, B) - φ{x, BJWa ^ Σ r(a

It follows that the limit in the mean of order g of φ(x, B) exists. Let
us denote this limit by <p{x) then

and

c(a, i, j , φ) = C(α, i, j , / ) * .

We have

[ f(x)φ(x, B)*dx = Σ r(α) " Σ c(a, i, j , f)C(a, ί, j , f)
JO cteB ij = l

= Σ
cύ = B

It follows that

ί f(x)<p{x)*dx = lim f f(x)Φ(x, B)*dx

- lim

Here we have made use of the fact that / is maximal in Lp. We now
have

1 =
G

that is, equality obtains in Holder's inequality. Using the fact that
| |/ | |p = 1 this implies, see [2], that

Thus φ(x) — F(x) and the statement of our theorem is proved. That
F(x) is maximal in Lq(G) follows from an evident computation.

THEOREM 4b. Let \\f\\p = 1 where 1 < p < 2 and let F(x) =
\f(x)\p~1sgnf(x). If F(x) maximal in Lq(G) than f(x) is maximal in
LP{G) and
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Let us set

F(x, B) = j Σ r{μ) _ Σ i c(a, i, j , F)g(cx, i, j , x)

where B e B. Since F is maximal

{ Σ Φ) 2 " ( 1 / 2 ^8(α, IFJCWij1" = || jpτj|β = χ ̂

and from this it follows easily using Theorem 2b that

\im\\F(x)-F(x,B)\\q = 0.
BβB

We have

Σ r(a) r Σ c(α, i, i, F)c(α, i, j , / ) * - ( i^x, B)f*(x)dx ,

and thus passing to the limit

Σ r(a)c(a, i, j , F)c(a, i, j , / ) * - f F(x)f*(x)dx = 1 .
ccEA JG

On the other hand

1 = Σ r(a)c(a, i, j , F)c{a, i, j , / ) * ̂  { Σ r(a)
aβA {aβA

• i Σ r(a)

Now

Σ

by assumption, and this implies that

J V rvίrv^-O-l^Qί/Ύ /^(l/2)1?! *> 1 II -p \\

laβA )

Thus / is maximal in ZΛ Applying Theorem 4a we see that c(a, i, j , F) —

5 Necessary conditions*

LEMMA 5. // f(x) is maximal then so is /(xϊ1 x) for any x1in G.

The matrix relation

[ f*ί/Ύ 0 Π T (/y" Ύ I I I — \ fix ΓV 0 *ϊ sy ι ~\\^s*ί/~v o Ί* ~Pίsv*\~\c^α, t, j , j \Λi JO))] — Lί/vα> ΰf J * ̂ i) λ\β\Pίy if J, / \X)]
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is easily verified, and because [g(a, i, j , α )̂*] is unitary this implies that
s(a, f{x~λ x) — s(a,f(x)). Since [[/(xr1 x)\\p — \\f(x)\\P, the desired result

follows.
If f(χ) i s a n y function on G and if Gλ is any subset of G then by

f&1(x) we denote the function which is equal to f(x) for x e Gλ and to 0
for x $ Gλ.

THEOREM 5. // f(x) is maximal in Lp(l < p < 2) or Lq(2 < q < oo)
then f(x) is of the form

where γ0 is a complex constant, H is an open and closed normal subgroup
of G, χ(α0, x) is a character of rank r(a0) such that

\χ(ao,x)\ = r(a0) x e H ,

and x0 is an arbitrary element of G.
For B e B let us define as in § 2

¥λ{wy B) = Σ r(a) ? Σ lc(a, i, j , Tx(w)f)\TJίw)C{a, i, j,f)] .
α € B ί,j = l

At the moment we suppose only that / e L (G) and not that / is maximal.
If / is simple then F^w, B) is analytic for 0 ^ ϊRw ̂  1. If / is not
simple then approximating / by a sequence of simple functions it is easy
to show that ¥λ{w, B) is analytic for 0 < dϊw < 1 and continuous and
bounded for 0 <g 3̂ w ^ 1.

2 2
+ iv) = , qiu + iv) —

1 + u 1 —
By Holder's inequality {F^w, B)\ ^ IJ2 where

I\ — 1 2 J T^CI;" v--/H^,^α > ^ ιyw)j y-- -'^~' j
oEB

By Theorem 2a

while direct computation gives

Thus
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and

It is easily deduced from this that if

F,(w) = lim Fλ(w, 5) = Σ r(α) Σ* [c(
£B 4 ij

then F^w) is defined for 0 g 3ΐw fg 1, and that Yx{w9 B) -• F^w) uniformly
in this strip. Fλ(w) is therefore analytic for 0 < ϋlw < 1 and continuous
for 0 fg $lw ^ 1. In addition

We may assume without loss of generality that | | / | | p = 1. Then

(2) I F ^ l ^ l O^ίRw^

Let us now use the fact that / is maximal in ZΛ This implies that

( 3 ) F / — - l ) = Σ r(α)2-(1/2^s(α, fY12 = 1 ,

The relations (2) and (3) together imply, using the maximum modulus
principle, that

F^w) = 1 0 ^ $\w ^ 1 .

Let us analyze this relation for w = 1. We have

I c(a, i, j , TJX)f) |2TT Σ I Γa(l)C(α, ΐ, i, /

( 4) ^ -jl.u.b.ίr(α)-1 Σ |c(α, i, i, T^fwTl

• { Σ \r{af "Σ I T2(l)C(a, i, j,f)\2T\ .

Now

l.u.b.Γr(α)-1 Σ 5 \c(a, i,j, ^

by Theorem 2a with p = 1, while since / is maximal in Lp

Πl/2Γr(ίt)

Σ r(a)M Σ I Σ
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Thus equality obtains in the inequality (4) and this is possible only if

Σ

except for those values of a for which

()1 ΣIΦU

By Theorem 3 there are only a finite number such α's. Thus the set
Ao of indices a for which s(a, f) ψ 0 is finite. In particular this implies
that if f(x) is maximal in Lp it is almost everywhere equal to a linear
combination of the functions g(a, i, j , x)(a e AQ i, j = 1, r(α)). Con-
sequently redefining /(x) if necessary on a set of measure 0 we may
suppose that it is continuous. Because of Lemma 5 it is no restriction
to assume that f(e) Φ 0.

Let us set

ψ(x, w) = Σ r(a) _ Σ [Γ2(w)C(α:, ί, i, /)]*flf(α, i, i, a?) .

We define

F2(w) = \ ψ(sβ, /^)*[Tr

1(
/^)/(x)]cZx .

It is easily seen that F2(w) is analytic for 0 < ϊίlw < 1 and continuous
for 0 <S 9ΐ^ ^ 1 . By Holder's inequality

( 5 ) I F2(w) I ^ | | ψ(x, w

It is easily checked that

while Theorem 2b gives

\\ψ(%,w)\\qw^

from which it follows that

IIΨO*, w)Hβ(w) ^ [ Σ r(α) s-cw«8(α,/)(w»βJ / P C w ) g 1 .

We have

\F2(w)\^l O^ϊRw^l.

Let us put w = 2lp~-l. Then ^(2/p - l)f(x) =f(x) while ψ(a?, 2/p - 1) =
F(x) by Theorem 4a. Consequently we have
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'2
F

p

and thus

F2(w) Ξ= 1 0 ^ IRw ̂  1 .

It follows that in the application of Holder's inequality (5) there is
equality. This implies that if 0 < $ϊw < 1

ψ(x, w) = I T^wMx)^-1 sgn {Tλ(w)f{x)\ .

Thus

ψ(x, w) = Σ r(α) Σ [Γa(w)C(α, i, i, /)]*flf(α, i, i, a?)

- I Γ^/ίajJI^^sgnCΓ^J/ίaj)] .

Letting w -> 1 + iv we obtain

(6 ) ψ(x, l + iv)= Σ r(α) " Σ [Γa(l + iv)C(α, i, i, /)]*ff(α, i, i, a?)
ί

- sgn [^(1 + iv)f(x)] .

It follows that \ψ(x, 1 + iv)\ is either 1 or 0 and since \ψ(x, 1 + iv)\ is
a continuous function of v it follows that the set X of values x where
it is 1 is independent of v. Note that X is both open and closed. If
x 6 X then

1 = Ma, 1)1

[ rU) -|i/2Γ r(αθ Πl/2

Σ I T%(l)C{a, i, 3, f) H Σ I flr(α, i, i , α) I2

= Σ r(α)"f r Σ I 2V(l)C(α, i, i,/)|2T'2 = 1 .
aβΛQ LίJ=Ί J

Thus equality obtains in the above application of Schwarz's inequality
and from this it follows that if x e X, a e Ao, then

(7) Γa(l)C(α, i, i, /) = r(α)δ(a?)r(α)-1/aflf(α, i, i, x)

where 18(x) \ — 1 and where

[ rCαO Πl/2

Σ \m)C(a,i,j,fY\ .
Since /(e) ^ 0 we have e e l . Setting x = β in (7) we deduce the matrix

relation

(8 )
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where I is the r(a) x r(a) identity matrix. Let

r(αθ

χ(a,x) =
ί

be the character associated with the representation [g(a, i, j , x)~]. From
(7) and (8) we see that if x e X, a e Ao, then δ(#)χ(α, &) = δ(e)r(α).
Thus we find that

(9) lχ(α,α)l = r(α) ( x e X ; α e i 0 ) ,

M/5)"1 (α 6 X α, β e Ao) .

Let H be the set of all x in G such that (9) holds for a, β e Ao. We
have proved X a H. Since it is easily verified that if x e H then
|ΛKB, 1)1 = 1 it follows that i ί c l , and thus H = X. lί x e H then
[0(ff> i9 h ^)] = ̂ (α)"^^* χ) I f r o m which it is evident that i ί is a normal
subgroup of G and we have previously noted that H = X is open and
closed. Inserting (7) in (6) we find, using the relation

Γiv)C(a,i,j,f) =

that if x e H then

S(aO* Σ τ(α)r(α)3/2[r(α)/S(α,.

If follows from this on setting v = 0 that sgn/(#)* = δ(cc). Dividing
this out we see that \f(x)\+pίv'2 is independent of x for x e H\ that is,
\f{x)\ is constant on H. Thus if α0 is some index in Ao and if γ0 is a
suitable complex constant we have proved that f(x) = 70 %*(#<» %) where
\χ(aOf x)\ = r(a0) on H. (Note that since we assumed earlier that
11/0*011*=1 the absolute value of γ0 is determined.) Thus our theorem is
proved if / is maximal in Lp, 1 < p < 2. The case where / is maximal
in Lq, 2 < q < oo, follows from that treated above and Theorem 4b.

6 Sufficient conditions*

THEOREM 6. // f(x) is of the form

( 1 ) ~F(Ύ^\ : = Ύ Ύ (oί xi\

where γ0 is a complex constant, H an open and closed normal subgroup
of G, χ(α0, x) a character such that \ χ(aQ, x)\ = r(aQ) xeH, or if f is a
left translate of such a function, then f is maximal in Lp(l < p < 2)
and in Lq(2 < q < oo).

Let f(x) and f2(x) e U(G). We define

/o(a)=/i*/a =
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It is well known and easily verified that this implies the matrix relation

[ φ , i, j , /o)] = \c(a, i, i, /i)][c(α, i, i, /2)] .

Let us put

m(aff)= \ f(x)χ(a,x)*dx.
Jo

If fλ{x) and /2(ίc) are central functions then as a special case we have

( 2 ) r(a)m(a, f0) =

Consider the function (1), except that we may without loss of generality
suppose 7o = 1. We have

r(ao)f(x) (xeG,yeH).

It follows from this that

f*f=r(aQ)\H\f

where | H | is the Haar measure of H. Applying (2) we see that

m(a, f)2 = r(a)m(af / * /) = r(a)r(aQ) | i ϊ | m(α, /)

and thus either

(3') m(α,/) = r(α)r(αo)|fl r |

or

(3") m(α,/) = 0 .

A simple computation shows that if Ao is the set of indices for which
(3') holds then

s(a,f) = r(a)rao)
2\H\2 a e Ao .

Note that ||/(a?)||p = r(ao)\H\llP. By ParsevaΓs equality

^ τ(ίY^τ(ίY ^2 1 T-F I2 —

and thus
HI/q

Σ r(α)2-(1/2)<is(«./)<1/2)<! = Σ r(a

= \r(aoy-' IH I9"2 Σ r(α)V(α0)21H | 2 T" ,

and we have proved that / is maximal in Lp, 1 < p < 2. Exactly the
same argument shows that / is maximal in Lα, 2 < q < oo. That the
translates of / are also maximal follows from Lemma 5,
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7. Since the present paper was written, there has appeared " Lp

Fourier transforms on locally compact unimodular groups " by R. A.
Kunze, Trans. Amer. Math. Soc, Vol. 89 (1958), pp. 519-540. Together
with more general results Kunze establishes inequalities like (3') and
(3") of § 1. Actully Kunze?s inequalities are somewhat sharper than
(3') and (3"). However since the bulk of the present paper is largely
denoted to finding the extremal functions in (3') and (3") and since
these are a fortiori the extremal functions for Kunze's inequalities, the
two papers are in a certain degree complementary.
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