Pacific Journal of Mathematics

CHAINABLE CONTINUA AND INDECOMPOSABILITY

CECIL EDMUND BURGESS

Vol. 9, No. 3

July 1959

CHAINABLE CONTINUA AND INDECOMPOSABILITY

C. E. BURGESS

This paper includes a study of continua¹ which are both linearly chainable and circularly chainable. Since there exist indecomposable continua and 2 indecomposable continua which are linearly chainable, it follows from Theorem 7 that there exist indecomposable continua and decomposable continua which have both of these types of chainability.

A linear chain C is a finite collection of open sets L_1, L_2, \dots, L_n such that

(1) each element of C contains an open set that does not intersect any other element of C,

(2) $\rho(L_i, L_j) > 0$ if |i - j| > 1, and

(3) $L_i \cdot L_j \neq 0$ if $|i - j| \leq 1$. If this is modified so that $L_1 \cdot L_n \neq 0$, then C is called a *circular chain*. Each of the sets L_1, L_2, \dots, L_n is called a *link* of C, and C is sometimes denoted by (L_1, L_2, \dots, L_n) or $C(L_1, L_2, \dots, L_n)$. If ε is a positive number and C is a linear chain such that each link of C has a diameter less than ε , then C is called a *linear* ε -chain. A *circular* ε -chain is defined similarly.

If C is either a linear chain or a circular chain and H_1, H_2, \dots, H_n are connected sets covered by C, then these sets are said to have the order H_1, H_2, \dots, H_n in C provided (1) no link of C intersects two of these n sets and (2) for each i(i < n), there is a linear sub-chain in C which covers $H_i + H_{i+1}$ and which does not intersect any other of the sets H_1, H_2, \dots, H_n .

A continuum M is said to be *linearly chainable*² if for every positive number ε , there is a linear ε -chain covering M. A continuum M is said to be *circularly chainable* if for every positive number ε , there is a circular ε -chain covering M.

A tree T is a finite coherent³ collection of open sets such that

(1) each element of T contains an open set that does not intersect any other element of T,

(2) each two nonintersecting elements of T are a positive distance apart, and

(3) no subcollection of T consisting of more than two elements is a circular chain. If ε is a positive number and T is a tree such that

Presented to the American Mathematical Society, August 29, 1957; received by the editors December 5, 1958. This work was supported by the National Science Foundation under G-2574 and G-5880. Most of these results were obtained while the author was a visiting lecturer at the University of Wisconsin.

¹ Throughout this paper, a connected compact metric space is called a continuum.

² In some places in the literature, such continua have been said to be *chainable*.

³ A collection G of sets is said to be *coherent* if for any two subcollections G_1 and G_2 of G such that $G_1 + G_2 = G$, some element of G_1 intersects some element of G_2 .

each element of T has a diameter less than ε , then T is called an ε -tree. A continuum M is said to be *tree-like* if for every positive number ε , there is an ε -tree covering M.

A continuum M is said to be the *essential sum* of the elements of a collection G if the sum of the elements of G is M and no element of G is a subset of the sum of the other elements of G. If n is a positive integer and the continuum M is the essential sum of n continua and is not the essential sum of n + 1 continua, then M is said to be *n-indecomposable.*⁴

A continuum M is said to be *unicoherent* if the intersection of each two continua having M as their sum is a continuum. A continuum M is said to be *bicoherent* if for any two proper subcontinua M_1 and M_2 having M as their sum, the set $M_1 \cdot M_2$ is the sum of two continua that do not intersect.

A continuum M is said to be a *triod* if M is the essential sum of three continua such that their intersection is a continuum which is the intersection of each two of them.

THEOREM 1. If the continuum M is either linearly chainable or circularly chainable, then M does not contain a triod.⁵

Proof. Since it is easy to see that every proper subcontinuum of M is linearly chainable, it will be sufficient to show that M is not a triod.

Suppose that M is a triod. Let M_1 , M_2 , and M_3 be three continua having M as their essential sum such that their intersection is a continuum H which is the intersection of each two of them. For each i ($i \leq 3$), let p_i be a point of M_i that is not in either of the other two of the continua M_1 , M_2 , and M_3 . Let ε be a positive number which is less than each of the numbers $\rho(p_1, M_2 + M_3), \rho(p_2, M_1 + M_3)$, and $\rho(p_3, M_1 + M_2)$. Let C be either a linear ε -chain or a circular ε -chain which covers M. Since no link of C intersects two of the sets p_1 , p_2 , p_3 , and H, consider the case in which these four sets are in C in the order named. This would involve the contradiction that M_2 intersects either the link of C that contains p_1 or the link of C that contains p_3 . A similar contradiction results from supposing any other order of the sets p_1 , p_2 , p_3 , and H in C.

THEOREM 2. If the unicoherent continuum M is not a triod and M_1 , M_2 , M_3 are three continua having M as their essential sum, then

⁴ For any such continuum M, there is a unique collection consisting of n indecomposable continua having M as their essential sum [4].

⁵ Bing [2] has used the fact that no linearly chainable continuum contains a triod, but for completeness a proof is given here for both types of chainability.

some two of these continua do not intersect and the other one intersects each of these two in a continuum.

Proof. Suppose that each two of the continua M_1 , M_2 , and M_3 intersect. It follows from the unicoherence of M that each of the sets $M_1 \cdot (M_2 + M_3)$ and $M_2 \cdot (M_1 + M_3)$ is a continuum and their sum is a continuum. Let $N = M_1 \cdot (M_2 + M_3) + M_2 \cdot (M_1 + M_3) = M_1 \cdot M_2 + M_1 \cdot M_3 + M_2 \cdot M_3$. Hence M is the essential sum of the three continua $M_1 + N$, $M_2 + N$, and $M_3 + N$ such that N is the intersection of each two of them and the intersection of all three of them. Since this is contrary to the hypothesis that M is not a triod, it follows that some two of the continua M_1 , M_2 , and M_3 do not intersect. Consider the case in which M_1 and M_3 do not intersect. Then M_2 intersects both M_1 and M_3 , and since $M_1 \cdot M_2 = M_1 \cdot (M_2 + M_3)$ and $M_3 \cdot M_2 = M_3 \cdot (M_2 + M_1)$, it follows from the unicoherence of M that each of the sets $M_1 \cdot M_2$ and $M_3 \cdot M_2$ is a continuum.

THEOREM 3. If the unicoherent continuum M is circularly chainable, then M is either indecomposable or 2-indecomposable.

Proof. Suppose that M is the essential sum of three continua M_1 , M_2 , and M_3 . By Theorem 1, M is not a triod. Hence by Theorem 2, one of these three continua, say M_2 , intersects each of the other two such that $M_1 \cdot M_2$ and $M_2 \cdot M_3$ are continua and M_1 does not intersect M_3 . For each i ($i \leq 3$), let p_i be a point of M_i which is not in either of the other two of the continua M_1 , M_2 , and M_3 . Let ε be a positive number which is less than each of the numbers $\rho(p_1, M_2 + M_3)$, $\rho(p_2, M_1 + M_3)$, $\rho(p_3, M_1 + M_2)$, and $\rho(M_1, M_3)$. Let C be a circular ε -chain which covers M. A contradiction can be obtained as follows for each of the three types of order in C for the five sets $p_1, p_2, p_3, M_2 \cdot M_1$, and $M_2 \cdot M_3$.

Case 1. If these five sets have the order p_i , p_j , p_k , $M_2 \cdot M_1$, $M_2 \cdot M_3$ in C, then M_j would intersect a link of C that contains one of the points p_i and p_k , contrary to the choice of ε .

Case 2. If these five sets have the order p_1 , $M_2 \cdot M_1$, p_i , p_j , $M_2 \cdot M_3$ in C, then M_2 would intersect a link of C that contains one of the points p_1 and p_3 , contrary to the choice of ε .

Case 3. If these five sets have the order p_2 , $M_2 \cdot M_1$, p_i , p_j , $M_2 \cdot M_3$ in C, then each link of one of the linear chains of C from p_1 to p_3 would lie in $M_1 + M_3$. This would involve the contradiction that some link of C intersects both M_1 and M_3 .

THEOREM 4. If the circularly chainable continuum M is separated

by one of its subcontinua, then M is linearly chainable.

Proof. Let K be a subcontinuum of M which separates M. Then M is the sum of two continua M_1 and M_2 such that K is their intersection. Let p_1 and p_2 be points of $M_1 - K$ and $M_2 - K$, respectively, let ε be a positive number less than each of the numbers $\rho(p_1, M_2)$ and $\rho(p_2, M_1)$, and let C be a circular ε -chain covering M. Then each link of one of the linear chains in C from p_1 to p_2 is a subset of M - K. Let L_1, L_2, \dots, L_n be the links of C such that L_1 contains p_1 and there is a positive integer r such that L_r contains p_2 and no link of the linear chain (L_1, L_2, \dots, L_r) intersects K. There exist integers i and j such that L_i is the first link of (L_1, L_2, \dots, L_r) which intersects M_2 and L_j is the last link of (L_1, L_2, \dots, L_r) which intersects M_1 . Then $(M_2 \cdot L_i, M_2 \cdot L_{i+1}, \dots, M_2 \cdot L_r, L_{r+1}, \dots, L_n, M_1 \cdot L_1, M_1 \cdot L_2, \dots, M_1 \cdot L_j)$ is a linear ε -chain covering M.

THEOREM 5. Every circularly chainable continuum M is either unicoherent or bicoherent. Furthermore, M is unicoherent provided some subcontinuum of M separates M, and M is bicoherent provided no subcontinuum of M separates M.

Proof. Suppose that M is the sum of two continua H and K such that $H \cdot K$ is the sum of three mutually separated sets Y_1 , Y_2 , and Y_3 . There exist three open sets D_1 , D_2 , and D_3 containing Y_1 , Y_2 , and Y_3 , respectively, such that the closures of D_1 , D_2 , and D_3 are disjoint. For each i ($i \leq 3$), there exists a subcontinuum K_i of K irreducible from Y_i to $M - D_i$. The continuum $H + K_1 + K_2 + K_3$ is a triod, and this is contrary to Theorem 1. Hence it follows that if M_1 and M_2 are two continua having M as their sum, then the set $M_1 \cdot M_2$ is either a continuum or the sum of two continua.

It follows from Theorem 4 that M is linearly chainable, and hence unicoherent [3], provided some subcontinuum of M separates M. From this and the argument in the previous paragraph, it follows that M is bicoherent provided no subcontinuum of M separates M.

THEOREM 6. If the circularly chainable continuum M is irreducible about some finite set consisting of n points, then there is a positive integer k not greater than n such that M is k-indecomposable.

Proof. By Theorem 5, M is either unicoherent or bicoherent. If M is unicoherent, it follows from Theorem 3 that M is either indecomposable or 2-indecomposable. If M is bicoherent, it follows from Corollary 6.1 of [5] that there is a positive integer k not greater than n such that M is k-indecomposable.

THEOREM 7. If the continuum M is linearly chainable, then in order that M should be circularly chainable, it is necessary and sufficient that M be either indecomposable of 2-indecomposable.

Proof of necessity. Since every lineary chainable continuum is unicoherent [3], it follows from Theorem 3 that M is either indecomposable or 2-indecomposable.

Proof of sufficiency. The case where M is indecomposable and the case where M is 2-indecomposable will be considered separately.

Case 1. Suppose M is indecomposable, and let $C(L_1, L_2, \dots, L_n)$ be a linear ε -chain covering M. There exist two disjoint continua K_1 and K_2 of M such that each of them intersects each of the sets $L_1 - cl(L_2)$ and $L_n - cl(L_{n-1})$. If follows that there exist a positive number ε' , a linear ε' -chain C' covering M, and two subchains C_1 and C_2 of C' such that

(1) each link of C' is a subset of some link of C,

(2) C_1 and C_2 have no common link, and

(3) each of the chains C_1 and C_2 has one end link in $L_1 - cl(L_2)$ and the other end link in $L_n - cl(L_{n-1})$. Let W_1 denote the set of all points of M that are covered by C_1 and let W_2 denote $M - W_1$. Then $(L_1, W_1 \cdot L_2, W_1 \cdot L_3, \dots, W_1 \cdot L_{n-1}, L_n, W_2 \cdot L_{n-1}, W_2 \cdot L_{n-2}, \dots, W_2 \cdot L_2)$ is a circular ε -chain covering M.

Case 2. If M is 2-indecomposable, there exist two indecomposable continua M_1 and M_2 such that M is their essential sum and $M_1 \cdot M_2$ is a continuum. Let ε be a positive number. There exists a linear ε -chain C covering M such that M_1 intersects $L_1 - cl(L_2)$ and M_2 intersects $L_n - cl(L_{n-1})$. Since each composant of M_i (i = 1, 2) is everywhere dense in M_i , it follows that for each i (i = 1, 2) there exist two disjoint subcontinua K_i and H_i of M_i such that

(1) each of them intersects each link of C that intersects M_i ,

- (2) H_i contains $M_1 \cdot M_2$,
- (3) each of the continua H_1 and K_1 intersects $L_1 cl(L_2)$, and

(4) each of the continua H_2 and H_2 intersects $L_n - cl(L_{n-1})$. Hence there exist a positive number ε' , a linear ε' -chain C' covering M, and three subchains C_1 , C_2 , and C_3 of C' such that

- (1) each link of C' is a subset of a link of C,
- (2) no two of the chains C_1 , C_2 , and C_3 have a common link,
- (3) one end link of C_1 is in $L_1 cl(L_2)$,
- (4) one end link of C_2 is in $L_n cl(L_{n-1})$,
- (5) some link of C contains a link of C_1 and a link of C_2 , and

(6) C_3 has one end link in $L_1 - cl(L_2)$ and the other end link in $L_n - cl(L_{n-1})$. Let W denote the set of all points of M that are covered by C_3 , and let Y denote M - W. Then $(L_1, W \cdot L_2, W \cdot L_3, \dots, W \cdot L_{n-1}, L_n, Y \cdot L_{n-1}, Y \cdot L_{n-2}, \dots, Y \cdot L_2)$ is a circular ε -chain covering M.

THEOREM 8. If n is a positive integer and for each proper subcontinuum H of the continuum M there is a positive integer r not greater than n such that H is r-indecomposable, then there is a positive integer k not greater than n such that M is k-indecomposable.

Proof. Suppose that M is the essential sum of n + 1 continua M_1, M_2, \dots, M_{n+1} . Some n of these continua have a connected sum, so consider the case in which $M_2 + M_3 \dots + M_{n+1}$ is connected. There is an open set D which intersects M_1 such that the closure of D does not intersect $M_2 + M_3 + \dots + M_{n+1}$. There is a subcontinuum M'_1 of M_1 irreducible from the closure of D to $M_2 + M_3 + \dots + M_{n+1}$. This involves the contradiction that $M'_1 + M_2 + M_3 + \dots + M_{n+1}$ is a proper subcontinuum of M and is the essential sum of n + 1 continua.

THEOREM 9. If every proper subcontinuum of the continuum M is circularly chainable, then every subcontinuum of M is either indecomposable or 2-indecomposable.

Proof. Since each proper subcontinuum of M is a proper subcontinuum of another proper subcontinuum of M, it follows that every proper subcontinuum of M is linearly chainable. Hence by Theorem 7, every proper subcontinuum of M is either indecomposable or 2-indecomposable. Consequently, it follows from Theorem 8 that M itself is either indecomposable or 2-indecomposable.

EXAMPLES. A pseudo-arc [1; 6] is an example of an indecomposable continuum which satisfies the hypothesis of Theorem 9, and a continuum which is the sum of two pseudo-arcs with a point as their intersection is an example of a 2-indecomposable continuum which satisfies this hypothesis.

THEOREM 10. If the tree-like continuum M is circularly chainable, then M is linearly chainable.

Pooof. Let ε be a positive number, and let $C(L_1, L_2, \dots, L_n)$ be a circular $\varepsilon/3$ -chain covering M. Then M is covered by a tree T such that

- (1) each element of T is a subset of a link of C,
- (2) some element K_0 of T intersects only one element of C, and

(3) no element of T intersects three elements of C. A function f will be defined as follows over T. For each element K of T, there is only one linear chain $(K_0, K_1, \dots, K_m = K)$ from K_0 to K in T. Let $f(K_0) = 0$, and suppose that for some integer $i \ (0 \le i \le m), f(K_i)$ has been defined. Then define $f(K_{i+1})$ as follows:

(1) let $f(K_{i+1}) = f(K_i) + 1$ provided K_i lies in some element L_j of C and K_{i+1} intersects $L_{j+1, \text{mod}n}$ but K_i does not intersect this set,

(2) Let $f(K_{i+1}) = f(K_i) - 1$ provided K_{i+1} lies in some element L_j of C and K_i intersects $L_{j+1, \text{mod}n} - L_j$ but K_{i+1} does not intersect this set, and

(3) let $f(K_{i+1}) = f(K_i)$ provided neither (1) nor (2) is satisfied. The range of f is an increasing finite sequence of consecutive integers n_1, n_2, \dots, n_r . For each t $(1 \le t \le r)$, let M_t denote the sum of all elements X of T such that $f(X) = n_t$. Then (M_1, M_2, \dots, M_r) is a linear ε -chain covering M.

References

1. R. H. Bing, Concerning hereditarily indecomposable continuu, Pacific, J. Math. 1 (1951), 43-51.

2. ____, Snake-like continua, Duke Math. J. 18 (1951), 653-663.

3. _____, and F. B. Jones, Another homogeneous plane continuum Trans. Amer. Math. Soc. **90** (1959), 171-192.

4. C. E. Burgess, Continua which are the sum of a finite number of indecomposable continua, Proc. Amer. Math. Soc. 4 (1953), 234-239.

5. _____, Separation properties and n-indecomposable continua, Duke Math. J. 24 (1956), 595-600.

6. E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc. **63** (1948), 581-594.

UNIVERSITY OF UTAH

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG Stanford University Stanford, California

R. A. BEAUMONT University of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	V. GANAPATHY IYER	I. NIVEN	E. G. STRAUS
C. E. BURGESS	R. D. JAMES	T. G. OSTROM	G. SZEKERES
E. HEWITT	M. S. KNEBELMAN	H. L. ROYDEN	F. WOLF
A. HORN	L. NACHBIN	M. M. SCHIFFER	K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON * * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chivoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 9, No. 3 July, 1959

Errett Albert Bishop, A minimal boundary for function algebras	629	
John W. Brace, The topology of almost uniform convergence		
Cecil Edmund Burgess, <i>Chainable continua and indecomposability</i>	653	
L. Carlitz, Multiplication formulas for products of Bernoulli and Euler polynomials	661	
Eckford Cohen, A class of residue systems (mod r) and related arithmetical		
functions. II. Higher dimensional analogues	667	
Shaul Foguel, Boolean algebras of projections of finite multiplicity	681	
Richard Robinson Goldberg, Averages of Fourier coefficients	695	
Seymour Goldberg, Ranges and inverses of perturbed linear operators	701	
Philip Hartman, On functions representable as a difference of convex functions	707	
Milton Vernon Johns, Jr. and Ronald Pyke, On conditional expectation and		
quasi-rings	715	
Robert Jacob Koch, Arcs in partially ordered spaces	723	
Gregers Louis Krabbe, A space of multipliers of type $L^p(-\infty, \infty)$	729	
John W. Lamperti and Patrick Colonel Suppes, <i>Chains of infinite order and their application to learning theory</i>	739	
Edith Hirsch Luchins, <i>On radicals and continuity of homomorphisms into Banach</i>	139	
algebras	755	
T. M. MacRobert, <i>Multiplication formulae for the E-functions regarded as</i>		
functions of their parameters	759	
Michael Bahir Maschler, <i>Classes of minimal and representative domains and their</i>		
kernel functions	763	
William Schumacher Massey, On the imbeddability of the real projective spaces in Euclidean space	783	
Thomas Wilson Mullikin, Semi-groups of class (C_0) in L_p determined by parabolic		
differential equations	791	
Steven Orey, <i>Recurrent Markov chains</i>	805	
Ernest Tilden Parker, On quadruply transitive groups	829	
Calvin R. Putnam, On Toeplitz matrices, absolute continuity, and unitary		
equivalence	837	
Helmut Heinrich Schaefer, On nonlinear positive operators	847	
Robert Seall and Marion Wetzel, <i>Some connections between continued fractions</i>		
and convex sets	861	
Robert Steinberg, Variations on a theme of Chevalley	875	
Olga Taussky and Hans Zassenhaus, On the similarity transformation between a		
matirx and its transpose	893	
Emery Thomas, <i>The suspension of the generalized Pontrjagin cohomology</i>		
operations	897	
Joseph L. Ullman, On Tchebycheff polynomials	012	
	913	
Richard Steven Varga, Orderings of the successive overrelaxation scheme	913 925	