Pacific Journal of Mathematics

RANGES AND INVERSES OF PERTURBED LINEAR OPERATORS

SEYMOUR GOLDBERG

Vol. 9, No. 3

July 1959

RANGES AND INVERSES OF PERTURBED LINEAR OPERATORS

SEYMOUR GOLDBERG

1. Introduction. Let X and Y denote normed linear spaces and let $T \neq 0$ be a linear operator with domain $D(T) \subset X$ and range $R(T) \supset Y$. In this paper, D(T) is not required to be dense in X and T need not be continuous. Furthermore, X and Y shall be assumed complete only when necessary. Under these general conditions, we investigate some invariant properties of the range and inverse of T when T is perturbed by a bounded linear operator A. For example, it is shown that if the range of T is not dense in Y and T has a bounded inverse, then T + Ahas the same properties provided that $D(A) \supset D(T)$ and the norm of A is sufficiently small. In addition, a theorem of Yood ([5], Th. 2.1) is generalized with some of the proofs simplified.

DEFINITION. Let $X_1 = \overline{D(T)} \subset X$. When X_1 is considered as a normed linear space, the conjugate transformation T' is defined as follows: Its domain D(T') consists of the set of all y' in the conjugate space Y' for which y'T is continuous on D(T); for such a y' we define T'y' = x' where x' is the unique bounded linear extension of y'T to X_1 ; that is, x' is in the conjugate space X'_1 of X_1 .

The above notations shall be retained throughout the discussion.

2. Ranges and inverses of T + A.

LEMMA 1. If T has a bounded inverse, then so does T + A whenever $||A|| < ||T^{-1}||^{-1}$.

Proof.
$$||(T + A)x|| > (||T^{-1}||^{-1} - ||A||)||x||.$$

THEOREM 1. If $\overline{R(T)} = Y$ and T has a bounded inverse, then $\overline{R(T+A)} = Y$ and T + A has a bounded inverse whenever $||A|| < ||T^{-1}||^{-1}$ and $D(T) \subset D(A)$.

Proof. By [4] Th. 1.4, $(T')^{-1} = (T^{-1})'$ exists and is continuous on X'_1 . Hence from the lemma we conclude that (T + A)' = T' + A' has a bounded inverse since $||A'|| = ||A|| < ||T^{-1}||^{-1} = ||(T')^{-1}||^{-1}$. The theorem now follows from [4] Th. 1.2.

If for X = Y, the resolvent of a linear operator T is defined as the set of scalars λ such that $(T - \lambda I)^{-1}$ exists and is continuous on a Received February 19, 1959.

domain dense in X, then the following corollary is an immediate result of the theorem.

COROLLARY. The resolvent of a linear operator is open.

DEFINITION. For each $z \neq 0$ in Y, let

$$m_{z}(T) = \sup \{k | || z - Tx || \ge k || Tx ||, x \in D(T) \}$$

We define $m(T) = \sup_{0 \neq z \in Y} m_z(T)$.

REMARK. $m(T) \leq 1$; This follows from the fact that for $Tx \neq 0$ and for each $z \in Y$, $||z - T\alpha x|| / ||T\alpha x|| \leq 1 + ||z|| / ||T\alpha x|| \rightarrow 1$ as $|\alpha| \rightarrow \infty$.

LEMMA 2. Let Y be complete. Then $\overline{R(T)} = Y$ if and only if m(T) = 0.

Proof. If $\overline{R(T)} = Y$, it is easy to see that m(T) = 0. Suppose there exists an element $y_0 \in Y$ which is not in $\overline{R(T)}$. The 1-dimensional linear manifold $[y_0]$ spanned by y_0 and the linear manifold $[y_0] + \overline{R(T)}$ are closed in Y; moreover, $[y_0] \cap \overline{R(T)} = (0)$. Hence by [2] Th. 2.1, there exists a k > 0 such that $||y_0 - y|| \ge k||y||$ for all $y \in R(T)$; that is, m(T) > 0.

THEOREM 2. If $\overline{R(T)} \neq Y$ and T has a bounded inverse, then $\overline{R(T+A)} \neq Y$ and T + A has a bounded inverse whenever $||A|| < m(T)/||T^{-1}||$, and $D(T) \subset D(A)$.

Proof. Clearly there is no loss of generality if the theorem is proved for the completion \tilde{Y} of Y. Thus it may be assumed that Y is complete. We now simplify and apply an argument given by Yood [5, p. 489]. From Lemma 1, T + A has a bounded inverse. By Lemma 2, there exists, for each $\varepsilon > 0$, an element $y_0 \in Y$ but not in $\overline{R(T)}$ such that

(1)
$$||y_0 - Tx|| \ge (m(T) - \varepsilon)||Tx||$$
 for all $x \in D(T)$.

Suppose that the theorem is not true. Then $y_0 \in \overline{R(T+A)} = Y$ and thus we may choose an element $x \in D(T)$ so that

$$||(T + A)x - y_0|| < \min(\varepsilon d, ||y_0||)$$
,

where d is the distance between y_0 and $\overline{R(T)}$. In particular,

(2)
$$||(T+A)x - y_0|| < \varepsilon d \leq \varepsilon ||y_0 - Tx|| \text{ and } x \neq 0$$
.

From (1) and (2),

$$egin{aligned} ||A||||x|| &\geq ||Ax|| &\geq ||Tx-y_{\scriptscriptstyle 0}|| - ||y_{\scriptscriptstyle 0} - (T+A)x|| > (1-arepsilon)||y_{\scriptscriptstyle 0} - Tx|| \ &\geq (1-arepsilon)(m(T)-arepsilon)||Tx|| &\geq ||T^{-1}||^{-1}(1-arepsilon)(m(T)-arepsilon)||x|| \ . \end{aligned}$$

Since $\varepsilon > 0$ was arbitrary, $||A|| \ge ||T^{-1}||^{-1}(m(T))$ which is impossible.

LEMMA 3. Suppose X and Y are complete. If T is a closed linear operator, then R(T) = Y and T^{-1} does not exist if and only if $\overline{R(T')} \neq X'_1$ and T' has a bounded inverse.

Proof. This follows from the "state diagram" for closed operators [1].

THEOREM 3. Suppose X and Y are complete. If T is closed, R(T) = Y and T^{-1} does not exist, then R(T + A) = Y and $(T + A)^{-1}$ does not exist whenever $D(T) \subset D(A)$ and $A < m(T')/||(T')^{-1}||$.

Proof. By Lemma 3, $\overline{R(T')} \neq X'_1$ and T' has a bounded inverse. Futhermore, $D(A') = Y' \supset D(T')$ and $T' \neq 0$ since D(T') is total ([4] Th. 1.1). From Theorem 2, it is clear that $\overline{R(T' + A')} \neq X'_1$ and T' + A' has a bounded inverse. Since T' + A' = (T + A)' and T + A is closed, the theorem follows from Lemma 3.

3. A generalization of a theorem. In ([5] Th. 2.1), Yood proves a theorem about the range of a bounded linear transformation T and its conjugate T', where T maps Banach Space X into Banach space Y. We now generalize the theorem by requiring instead that T be a closed linear operator on D(T). The results are stated in a different but more precise form than in [5].

DEFINITION. If T has a bounded inverse, let $K(T) = ||T^{-1}||$, otherwise let K(T) = 0. We now define a number $\alpha(T)$ as follows:

$$\alpha(T) = \min\left(\left(m(T), \frac{m(T)}{K(T)}\right) \text{ if } m(T) > 0$$
$$= \infty \text{ if } m(T) = 0.$$

 $\alpha(T')$ shall be defined in a similar manner.

THEOREM 4. Suppose X and Y are complete. Let T be a closed linear transformation and let A represent a bounded linear transform-

ation such that $D(A) \supset D(T)$. Then the following statements concerning T are equivalent.

- (1) Either T has bounded inverse or R(T) = Y.
- (2) $\overline{R(T'+A')} \subset R(T')$ if $||A|| < \alpha(T')$.
- (3) $R(T' + A') \subset R(T')$ if $||A|| < \alpha(T')$.
- (4) R(T') is not a proper dense subset of X'_1 and $||A|| < \alpha(T')$ implies that $\overline{R(T' + A')} \subset R(T')$.
- (5) R(T') is not a proper dense of X'_1 and $||A|| < \alpha(T')$ implies that $R(T' + A') \subset R(T')$.
- (6) $\overline{R(T+A)} \subset R(T)$ if $||A|| < \alpha(T)$.
- (7) $R(T+A) \subset R(T)$ if $||A|| < \alpha(T)$.
- (8) R(T) is not a proper dense subset of Y and $||A|| < \alpha(T)$ implies that $\overline{R(T+A)} \subset R(T)$.
- (9) R(T) is not a proper dense subset of Y and $||A|| < \alpha(T)$ implies that $R(T + A) \subset R(T)$.

Proof. (1) implies (2): (*T* need not be closed): If *T* has a bounded inverse, then by [1] $R(T') = X'_1 \supset R(T' + A')$ for all *A*. If *T* has no bounded inverse, then R(T) = Y so that $R(T') \neq X'_1$ and *T'* has a bounded inverse by [1]. Since *T'* is closed, it follows that R(T') is closed; i.e. m(T') > 0. If (2) is false, there exists an $x'_0 \in \overline{R(T' + A')}$ but at a positive distance *d* from R(T'). By the argument as in Theorem 2, $||A|| = ||A'|| \ge \frac{m(T')}{K(T')} \ge \alpha(T') > ||A||$ which is impossible.

(2) implies (3). Obvious

(3) implies (1): (cf. [5]): If $R(T) \neq Y$ and T has no bounded inverse, then we show that (3) fails to hold. By [1], $R(T') \neq X'_1$ and T' has no bounded inverse. Therefore, we may choose an element $x'_0 \in X'_1$, $||x'_0|| = 1$ and $x'_0 \notin R(T')$. For each $\varepsilon > 0$, there exists an element $y'_0 \in D(T')$ such that $||y'_0|| = 1$, $||T'y'_0|| < \varepsilon$ and an element y_0 such that $||y_0|| = 1$, $||T'y'_0|| < \varepsilon$ and an element y_0 such that $||y_0|| = 1$, $y'_0 = \beta$ is real and $1 \geq \beta \geq 1/2$. Let A be defined by $Ax = \varepsilon(x'_0x - (\varepsilon\beta)^{-1}T'y'_0x) y_0$ for $x \in D(T)$. Hence

$$A'y_{\scriptscriptstyle 0}'=arepsilon y_{\scriptscriptstyle 0}'y_{\scriptscriptstyle 0}(x_{\scriptscriptstyle 0}'-(arepsiloneta)^{_{-1}}T'y_{\scriptscriptstyle 0}')=arepsiloneta x_{\scriptscriptstyle 0}'-T'y_{\scriptscriptstyle 0}'$$
 ,

so that

$$(T'+A')y'_0 = \varepsilon eta x'_0 \notin R(T').$$
 Moreover, $||A|| \leq \varepsilon \left(1+rac{1}{eta}\right) \leq 3\varepsilon$

Since $\varepsilon > 0$ was arbitrary, it follows that (3) does not hold.

(4) and (5) implies (1): Follows from the above argument.

(1) implies (4) and (5): (T need not be closed): This follows from the fact that

(1) implies that R(T') is closed and also that (1) implies (2).

(1) implies (6): If R(T) = Y, then (6) is satisfied. Suppose $R(T) \neq Y$ but that T has a bounded inverse. Hence R(T) is closed so that m(T) > 0. If (6) is false, there exists an element $y_0 \in Y = \overline{R(T+A)}$ but $y_0 \notin R(T)$. The remaining argument is now as in Theorem 2.

(6) implies (7): Obvious

(7) implies (1): If $R(T) \neq Y$ and T has no bounded inverse, then for $\varepsilon > 0$, there exists an element $x_0 \in D(T)$, $||x_0|| = 1$ such that $||Tx_0|| < \varepsilon$. An element $x'_0 \in X'_1$ is chosen so that $||x'_0|| = 1$ and $x'_0x_0 = 1$. Suppose that $y \notin R(T)$ and ||y|| = 1. We define A by the relation

$$Ax = \varepsilon x_0' x(y - \varepsilon^{-1}Tx_0), x \in D(T)$$
.

Then $(T + A)x_0 = \varepsilon y \notin R(T)$. Moreover, $||A|| < 2\varepsilon$. Since $\varepsilon > 0$ is arbitrary, (7) cannot hold. Thus the assertion is proved.

(8) and (9) are equivalent to (1): This is shown in the same way that (4) and (5) were shown equivalent to (1).

If there is no restriction put on the inverse but only on the range of T, we may still infer something about the range of T + A. In fact, A need not be continuous. The following theorem illustrates this.

THEOREM 5. Suppose X and Y are complete. If T is a closed linear operator with a closed range, then there exists a $\rho > 0$ such that T + A is also a closed linear operator with a closed range whenever A is a linear operator (not necessarily continuous) with $D(A) \supset D(T)$ and $||Ax|| \leq \rho(||x|| + ||Tx||)$ for every $x \in D(T)$.

Proof. We introduce another norm $||x||_1$, on D(T) by defining $||x||_1 = ||x|| + ||Tx||$. D_1 shall denote D(T) with this new norm. Since X and Y are complete and T is closed, it is easy to see that D_1 is a complete normed linear space. Moreover, T_1 as a transformation of D_1 into Y is bounded and has an inverse. Thus by the closed graph theorem, T^{-1} is bounded; i.e. there exists an m > 0 such that $||Tx|| \ge m(||x|| + ||Tx||)$ for $x \in D_1$. Choose $\rho > 0$ so that $1 > \rho$ and $m - \rho > 0$. Thus $||(T + A)x|| \ge (m - \rho)(||x|| + ||Tx||)$, whence T + A has a bounded inverse from R(T + A) onto D_1 . Clearly T + A is continuous on D_1 . Since defining a new norm in D(T) does not alter the situation in Y, it follows that R(T + A) is closed. In [3], Nagy proves that T + A is a closed operator from D(T) into Y, which completes the proof of the theorem.

BIBLIOGRAPHY

2. E. R. Lorch, On a calculus of operators in reflexive vector spaces, Trans. Amer. Math Soc., **45** (1939), 217-234.

3. B. Sz. Nagy, On the stability of the index of unbounded linear transformations, Acta Math. Sci. Hungaricae, **3** (1952), 49-52.

4. R. S. Phillips, The adjoint semi-group, Pacific J. Math., 5 (1955), 269-282.

5. B. Yood, Transformations between Banach Spaces in the uniform topology, Ann. of Math., **50** (1949), 486-503.

HEBREW UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG Stanford University Stanford, California

R. A. BEAUMONT University of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	V. GANAPATHY IYER	I. NIVEN	E. G. STRAUS
C. E. BURGESS	R. D. JAMES	T. G. OSTROM	G. SZEKERES
E. HEWITT	M. S. KNEBELMAN	H. L. ROYDEN	F. WOLF
A. HORN	L. NACHBIN	M. M. SCHIFFER	K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON * * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chivoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 9, No. 3 July, 1959

Errett Albert Bishop, A minimal boundary for function algebras	629	
John W. Brace, The topology of almost uniform convergence		
Cecil Edmund Burgess, <i>Chainable continua and indecomposability</i>	653	
L. Carlitz, Multiplication formulas for products of Bernoulli and Euler polynomials	661	
Eckford Cohen, A class of residue systems (mod r) and related arithmetical		
functions. II. Higher dimensional analogues	667	
Shaul Foguel, Boolean algebras of projections of finite multiplicity	681	
Richard Robinson Goldberg, Averages of Fourier coefficients	695	
Seymour Goldberg, Ranges and inverses of perturbed linear operators	701	
Philip Hartman, On functions representable as a difference of convex functions	707	
Milton Vernon Johns, Jr. and Ronald Pyke, On conditional expectation and		
quasi-rings	715	
Robert Jacob Koch, Arcs in partially ordered spaces	723	
Gregers Louis Krabbe, A space of multipliers of type $L^p(-\infty, \infty)$	729	
John W. Lamperti and Patrick Colonel Suppes, <i>Chains of infinite order and their application to learning theory</i>	739	
Edith Hirsch Luchins, <i>On radicals and continuity of homomorphisms into Banach</i>	139	
algebras	755	
T. M. MacRobert, <i>Multiplication formulae for the E-functions regarded as</i>		
functions of their parameters	759	
Michael Bahir Maschler, <i>Classes of minimal and representative domains and their</i>		
kernel functions	763	
William Schumacher Massey, On the imbeddability of the real projective spaces in Euclidean space	783	
Thomas Wilson Mullikin, Semi-groups of class (C_0) in L_p determined by parabolic		
differential equations	791	
Steven Orey, <i>Recurrent Markov chains</i>	805	
Ernest Tilden Parker, On quadruply transitive groups	829	
Calvin R. Putnam, On Toeplitz matrices, absolute continuity, and unitary		
equivalence	837	
Helmut Heinrich Schaefer, On nonlinear positive operators	847	
Robert Seall and Marion Wetzel, <i>Some connections between continued fractions</i>		
and convex sets	861	
Robert Steinberg, Variations on a theme of Chevalley	875	
Olga Taussky and Hans Zassenhaus, On the similarity transformation between a		
matirx and its transpose	893	
Emery Thomas, <i>The suspension of the generalized Pontrjagin cohomology</i>		
operations	897	
Joseph L. Ullman, On Tchebycheff polynomials	012	
	913	
Richard Steven Varga, Orderings of the successive overrelaxation scheme	913 925	