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1. Put

w2y
(L.1) =SB A =S e

The following multiplication formulas are familiar [5, pp. 18, 24]:

(1.2) B, (ko) = k= 5y B(w + 1),
r=0 r

(1.3) E, (k) = k" '“20 (— l)TE'm(x + iﬁ) (k odd) .

Let B,(z), E,(z) denote, respectively, the Bernoulli and Euler func-
tions defined by

B,(x) = B,(x)(0 < @ < 1), B,(x + 1) = B,(x),
E@=E,@)0<xz<1),E(x+1)=—E,), (m>1).
Then B,(x) and E,(x) also satisfy the multiplication formulas (1.2), (1.3).
In this note we obtain some generalizations of (1.2) and (1.3) sug-
gested by a recent result of Mordell [4]. In extending some results of

Mikolas [3], Mordell proves the following theorem. Let fi(x), «+-, fu(x)
denote functions of x of period 1 that satisfy the relations

(14) S A(r+ 1) = Ciopea) (i=1,-00m),

where C/® is independent of . Let a,, ---, a, be positive integers that
are relatively prime in pairs. Then if the integrals exist and
A=a,0;-- ay,

an [ e

= A A(GE)HGE) - )

n

= CC% .. sza")S:fl(w)fz(x) e fn(x)dx .
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2. We first prove

THEOREM 1. Let n>1;my -+, m, >1;a,a, -+, a, positive in-
tegers that are relative prime in pairs; A = a,, Ay +++,a,. Then

ey S §m1<w1+a—’fk>§mz(azz+ = )eoe B (o + a:k)

Ot ot ) Bl )

where
(2.2) C=ar™ay ™y .

In the first place for » = 1 it follows from (1.2) for arbitrary a > 1
that

which agrees with (2.1).
For the general case, let S denote the left member of (2.1). Put

A= a0, a, 1<s<n)

and replace » by skA,-, + r. Then

ey n_l— B ———7‘ . e o B 7’
S= 5 Ba(n+ alk) By, _(tu+ an-1k>
= A,_s r
S B, (@, + Lom® T
sé% ”<m - ay & anlg)
kd, -1 r ”
= . m 1 ) * Bm < n-1 >
2 1(” + a1k> e\ T
sz=6 ”<x * @y + ank>
k4 -1
— ql-™y B r . r
=ai 53 By (o+ - )ees Bu, (@0t aw]g)

Continuing in this way we get
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kA -1
S — gl-m 1-m = F r n r
= Qp_ -1y, Z mi| L1 F—_—) an—z Lpoy +
7=0 a Ap-ok

. Emn_1<an—1xﬂ—1 + %)E"ln <anxn + —Z—>

s 7 \5 r
= a}"'ml e a}‘-m,,, Bml<a1x1 + ]—>32<a2x3 -+ T>
: C ¢

For & =1, (2,1) reduces to

(2.3) S8 (0t T)B v+ L) o B 1)

1 2 (02%
=C- P_ml(a'lxl)Emz(a:’.xz) te Emn(anxn) ’

where C is defined by (2.2); (2.3) may be considered a direct general-
ization of (1.2).

We remark that a formula like (2.1) holds for any set of functions
satisfying (1.4).

We note also that the formula (2.2) can be proved by means of the
Chinese remainder theorem. This remarks applies also to formulas (3.4)
and (4.8) below.

3. In the next place we have

THEOREM 2. Let n be odd and >1;m, -+, m, >1;a,a, -+, a,
positive odd integers that are relatively prime in pairs; A = a,a, «++* a,;
Ik odd >1. Then

(3.1) z(_ 1)@,”1(% i _._":_> E<x 4T )

ak anlc-
= O 8 (~ VB, (a+ 1) - By (am )

where
(3.2) C' = a;™a;™: «+« a;™ .

The proof is similar to that of Theorem 1, but makes use of (1.3)
in place of (1.2); also the formula

(8.3) E.(x +7) = (— 1VE,(2) (m =>1)

is needed.
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For n =1 and a odd, we have

VRt ) =S v B(a+ S )

=S (= l)TEm<ax + %) ,

r=0

which agrees with (38.1). For the general case let S’ denote the left

member of (3.1). Then

k4, ,-1a,-1 .
SI — Z Z (__ 1)r+sEm1<x1 + An 1 + )
r=0 a alk

$=0 1

By (e a,,ilc)

Ay
- E, <xn 4 2mm1 sd,- )
" a, ak
If we put
8A,_, = qa, +t 0<t<a,),

then s =¢q +t (mod 2), so that

Te) = B (s )

7L

Emn<xn+ LS "

n

Since » is odd we therefore get

S = AZ(— 1)rE'm(xl + gric > E’”(” * aT’G >

S CUR (o L)

n

e 1)'*Eml<x1+mk~) --Emn_l<xn_l+-dﬁ—k )

r=0 1

™ B (anxn + —2—) .

Continuing in this way we ultimately reach (3.1).
For k=1, (3.1) becomes

(8.4) (- 1)’Eml<w1 + - ) Em(” + aL )

r=0 al n

= C'Eml(alxl) cec Emn(anxn) ’




MULTIPLICATION FORMULAS FOR PRODUCTS 665
subject to the conditions of the theorem.

4. Theorem 2 can be extended further by introducing the ‘¢ Euler-
ian ”’ polynomial [2] ¢, (x, 0) defined by

(4.1) L0 o= S5 (e, 0) Wi——, (0#1).

1— ‘()g" m=0
In particular ¢,(x, — 1) = E, (z).

We shall assume that the parameter p is an fth root of unity. It
follows easily from (4.1) that

_ (=1 .
(4.2) Pamillw, p) = L — 3 p B<% + _f_) .

We accordingly define the function ¢,.(z, p) by means of
o . m—-1 J-1 —_
(4.3) fneillr, 0) = L= DEZ 5 B (54 7).
m r=0 f
It follows from (4.3) that
(4.4) bu(@ + 1, 0) = 07z, 0)
so that if p is a primitive fth root of unity, ¢.(x, 0) has period f.

Also by means of (4.1) we readily obtain the multiplication theorem [1]
valid for k=1 (mod f)

(4.5) Sotn(w+ L, 0) = kg, o)
and consequently

o= r e
(4‘6) ]2:010 ¢m<x + ‘k—r P) - k (bm(er P) *

We may now state

THEOREM 3. Let f>1,n=1(mod f); my, -+, m, > 1,0, a,, +++, a,
positive integers that are relatively prime im pairs and such that
a; =1 (mod f) for i=1,---,m; also let k=1 (mod f). Then if
A=a,a,--a, we have

kA- J—

(4.7) S 0% (o + L 0) -+ P (0 + . p)

=0
! 1 n
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= C }:Z,:pfaml(alxl + —Z—, p) cee Emn(anmn + %, P) ,

where C' is defined by (3.2).
The proof is very much like that of Theorem 2 and will be omitted.
We remark that for £k =1, (4.7) becomes

A-1

(4.8) by

7=0

r

 0) e G+ o)

n

ff$@<x1+

1

= Claml(a’lxl! [0) te amn(a’nxm 10) .
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