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1. Introduction. A function f(x) defined on a convex x-set D will
be called a d.c. function on D if there exists a pair of convex functions
F\(x), Fiy(x) on D such that f(x) is the difference

(1) f(@) = Fy(x) — Fyx) .

In this note, ‘‘convex’’ function means ‘‘ continuous and convex’’ func-
tion. D.c. functions have been considered, for example, by Alexandroff
[1]. E. G. Straus mentioned them in a lecture in Professor Beckenbach’s
seminar (and used the abbreviation ‘d.c.”’).

When « is a real variable, so that D is a (bounded or unbounded)
interval, then f(x) is a d.c. function if and only if f has left and right
derivatives (where these are meaningful) and these derivatives are of
bounded variation on every closed bounded interval interior to D. Straus
remarked that this fact implies that if f.(x), fu(x) are d.c. functions of
a real variable, then so are the product f.(x)f,(x), the quotient f,(x)/fy(x)
when f,(x) + 0, and the composite f.(f.(x)) under suitable conditions on
f.- He raised the question whether or not this remark can be extended
to cases where « is a variable on a more general space. The object of
this note is to give an affirmative answer to this question if z is a point
in a finite dimensional (Euclidean) space.

2. Local d.c. functions. Let f(x) be defined on a convex x-set D.
The function f(x) will be said to be d.c. at a point z, of D if there
exists a convex neighborhood U of z, such that f(x) is d.c. on U N D.
When f(x) is d.c. at every point # of D, it will be said to be locally
d.c. on D.

(I) Let D be a convex set in an m-dimensional Euclidean x-space
and let D be either open or closed. Let f(x) be locally d.c. on D. Then
f(x) s d.c. on D.

While the proof of (I) cannot be generalized to the case where the
m-dimensional z-space is replaced by a more general linear space, it will
be clear that (II), below remains valid if the Euclidean z-space (but not
the y-space) is replaced by a more general space.
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(II) Let x = (a', +++,2™) and y = (%', ---,y"). Let D and E be con-
vex sets in the x- and y-spaces, respectively; let D be either open or
closed and let E be open. Let g(y) be a d.c. function on E and let
Yy =yl(x) where j=1,.++,m, be d.c. functions on D such that y=y(x)e E
for xeD. Then f(x) = g(y(x)) is locally d.c. on D.

This theorem is false (even for n = m = 1) if the assumption that
E is open is omitted. In order to see this, let x and y be scalars,
gy)=1—y" (£1) on E: 0=y<1and let y=y) =|r— 4| on
D:0<x<1. Since f(x) = g(y(x)) =1 — |x — % |"* does not have finite
left and right derivates at the interior point x = £, the function f(x) is
not d.c. at the point z = .

It will be clear from the proof that (II) remains correct if the as-
sumption that E is open is replaced by the following assumption on F
and g(y): if x, is any point of D and ¥y, = y(x,), let there exists a con-
vex y-neighborhood V of y, such that g(y) satisfies a uniform Lipschitz
condition on V' N E. (This condition is always satisfied if y, is an interior
point of E; cf., e.g., Lemma 3 below).

COROLLARY. Let D be either an open or a closed convex set im the
(x', «++, x™)-space. Let f\(x), fi(x) be d.c. functions on D. Then the pro-
duct fi(x)fy(x) and, if fi(x) = 0, the quotient fix)/f(x) are d.c. functions
on D.

The assertion concerning the product follows from (I) and (II) by
choosing y to be a binary vector ¥ = (%', ¥%), 9(¥) = y¥*, E the (¥', ¥*)-
plane and y' = fi(z), ¥* = fy(w). Thus f(x) = g(y(x)) = fi(x)f:(x). Note that
9) =3y + ¥ — H((W') + (¥»)) is a d.c. function on E.

In the assertion concerning the quotient, it can be supposed that
fox) =1 and that fi(x) > 0. Let y be a scalar, g(y) =1/y on E:y >0
and y = fi(x) on D. Thus g(y) is convex on E and f(x) = g(y(x)) = 1/f.(z).

3. Preliminary lemmas. It will be convenient to state some simple
lemmas before proceeding to the proofs of (I) and (II). The proofs of
these lemmas will be indicated for the sake of completeness.

In what follows, « = («', ---, ™) is an m-dimensional Euclidean vec-
tor and |x| is its length. D is a convex set in the x-space.

LEMMA 1. Let D be either an open or a closed convex set having
terior points. Let x = x, be a point of D and U a convex neighborhood
of x,, Let F(x) be a convex function on D N U. Then there exists
a neighborhood U, of x, and a function F\(x) defined and convexr on D
such that F(x) = Fi(x) on D N U,.

In order to see this, let U, be a small sphere |x — x,| < » such that
F(x) is bounded on the closure of D N U, Let G(x) = K|z — x| +
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F(xz;) — 1, where K is a positive constant, chosen so large that G(x) >
F(x) + 1 > F(x) on the portion of the boundary of U, interior to D.
Clearly G(x) < F(x) holds for x = x,, hence, for x on D N U, if U, is
a suitably chosen neighborhood of x,, If xe D, define F\(x) to be
max (F'(x), G(x)) or G(x) according as x is or is not in U, N D. Since
max (F(x), G(x)) is convex on U, N D and max (F(z), G(z)) = G(x) for x
in a vicinity (relative to D) of the boundary of U, in D, it follows that
Fy(x) is convex on D. Finally, F\(z)= max (F(x),G(zx)) = F(x) for
xe U, N D.

LEMMA 2. Let D be a closed, bounded convex set having x =0 as
an interior point. There exists a function h(x) defined and convex for
all x such that h(x) <1 or h(x) > 1 according as xe D or x ¢ D.

In fact, h(x) can also be chosen so as to satisfy h(x) > 0 for x £ 0
and h(cx) = ch(x) for ¢ > 0. This function is then the supporting func-
tion of the polar convex set of D; Minkowski, cf. [2], §4. The function
h(x) is given by 0 or |x|o~'(x/|x|) according as x = 0 or x =+ 0, where,
if w is a unit vector, p(u) is the distance from x = 0 to the point where
the ray « = tu,t > 0 meets the boundary of D.

LEMMA 3. Let D be a closed, bounded convex set having interior
points and D, a closed convex set interior to D. Let F(x) be a convex
Sunction on D. Then F(x) satisfies @ uniform Lipschitz condition on D,.

In fact, if d > 0 is the distance between the boundaries of D and
D, and if |F(x)] <M on D, then |F(x)— F(x,)| < 2M|x, — x,]/d for
2, 2, € D,. This inequality follows from the fact that F(x) is convex on
the intersection of D and the line through x, and ..

4. Proof of (I). The proof will be given for the case of an open
convex set D. It will be clear from the proof and from Lemma 1 how
the proof should be modified for the case of a closed D.

To every point x, of D, there is a neighborhood U = U(x,), say U:
|z — x| < 7(x,), contained in D such that f(x) is d.c. on U; that is,
there exists a convex function F(x) = F(x, x,) such that f(x) + F(x, x,)
is a convex function of x on U(x,). In view of Lemma 1, it can be
supposed (by decreasing 7(x,), if necessary) that F'(x, x,) is defined and
convex on D (although, of course, f + F is convex only on U).

Let D, be a compact, convex subset of D). Then D, can be covered
by a finite number of the neighborhoods U(x), ---, U(x,). Put F(x) =
Fx,2z)+ -+ + F(x, %), so that F(x) is defined and convex on ). Since
fx) + F(zx, x,;) is convex on U(x)), so is f(x) + F(x) = f(x) + F(x, x;) +
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>y H(x, x;). Hence f 4+ F is convex on D,.

Thus there exists a sequence of open, bounded convex sets D,, D,, +«-
with the properties that the closure of D, is contained in D,,;, D = |JD,,
and to each D, there corresponds a function F(x) defined and convex
on D such that f(x) + F,(x) is convex on D,.

Introduce a sequence of closed convex sets C', C% --. such that
C'cD cC*cD,c+--. In particular, D= C".

It will be shown that there is a function G,(x) with the properties
that

(i) G,(zx) is defined and convex on D,

(i) f(x) + Gy(x) is convex on D,, and

(iii) G(x) = F\(x) on C*.

If this is granted for the moment, the proof of (1) can be completed
as follows: If Gy, ---, G,_, have been constructed, let G, be a function
defined and convex on D such that f + G, is convex on D,,, and G, =
Gy-, on C*, Then F(x) = lim G,(x) exists uniformly on compact subsets
of D; in fact, F(x) = G,(x) on C* for all j = k. Hence, F(x) is defined
and convex on D. Since f(x) + F(x) is convex on C* k =1,2, ..., it is
convex on D; that is, f is a d.c. function on D.

Thus, in order to complete the proof of (I), it remains to construct
a G(x) with the properties (i) — (iii). Let & > 0 be a constant so large
that Fy(x) — k < Fi(x) for xe C'. Without loss of generality, it can be
supposed that « = 0 is an interior point of C'. Let A(x) be the function
given by Lemma 2 when D there is replaced by C'. Put H(x) =0 or
H(x) = K[h(x) — 1] according as € C' or x ¢ C', where K > 0 is a con-
stant. Thus H(x) is defined and convex for all x and H(x) =0 on C".
In particular,

(2) Fyx) — k + H(z) < Fy(x) for xe C*.
Choose K so large that
(3) Fyfx) — k + H(x) > F(x) on D,

the boundary of D,. This is possible since i(x) — 1 > 0 for x ¢ C".
Define G,(x) as follows:

(4) G\ (x) = max (F(x), Fi(x) — k + H(x)) for xe D,
G(x) = Fy(x) — k + H(x) for xe D — D,

where D — D, is the set of points in D, not in D,.
Clearly, (2) and the first part of (4) imply property (iii),

(5) G(x) = Fy(x) if zeC",

and (3) implies that
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(6) G(x) = Fy(x) — k + H(x) for x on and near Dy,

the boundary of D,.

By the first part of (4), Gi(x) is convex on D,. By the last part of
(4) and by (6), G,(x) is convex in a vicinity of every point of D — D,.
Hence, G,(z) has property (i), that is G,(x) is convex on D.

Since f(x) + Fi(x) is convex on D, and f(x)+ Fy(x), hence f(x)+
Fy(x) — k + H(x) is convex on D, D> D, it follows that, on D,, the
function

f@) + Gy(x) =max (f+ F, f+ F, — k + H)

is convex. It also follows from the last part of (4) and from (6) that
f + G, is convex in a vicinity of every point of D, — D,. Hence G, has
property (ii), that is, f + G, is convex on D,. This completes the proof
of (I).

5. Proof of (II). Without loss of generality, it can be supposed that
g(y) is convex on K.

Since y’(x) is a d.c. function on D, there exists a convex function
F(x) on D such that

(7) + y/(x) + F(x) are convex on D .

The function F(x) = F(x, j, +) can be assumed to be independent of j,
where 7 =1,.--,n, and of +; for otherwise it can be replaced by
ZJF(x!js +) + ZJF(x’jr _) .

Let # =2, be a point of D and ¥y, = y(x,). Lel V be a convex
neighborhood of ¥, such that g satisfies a uniform Lipschitz condition

(8) lg(yx)'_g(yz)léMlyl_y‘zl

on V; cf. Lemma 3. Let U be a neighborhood of x, such that y(x)e V
for xe U N D. It will be shown that

(9) f(x) + 3nMF(x) is convex on D N U,

so that f is d.c. at z = «,.

It is clear that there is no loss of generality in assuming that g(y)
has continuous partial derivatives satisfying

10) |og(y)/oy’| < M for j=1,---,m and ye V.

For otherwise, g can be approximated by such functions.

In what follows, only # in DN U and ye V oceur. Let xz = x(s),
where s is a real variable on some interval, be an arc-length parametri-
zation of a line segment in D N U. The assertion (9) follows if it is
shown that e(s) 4+ 3nMF(x(s)), where e(s) = f(x(s)) is a convex function
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of s. Il is clear thal e(s) has left and right derivatives (whenever these
are meaningful). Let ¢’(s) denote a left or a right derivate of e(s) and
F'(x(s)), y”'(x(s)) the corresponding derivates of F(x(s)), y(x(s)). Let
4s > 0, then e(s) + 3nMF'(x(s)) is convex if and only if de’ + 3nMAF' = 0,
where e’ = e'(s + 4s) — €'(s) and JF' = F'(x(s + 4s)) — F'(x(s)).

By the definition of e,

(11) e = >(0g/oy)y” .
Hence,
(12) de'(s) = X 4(0g/oy’ )yl + X.(dg[oy’).4y

where y{' =y’ (x(s)) and (9g/0y’), is the value of 6g/oy’ at y = y(x(s + 4s)).

The usual proofs of the mean value theorem of differential calculus
(via Rolle’s theorem) imply the existence of a 0 =0,,0< 0,<1, such
that

(13) dilds = yi

where ¥}’ is a number between the left and right derivates of ¥’(x(s))
at the s-point s + 0,4s. By (13), the equation (12) can be written as

(14) de' = X (dog[oy’)(dy’|4s) + X (40g[oy’ )yl — yi)
+ >(ag/oy’)dy”) .
By (7),
|4y’ | < 4F" and |y —y)| = Fy — F) = 4F",

where Fj is the right derivate of F'(x(s)) at the s-point s + 6,4s (< s+ s).
Since g(y) is convex, the first term on the right of (14) in non-negative.
Hence (10) and (11) give

15) de' = 0 — 2nMAF" — MndF" ,
so that e(s) + 3nMF(x(s)) is convex. This proves (1I).

6. ““‘Minimal’’ convex functions. Let f(x) be d.c. on the unit
sphere |x| < 1, so that there exist functions F(x) on x| < 1 such that

(16) F(x) and f(x) + F(x) are convex on || <1.
The function F(x) can be chosen so as to satisfy the normalization
aam F(0)=0 and F(z)=0.

If x is a real variable, there exists a ‘‘least’ F(x), say F,(x),
satisfying (16), (17) in the sense that (16), (17) hold for F = F, and
(16), (17) imply
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(18) F.(x) < F(x) on |z] < 1.

In fact, F,(x) can be obtained as follows: A (left or right) derivative
f'(x) of f(x) is of bounded variation on every interval |2]| < a <1 and
so f'(x) can be written as f'(x) = P(x) — N(x), where P(x), N(x) are
the positive, negative variation of f’ on the interval between 0 and =z,
say, with the normalization N(0) = 0. In particular, P and N are non-
decreasing on |x| < 1. In this case, F,(x) is given by

F () = S:N(x)dx .

On the other hand, if x is a vector, there need not exist a least
F = F,(x). In order to see this, let £ be a binary vector and write
(z,y) instead of x. Let f(x,y) =2ay. If ¢ >0, F(z,y) = (cx® + y*le)
satisfies (16), (17). If a least F' = F, exists, then 0 < F(x, y) < 3(ex® +
y’le). In particular, 0 < F,(x,0) < ex?, and, therefore, F,(z,0)=0.
Similarly, F,(0,%y) = 0. But since F,, is convex, it follows that F,, = 0.
This contradicts the case F'= F,, of (16) and so, a least F = F,, does
no exist.

Although a ‘‘least’” F' need not exist, it follows from Zorn’s lemma
that ‘“ minimal ”’ F’s do exist.
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