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We shall say the sequence a,(n=1,2, ---) is a p-sequence (1 = p < =)
if there is a function f e L?(0, 7) such that

an:Sﬂf(t)cosntdt n=12 .-
0

(i.e. the a, are Fourier cosine coefficients of an L* function).
A famous theorem of Hardy [1] states that if a, is a p-sequence

1p<x)and b, = %(OL1 + a, + --- + a,), then b, is also a p-sequence.

In this paper we shall prove the following generalization of Hardy’s
theorem:

THEOREM 1. Let r(x) be of bounded variation on 0 <z <1, and
let 1 <p < oo. Then, if a, 18 a p-sequence and

bo = -39 ),

b, 1s also a p-sequence.

Hardy’s theorem is the special case Jr(z) =1 for 0 < 2 < 1.

If the conclusion of Theorem 1 holds for each of two functions +
it clearly holds for their difference. Hence it is sufficient to prove
Theorem 1 in the case where +r(x) is non-decreasing for 0 < <1.
Further, since any non-decreasing function may be written as the dif-
ference of two non-negative non-decreasing functions (the second of
which is constant) to prove Theorem 1 it is sufficient to prove

THEOREM 1A. Let +r(x) be non-negative and mon-decreasing on
0Z2x=<1and let 1 < p < . Then, if a, 18 a p-sequence and

b, 1s also a p-sequence.
The proof of Theorem 1A will follow a sequence of lemmas.

LEMMA 1. Let B,(x) = rcos ytd(y — [y]). Then there is an M >0
0
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such that
|B(x)| = M I=st=mi=sr< .

The symbol [y] denotes the greatest integer not exceeding y.

Proof. Let m» be any non-negative integer. Then for ¢ > 0

Sncosytdyzm
0
and
nCOS td :ncos t:w_l.
So yLaly] = 2, cosm 2 sin t/2 2
Hence
B _ sinnt sin(n+1/2)¢ 1
) t 2 sin ¢/2 Ty
1 1 t cos nt 1
:s1nnt<—-—m t — -
; © 2) 5 T3
and so
(1) |B,(n)| = l——1—co’ci +1 n=20,1,2, .-
It 2 2

The right side of (1) is bounded for 0 < ¢ < =. Thus for some M =1
(2) |B(n)| = M — 1 n=0,1,2- 0<t=7.
Now take any x = 0 and let n = [x]. Then
B,(@) = B(n) + | cos ytd(y — [v)
so that from (2) we have for any x = 0
B =M1+ 1y ~W) SM—1+a-nsMO<t=xm

and the proof is complete since Byx): =z —[z] =1 =< M.

(Henceforth we assume ++(x) =0 and +(z) non-decreasing for
0=z<1)

LEMMA 2. There is an M > 0 such that

'S:‘K%)C()sxtd(”_[“]) =M 0=t=mn=12--.

Proof. With B,(z) as in Lemma 1 we have
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S:«[r(%>cos ot d(z — [x]) = S:«p(%)da(x)
= VB — | Baay(L).
Thus with M as in Lemma 1
|9 (£ Jeos at e — )| = ) + wr [ (2 = 2y,
and the lemma is prove (with 2M+(1) instead of M).

LEMMA 3. Let fe L'(0,7) and let

d, = %S:f(t)dtg:mp<%>cos vtd(x —[z]) n=1,2 ---
Then

3) d, = o(%) " — oo

and hence d, is a p-sequence for every p = 1.

Proof. By Lemma 2 there is an M > 0 such that |d,| < —%Soﬂlf(t) |dt

from which (3) follows. From (3) it follows that >, |d,|* < o, for
every ¢ >1. By the Hausdorff-Young theorem and the fact that
LP < L* if 1 < p' < p, this implies that d, is a p-sequence for every
p=1. (See [2].)

From now on we shall write f~a, as an abbreviation for

a, = S"f(t)cos ntdt,n=1,2,--- .
LEMMA 4. Let 1=<p< oo, fe L"0,7) and a(x) = s F(t)eos wt di
so that
f~a,=amn).
Let
= (L, = ="
0@ = [ Ly(L)r e en = 2L Jat@yda .

Then ge L*0, ) and

g~=cC,.

Proof. Since |g(x)| g«p(l)gﬂlf—gt)wl—dt it follows from the proof in
[1] that ge L. Also '
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k4
x

S:g(x)cos nx dr = S:cos nx dxs %w(%)f(t)dt
= S:%f(t)dtS:\K%)cos nx de = S:f(t)dt S:«p(x)cos nxt dt

- %L F(t)dt S:«jr<%>cos wt dt = lgoql(_x_)&” f(t)cosztdt = ¢, .

n n

The changes in order of integration are valid since
(1@ 1y @eos natlde = v 17O < oo .

(Note fe L'(0,7) since fe L?(0,7).) Thus ¢ ~c¢, which is what
we wished to show.
We can now establish our principal result.

Proof of Theorem 1A. Let fe L"(0,x) be such that f ~a, and let
a(x), g(x), ¢, be as in Lemma 4. Then

b, = %m"glqp(ﬁ)a - ig;( i )a(x)d[x]

n/ " m n
so that
¢, — b, = —%S:qﬁ(%)a(x)d(x @) = %qu(_j@ Az — [x])S: F(t)cos wt dt
= lSﬂf(t)dt Sn«}r(l>cos xt d(x — [x]) .
n Jo o' \m

The last iterated integral clearly converges absolutely, justifying the
change in order of integration. By Lemma 3 ¢, — b, is a p-sequence.
Also ¢, is a p-sequence since, by Lemma 4, ge L?(0,7) and g ~ c,.
Hence b, = ¢, — (¢, — b,) is a p-sequence and the theorem is proved.

REMARK. Note that except for the result of Lemma 1 the only
properties of the cosine function used were its boundedness and the fact

that O<%) is a p-sequence for all p = 1.

LEmMA 5. Let C(x) = stin ytd(y — [y]). Then there is an M > 0
0
such that

IC(2)| = M 0<t=m0=2<oo.

Proof, Let m be any non-negative integer. Then for ¢ > 0
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Snsin ytdy = 1 cosmt
0 t t
and
anin yt dly] = En:. sin ot — 08 t/2 — cos (n + 1/2)t )
0 =1 2 sin t/2
Hence

Cimy = L cosmt _ cos 42 — cos(n 1 1/t

¢ 2 sin ¢/2
= (1 — cos nt)(l _ 1ot i) _ sinmt
t 2 2 2

The remainder of the proof follows as in Lemma 1.
In view of Lemma 5 and the remark preceding it the exact analogue
of Theorem 1 for sine coefficients must hold. This we now state:

THEOREM 2. Fix p=1. If, for some fe L?,
anzgﬂf(t)sinntdt n=1,2,+--,
0

and if bnz%ﬁ«}(%)am where r(x) is of bounded wvariation on

0 < x <1 then there exists ge L* such that

b, = S"g(t)sin ntdt =12 .-
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