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l Introduction* In an earlier paper [3] with a similar name (to
be referred to as I) we introduced the idea of a direct factor set (P-set)
and the residue system (modw) associated with such a set. We first
review briefly these concepts. Two non-vacuous subsets P, Q of the
positive integers Z are said to form a conjugate pair of direct factor
sets provided the following two conditions are satisfied:

(i) an integer n > 0 is in P (or Q) if and only if, for each factori-
zation, n — n{a^ (n19 n2) = 1, nλ and n2 are also in P (or Q),

(ii) every positive integer n possesses a unique factorization of the
form, n—ab such that a e P, b e Q. A set of integers α(modw) such that
(a,n)e P is said to form a P-reduced residue system (mod n), or P-system
(mod n), and the number of elements in such a system is denoted by
φP(n). The fundamental result of I was a generalization of the Mόbius
inversion formula to conjugate pairs of direct factor sets. This result
is reformulated in § 2 of the present paper.

In this paper we extend the notion of a P-system (mod n) from the
set of integers X to ί-dimensional vectors over X (briefly, Xrvectors),
t ^ 1. The one dimensional case (t — 1) is the case already investigated
in I. Two XΓvectors, A = {αj, B = {64}, are said to be congruent
(mod t,ri), written A =Ξ B(moά t,ri), provided at = δ^mod n), i — 1, , t.
Moreover, we place (α,) = (au , at), using the convention, (0, , 0) = 0,
and define vector sums and scalar multiples in the usual way. A P-
reduced residue system (mod t,ri), or P-system (mod t,n), is defined to
be a maximal set of mutually incongruent Xf-vectors (modi, n), {αj,
satisfying ((α4), n) e P. The number of elements in such a system depends
only on t and n, and is denoted Jt,P(ri) and called the (t, P)-totient of n.
In case P is the unit set 1, JttP(n) reduces to the ordinary Jordan totient,
JtΛn) = Jt(n) A P-system with P = Z is called a complete residue
system (modi, w); clearly JttZ(n) = n\

REMARK 1.1. An XΓvector whose components are in Z will be called
a ^-vector, and a P-system (mod t, n) consisting of elements of Zt alone
will be called a positive P-system (modi, n).

We summarize now the salient points of the paper. In § 2 an
enumerative principle for XΓvectors (Theorem 2.1) is formulated, general-
izing a result proved in [3, §3] in the case t = 1. This result is used,
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668 ECKFORD COHEN

in conjunction with the inversion principle of /, to obtain an evaluation
of JtyP(n). A function φatP(ri), formally generalizing Jt(n)f is also intro-
duced, along with a generalized divisor function σΛ>P(n). Certain closely
related functions, φχp(ri) and crXP(n) are also defined in § 2.

In § 3 we introduce the zeta function ζP(s) associated with a direct
factor set P. In case P — Z, ζP(s) is the ordinary ζ-function, ζ(s). Em-
ploying the generalized inversion function μP(n) of I we also define
"reciprocal" ^-functions ζP(s) and obtain in (3.8) a generalization (P = 1,
Q = Z) of the familiar fact,

(1.1) f ; ^ r ( )
w=i ns

where μ(n) denotes the Mobius function. Broad generalizations of other
basic identities involving ξ-ΐunctions are also deduced.

In § 4 we obtain mean value estimates for the functions φatP(n) and
0"«fp(w)> valid for arbitrary direct factor sets P, extending basic properties
of φ(n) and σ(n) — σltZ(ri). For example, (4.5) reduces in case a = 1,
P = 1, to the celebrated result [1, Theorem 330] of Mertens for the Euler
φ-f unction,

(1.2) Σ Φ(n) = ^~ + O(x log x) .

Using results of § 4, we obtain in § 5 (Theorem 5.1) for t ^ 2, the
asymptotic density of ^-vectors {αj, such that (αj e P. Numerous special
cases are considered (Corollary 5.2). We mention that Corollary 5.3, in
case t — 2, yields a result of Kronecker asserting that the density of
the integral pairs with a fixed greatest common divisor r is 6/πV2.

In § 6 we generalize the so-called "second Mobius inversion formula"
to conjugate sets P, Q (Theorem 6.1). Application of this extended
inversion relation yields in (6.3) a generalization of broad scope of MeissePs
well known identity,

(1.3) Σ μinί-λ =
l^n^x LUJ

We also evaluate in § 6 a generalization to P-sets of Legendre's totient
function φ{x, n), defined to be the number of integers a such that
1 ^ a ^ x, (a, n) = 1.

REMARK 1.2. It is noted that many of the results of this paper
are valid, not merely for direct factor sets, but for quite arbitrary sets
of integers P. For example, this is true in the case of Corollary 5.1.
Moreover, a number of the remaining results can be reformulated in such
a manner as to be valid for arbitrary sets P. We shall restrict our
attention, however, to direct factor sets, reserving the treatment of more



A CLASS OF RESIDUE SYSTEMS (mod r) II 669

general sets for a later paper, to be based on other methods. The
advantage of a separate treatment of direct factor sets arises from the
applicability of the generalized inversion theorem.

2 Generalized totient and divisor functions. Let P and Q denote
an arbitrary conjugate pair of direct factor sets, and define, as in I,

(2.1)

(2.2) μP(n) = Σ Pr(d)μ(8) .

The functions pP(n) and μP(n) are termed, respectively the characteristic
function and inversion function of the set P. The inversion formula
of I can be restated in the form,

(2.3) f(n) = £fQ(d)g(δ) £ g(n) = ̂ P(d)f(S) .

This principle is a direct consequence of the relation,

(2.4) ( Σ/p(^K(S) = p(n) ,

where p(n) = Pι{n) (that is, p(n) = 1 or 0 according as n = 1 or n > 1).
Note that μP(n) reduces to μ(n) when P— 1.

In order to evaluate Jt>p(n), we shall need the following results
generalizing Theorem 4 of I to £ dimensional vectors.

THEOREM 2.1. If d ranges over the divisors of n contained in Q,
and for each d, x ranges over the elements of a P-system (mod £, δ),
dS = n, then the set dx constitutes a complete residue system (mod t, n).

We omit the proof, which is analogous to the proof in case t = 1.
On the basis of this result it follows immediately that

(2.5) Σ/Q(d)JtΛS) = ri .

Application of (2.3) to (2.5) yields

THEOREM 2.2.

(2.6) Jt,P(n) = α Σ # j M δ )

Define now for a an arbitrary real number, the generalized totient,

(2.7) φaιP(n) = Σ d'μP(S) ,

so that φa!P — Jt,p{n) in case a — t is a positive integer. We also define
analogously a generalized divisor function by placing
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(2.8) σft)P(%) = Σ dapP(8) = ^ d" .
dδ = n dδ=n

Corresponding to the functions φatP(ri), σ*,P(n) we define related functions,

d\n

(2.10) tf*,p(w) = Σίd
apP(o

d\n
dβP

The following simple relations are noted.

(2.11a) , p(n) = φ ^

n*

(2.Hb) * , Λ _ σa,P(n)
n"

Corresponding to the case P — 1, we place φaΛ{n) — φΛ(n), φ*tl = Φt{ri),
and corresponding to the case P — Z, we write σa z(n) — σa(n) = σ*>z(n).

The following result is a generalization of [3, Theorem 8, a = 1] and
can be proved similarly.

THEOREM 2.3.

(2.12) φa>P(n) = Σ 4>*(d)pP(8) .
dδ = n

We also note, by inversion of (2.7), the following generalization of
(2.5).

(2.13) Σ PQ(d)φa,p(δ) = n"

3. The zetarfunctions of a P-set.

REMARK 3.1. In the definitions and general results of this section,
s is assumed to be limited to values for which all occuring series converge
absolutely.

First we define for real s,

(3.1) fpW = Σ ^ = Σ v

The function ξP(s) will be called the zeta-functίon of the direct factor
set P. Note that ξz(s) = f(s), ζλ(s) — 1. We define the reciprocal zeta-
function of P by

(3.2) ^ ) = S ^ ;

the function ζQ(s) will be designated the conjugate zeta-function of P.
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By (1.1) it follows that ζ(s) = ζλ(s) = l/ζ(s). We mention that Diricelet
series of the form (3.1), (3.2) were discussed by Wintner [10, Chapter
II] in case P is a semigroup generated by a set of primes.

First we prove two relations analogous to (2.4).

LEMMA 3.1.

(3.3) Σ Pλd)ρQ(S) - 1

Proof. This is an immediate consequence of property (ii) of the
conjugate pair P, Q.

LEMMA 3.2.

(3.4) Σ μp(d)μQ(8) = μ(n) .

Proof. By the definition of μP(n), we have, with the left member
of (3.4) denoted by S(n),

S(n) = Σ Σ μ(D) Σ μ(E) = Σ μ(D)μ(E)
(ZS = W DD' = (l EE'~8 ΌΌ'EE'~n

= Σ μ(D)μ(E) Σ 1
DE\Π D'E'=n/DE

By property (ii), it follows then that

S(n) = Σf4D)μ(E) = Σ/<Φ) Σ M^) ι
Z>2ί|w D\E E\ίn/D~)

and (3.4) results by the fundamental property of μ(n), ((2.4) with P = 1,

The following relations are basic.

THEOREM 3.1.

(3.5) %P(8)KQ{S) = ? ( s ) ,

(3.6) ?p(β)rβ(β) = ζ~\s) ,

(3.7) f,

Proof. By the nature of the Dίrichlet product, (3.5), (3.6), and (3.7)
follow, respectively, from (3.3), (3.4), and (2.4).

By Theorem 3.1 one obtains the following generalization of (1.1):

COROLLARY 3.1,

(3.8) ?p(s) = ΪΆ I
ζ(8) ζQ(8)
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The equality of the first two expressions in (3.8) is equivalent to the
fact [3, (4.6)],

(3.9) Σ
a\n

The following identities can be verified by Dirichlet multiplication,
in connection with (3.8), (2.13), and (2.11a).

THEOREM 3.2.

(3 io) y Φ«An\ =
ζQ(s) ζ(s)

(3 li) y ΦZrW. =
ζ ρ(s - α) f(s - a)

THEOREM 3.3.

(3.12) ±^ψl^ξ(s-a)ζP(s);

(3.13) <φ)Σ φ ? ( ) r j ( )
71=1 ns

Note that in case P = Z, both (3.12) and (3.13) reduce to [7, Theorem 2911.
It is also noted, on the basis of (3.12) and (3.8), that

COROLLARY 3.3.

(3.14) ζQ(έ) Σ °*'p(^ = Σ - ^ ^ .
i 71 s i fls

Multiplying (3.14) by ζP(s) and comparing coefficients, one obtains the
arithmetical relation.

COROLLARY 3.4.

(3.15) σa>P(n) -
dδ = n

This analogue of (2.12) can also be proved arithmetically on the basis of
(3.9) and the definition of σΛtP(ri).

In the remainder of this section, we list for later reference, explicit
evaluations of ζP(s) for various sets P. Let h and r denote fixed positive
integers and p a fixed prime. We define direct factor sets P — Ak, Bk,
Cp,Dr,Er as follows: Ak (the set of kth powers), Bk (the set of fc-free
integers), Cp (the non-negative powers of p), Dr (the divisors of r), E r

(the complete divisors of r). A divisor d of r is said to be complete if
(d, rid) - 1.

We have the following representations.
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(Aw > 1),

(β > 1),

(8 > 0),

where σ'(r) denotes the sum of the sth powers of the complete divisors
of r. For a proof of (3.17) we refer to [7, Theorem 303]; (3.18) results
on summing a geometric series.

We mention the following special cases of (3.10) and (3.12), which
result on the basis of (3.16) and (3.17), respectively.

(3.12) Σ φΛ'A*{n) = ζ(S " a)W^ (* > «, * > 1),
»-i n* ζ(S)

(3.22) Σ σ*-±W ^ l(S ~ a ) m (s>a,s> 1).
n-l ns ξ(ks)

4. Mean values of totient and divisor functions. In this section
we prove, along classical lines, some simple estimates for the functions
introduced in § 2. We require no more than the following elementary
facts:

(0(1) if a > 1 ,

if a = l,

if a < 1

if -l<a< 0;

(4.1) Σ — = O(logα) if a = l,

(4.2) Σ Λ . J ^ + | O ( ^ ) if

(4.3)

LEMMA 4.1. For P an arbitrary direct factor set, μP{n) is bounded;
in fact, for each n > 0, μP{n) = 1 , - 1 , or 0.

Proof. In view of the factorability [3, Theorem 1] of μP(n), it suf-
fices to prove the lemma in case n ~ ph, p prime, h > 0. We have then
by (2.2),

μP(ph) =
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so that

(4.4)
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μλph) =

0

(ph e P, p11-1 φ P)

(Pu 0 P, Ph~ι e P)

(otherwise).

The lemma is proved.
As a consequence of Lemma 4.1, one obtains

COROLLARY 4.1. The series (3.2) is absolutely convergent for s > 1.

In the following, x will be assumed > 1.

THEOREM 4.1. For all a > 0

(4.5)

(4.6)

where

a Tβ(α

α: + 1

Ior

a; logo;

Proo/. We prove (4.5). By (2.7)

(4.7) ΦΛtP(χ) = Σ Φ . P W - Σ Σ

O(e (ίί)) ,

(α = l)

(α < 1).

Hence by (4.2) and Lemma 4.1,

o(x«

By (4.1) and Corollary 4.1, one may write then

(4.8) * . , ( * ) = ^

But by Lemma 4.1 and (4.3), it follows that

(4.9) Σ ^ =
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for all a > 0. By (4.8), (4.9), and (3.8) the proof of (4.5) is complete.
The proof of (4.6) is similar and the details will be omitted; likewise

for the following result.

THEOREM 4.2. For all a > 0

(4.10) Σ Φ*-«Λn) = * - + O(e*(x)) ,
n** ζQ.(a + 1)

(4.11) Σ σ*atP(n) = xζP(« + 1) + O(e*(a)) ,

were e*(#) = χ-*ea(x) and ea(x) is defined as in Theorem 4.1.

5. Asymptotic density of vector sets. We shall refer to the greatest
common divisor (at) of the components of a Zt-vector {a^ as the index
factor of the vector. Let S be a set of positive integers and let Nt(x, S)
denote the number of ίΓΓvectors with components at ^ x (i = 1, , t)
and with index factor in S. Then place

(if this limit exists) and call St(S) the asymptotic density of the set of
/^-vectors with index factor in S. We now prove the principal result
of this section.

THEOREM 5.1. If t is an integer :>2, then

(5.1) Nt(x, F) = -*- + \°{X l 0 g X) i f t = ^
KS) Όfa'-1) if t>2.

Proof. F o r p o s i t i v e i n t e g r a l r , x^lf p l a c e

^ . p ( ^ ) = Σ JrAn) = Σ Φ Γ . P M , Φ0>p(a?) - 1 .

Let j be a fixed integer, 1 ^ i ^ ί, and let i19 , i3 be a set of distinct
integers satisfying 1 ^,i < ••• < ij <^t. Consider all ^-vectors such
that the components in the positions ilf •• ,iJ have the same value n,
the components in the remaining positions are ^n, and the index factor
is in P. Denote by Sj the set of all such vectors, including repetitions,
obtained by letting n range over the set, 1 <̂  n ^ x, and by choosing
the set, iu--*,i], in every possible way. Then if N(Sj) denotes the
number of elements in Sj9 it follows that

(5.2)
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Consider now a fixed Zcvector, βk e Sk, 1 ^ k <g t, with exactly k
of its components equal to n and the remaining components <n. Then

( k\ ί k\

• ) times in Sj9 it being understood that ί . J = 0 if j > k.
In view of the fact,

it follows that /3fc is contained exactly once in the set

j = l

Consequently

hence by (5.2),

The theorem follows by (4.5) on taking limits.
As a corollary of Theorem 5.1 one obtains by (3.8),

COROLLARY 5.1 (cf. [2, p. 8]). // t Ξ> 2, ίfcew δέ(P) exists and is
given by

<6-3) w

As in § 3 let r and k denote positive integers and p a positive prime.
On the basis of the evaluations (3.16) —(3.20), we obtain the following
special cases of Corollary 5.1.

COROLLARY 5.2. The asymptotic density of the Zt-vectors,, t > 2,
(i) with index factor a kth power is

(5.4) St(Ak) =
ζ\y)

(ii) with k-free index factor is

(5.5) 8 <B-> = ^

(iii) with index factor a non-negative power of p is

(5.6) δt(CJ = ( -2—) J —
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(iv) with index factor a divisor of r is

(5.7) 8t(Dr) = ^M.
r'ζ(t)

(v) with index factor a complete divisor of r is

(5.8) 8t(Er) =

The results contained in (5.4) and (5.5) are due originally to Gegen-
bauer [5]. In case k = 1, (5.5) becomes S^B,) = l/ζ(t), t ;> 2 [9, p. 156].
Further specialization of (5.5) to the case k = 1, t — 2 yields the classical
result [7, Theorem 332] asserting that the probability that a pair of
integers be relatively prime is 6/7Γ2. By (5.4), with k = 2, £ = 2, it fol-
lows that the density of the integral pairs whose greatest common divisor
is a perfect square is ττ2/15. The case p = 2, ί = 2 in (5.6) shows that
the density of the integral pairs with greatest common divisor a power
of 2 is 8/7Γ2. By (5.7) with r = 8, t = 2, it follows that the density of
the pairs of integers whose greatest common divisor is a factor of 8 is
255/327Γ2.

COROLLARY 5.3. If t ^ 2 and r is a positive integer, then the
asymptotic density of the Zt-vectors τυith index factor r is

(5.9) δβ(r) = -

Sketch of proof. The corollary is true in case r — 1, as noted above
on the basis of (5.5), or alternatively by (5.7) with r = 1. The proof
can be completed for arbitrary r by induction on the number of distinct
prime factors of r and application of (5.8). The details are omitted.

The preceding corollary is due to Kronecker in case t = 2 [8, p. 311].
It was proved in the general case by Cesaro [1, p. 293]; a further
generalization was given by G. Daniloff [4, p. 587].

6. Generalization of the second Mόbius inversion formula. In case
P = l , Q — Z, the following inversion relation reduces to a familiar
analogue [7, Theorem 268] of the Mobius inversion formula.

THEOREM 6.1. Let x denote a positive real variable; then

(6.1) f{x) = Σ |Oe(»)flf(-) ϊt g(x) = Σ μΛn)f(-) .

Proof. Let g(x) be defined as on the right of (6.1). Then
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Σιoβ(»)flf(-) = Σ.PM Σ μΛd)f(ψ)
n<x \Ίfl / n^x d^x/n \ Q, /

= Σ/(-f) Σ μAd)pQ(n) = f{χ),
ί^x \ I /l = dn

on the basis of (2.4). The converse is proved similarly.
We define \x\P to be the number of positive integers ^x belonging

to P. It is evident, by property (ii) of the conjugate pair P, Q, that

(6.2) [x] = [x]z = Σ Γ - 1 P - Σ Γ -
n^xLnJ n^xLn
nβQ

Applying the above inversion theorem to (6.), one obtains

THEOREM 6.2.

(6.3) M P = Σ /

Let
[n)f

one

A*, Bk

μ*(n) =
obtains

be
μB

the P-sets de-
. Putting

n

We deduce two special cases of (6.3).

fined in § 3 and place (as in /), Xk(n) = μA

Mfc = Mzjfc and nothing that [\/~oo] = M f̂c»

COROLLARY 6.1.

(6.4) [x\ - Σ μJinί^i Σ tW&
n^χ LdkJ dfc^x Ld

(6.5) [VΊΠ = Σλ f c (n)Γ^l .
nsx LnΛ

These formulas are classical [6], [9, p. 35]. Note that (6.4) and
(6.5) reduce to (1.3) in the cases k = 1 and k = 0, respectively.

It can be shown easily, on the basis of (6.4), that δ̂ i?*.) = l/f(fc),
k > 1 (cf. [7, Theorem 333] in case k = 2). In words, this states that the
asymptotic density of the k-ίree integers (k ^ 2) is l/f(fe) in conjunction
with (5.5) it therefore follows that

COROLLARY 6.2. // kt ^ 2, £Λew ίfeβ asymptotic density of the Zt-
vectors with k-free index factor is ljξ{kt).

Finally, we consider the function φP(x, n) defined to be the number
of positive integers a^x such that (a,ri)eP. In case P = 1, φP(x,n)
becomes Legendre's function φ(x, ri). To deal with φP(xf n) we have the
following extension of [3, Theorem 4] which can be proved in much the
same way.

LEMMA 6.1. Let d range over the divisors of n, deQ, and for
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each such d, let y range over the positive integers a ^ x\d such that
(α, njd) e P. Then the set dy consists of the positive integers ^ x

An immediate consequence of this lemma is

THEOREM 6.3.

(6.6) Σ Φ P ( 4 Λ)pQ(d) = [x] .
d\ \d d'

THEOREM 6.4.

(6.7) φP(x, n) = Σ μΛ

Theorem 6.4 can be deduced from (6.6) by a direct application of
the following easily proved extension of (2.3).

THEOREM 6.5. If f(x, n) and g(x, n) are functions of the real vari-
able x and the positive integral variable n, then

(6.8) g(x, rc) = Σ PQ(d)f(^ , -A τtf(x, n) = Σ

The proof is omitted.
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