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1. Introduction. Let V(G) denote the set of all functions having
finite variation on G. Set G = (—o, ) =G, and let V.(G) be the
Banach space of all functions in V(G) which vanish at infinity. If
f e V.(G), then there exists a bounded linear operator ({,f) on Lp(é)
such that

(i,)  (Fourier transform of (t,f)x) = (Fourier transform of z) - f

for all = in Lf’(é). This will be shown in 7.2, In the terminology of
Hille [3, p. 566], functions f having property (i,) are called ‘‘factor
functions for Fourier transforms of type (L,, L,)”.

Suppose 1 < p < . When fe L{G)N V(G)C V.(G), then (t,f) is a
singular integral operator: for all z in L”(G) it is found that (¢,f)x has
the form

[t = |~ 2@ = M ag ned),
27y J - g —
where the integral is taken in the Cauchy prinecipal value sense.
In 6.2 will be defined a set A(L?(G)) which contains all factor

functions for Fourier transforms of type (L,, L,); the set A(L*G)) is a
slight extension of what Mihlin [6] calls ‘‘multipliers of Fourier inte-
grals’’. We will find a number N, such that

(1) if fe V(G then fe ALAG)) and ||(t, /)l = N, - lIfll, ,

where ||f|l, denotes the total variation on G of the function f. Let F,
be the mapping {x — « « F'}, where x x F' is the convolution of the func-
tions x and F

[@+ F], = S: 2(0) - F (0 — \)do O e Q).

Let (Yf) denote the Fourier transform of the function f:
(ii) if fe LGNV (G), then the transformation (Y f), is a
densely defined bounded operator, and (t,f) s its continuous linear
extension to the whole space L*(G).

Let us for a moment call G = {0, +1, +2, ---} and G = [0,1]. In
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a sense, the following relations are duals of (i) and (ii), respectively:

(') if Fe V(G) then (YF)e ALYG) and ||1t(YF)|| <k, - || FI,
(ii") if Fe V(G) then F,, = t (Y F) is a bounded operator on LY(G).

When G = [0, 1] these properties are easily verified (see 8.1). We will
not' prove (i’)-(ii’) for other choices of G.

When G = [0, 1], then (ii) is seen to be a theorem due to Steckin
[10]; by means of appropriate definitions, it could be shown that (i) also
holds for this particular choice of G.

2. Applications. If f belongs to the class S of members of
LGN V(G) such that (Yf)e L(G), then (Yf), = (t,f) is a bounded
operator defined on all of L"(G); it is interesting to compare this result
with the conclusion F, = t,(Y F') of (ii’). All the classical convolution
operators (Poisson, Picard, Weierstrass, Stieltjes, Dirichlet, Fejér,..etc.
[7]) are of the form (¢,f), where fe S. See §8.

3. Preliminaries. We assume 1 < p < o throughout, and write
G = (—o, ©). Denote by L° the set of step functions with compact
support. Let V be the set of all functions a defined on G and such
that ||a}], # o, where ||a]||, denotes the total variation on G.

3.1 DEFINITIONS. Let V. be the set of all functions ¢ in V such
that lim a(d) = 0 whenever || — . We will write L* instead of L*(G).
If ¢=0,1 and f e L}, then the Fourier transforms [[Yf] are the func-
tions g, defined by

(1) LYFL =00 = | _exp@riv(—1)0)-F(0)de (heG).

To lighten the notation, we will write Yf for [[Yf] and ¥ f for [,Yf].
3.2 LEMMA. If ae L'NV, then ae V., and

(2) Sle““‘“"da(t} — 27i9-[ Ya], 0eq) .

Proof. Since ae V, the limits a(+ o) = lima(d) (when 6 — + )
exist. Since ||la|l, < « we have

(3) lim Seﬂml ~0.
f—-+oc JO

The eventuality a(+ o) # 0 implies a contradiction of (3). Therefore

1 It would be of interest to determine the validity of (i)-(ii) and (i’)-(ii’) in the general

case where (& is a connected locally compact abelian group with dual group G. Tt is mainly
in order to suggest such an investigation that (i")-(ii’) are mentioned here.
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a(4+ o) = 0, which permits the integration of (1) by parts to obtain (2).

3.3 DEFINITIONS. Let 68, = (—o, —8]U[$, =) and let (Tsa)x be the
function defined by

(4 ) [( Tsa)x]}\ = Ss*dﬁ%gm e—zm'et,da(t)

-0

for all » in G. We denote by V, the set of all members a of V such
that, for all # in L° the limit

[(Tayel, = lim [(Tia)e]s

exists almost-everywhere on G. Let Ta be the operator {x — (Ta)x}
defined on L°.

3.4 LeEMMA. If h(8) = 16/\6|, then he V, and Th is the restriction
to L' of the Hilbert tramsformation. Moreover ||(Tsh)xll, < ¢, - |lzll,,
where ¢, 1s the norm of Th.

Proof. This follows from the statement in [8, p. 241] that
W(T:R)zll, < ||(Th)xll,. Theorem G in [1, p. 251] yields a less precise
result.

3.5, LEMMA. IfaeL'NVithenaeV,and x*[Ya]l = (Ta)r whenever
xe L,

Proof. Suppose 6 > 0. By definition
(x [Yal, = | do-a(n = 0)-[Yal, = B*0) + G0,
where
GO = SS*dé)-x(x — 6)-[Yal, ne@),
while E®(\) is the same integral over the interval (-6, 98). It is clear
that lim £°(\) = 0 when § - 0+4. On the other hand, G° = (Tsa)x fol-

lows immediately from (2) and (4). This concludes the proof.

3.6 LEMMA. Suppose ae 'V, and xe L°. If there exists a mumber
k, such that ||(Tse)xll, < k, for all 8 >0, then ||(Ta)xl|, < k,.

Proof. Set ¢ = p/(p —1). Observe first that

(5) ligll, = sup«{Hg-w

: pe L and nwnqgl},
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Next, we infer from a theorem of F. Riesz ([8], p. 227 footnote 10)

that the uniform boundedness of ||(7sa)x||, implies that, for all ¢ in L?
with ||oll, =1

(6) [i(Ta)z1- 0 = lim \[ Tyl

By (5) we have H[(Tsa):c]'(ﬂ

|7y

=< k,; this enables us to use (6) to deduce

< k,. The conclusion is reached by another application of (5).

3.7 LEMMA. If ae L'NV and xe L', then
H(Ta)zll, = 27 "¢, llallllx]l, .

Proof. Suppose 8§ > 0. Apply Fubini’s theorem to (4):

[(Ts&)%’],\ — S da(t)e_» m,\(S d()%_) ezntt()\—e) .

Set x'(8) = x(B) exp (2ritB). Keeping both (4) and 3.4 in mind, we can
therefore write

(7) [(Ta)el, = @) da@ e [(Th)L} -

This implies

(8) 1(Tsayell, < 2 all, sup (T, -

The derivation of (8) from (7) is obtained by a standard procedure (e.g.

as in [3, Lemma 21.2.1]); it rests upon (5) and requires a single appli-
cation of the Fubini theorem. On the other hand, 3.4 implies that

(TR ll, = e, llatll, = epellll,

In view of (8) therefore: [[(Tsa)xll, < 27 '¢,lla|ll|zll,. Use now 3.6 to
reach the conclusion.

4. The Banach space V.. Let V, denote the set of all functions
in V which have compact support. The norm {a — ||e||,} makes the set
{ae Vi a(—) = 0} into a Banach space V,. Note that V,cV.cV.,.
Henceforth V. will be given the topology of V,. We will write ||all. =
sup{la(0)|: 0 e G}; it is easily checked that

(9) llall = llall, (when ae V).

Let y, denote the characteristic function of the interval (—=n,n), and
set a, = Ao s @
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4.1 LeMMA, If ae V., then limi{ja — a,l]l, = 0.

—>00

Proof. Suppose fe V. Using the notation 8, of 3.3, we have
(iif) ANl = o(F5 [=8, 8) + o(f; 8.) ,

where v(f; I) denotes the total variation over I. Set d =mn and h, =
a — a,; therefore v(h,; [—3, 8]) = {a(—38)| + |a(d)| and v(h,; 8,) = v(a; 5,).
From (iii) therefore ||A,|l, = la(—38)| + |a(d)| + »(a; 8,), and the coneclu-
sion follows by letting 6 — oo,

4.2 REMARK. The set V, is dense in V. (since 4.1 and the fact
that a,€e V,).

4.3 THEOREM. The set V. is a Banach space.

Proof. Since V. is a metric subspace of the Banach space V,, it
will suffice to show that V. is complete. To that effect, consider a
Cauchy sequence {g,} in V.; since {g,} is also in V,, it will converge
to some function f in V,; therefore f(— <) = 0 and we need only estab-
lish that f(w) = 0. From (9) we see that

1£0) — 9:0)] = IIf — gl (0e@G).

In view of ¢,(e) = 0, the conclusion is obtained by letting ¢ — o and

k— oo,

5. The bilinear operator B,. From 3.2 results that V.cL'nVc V.;
it follows from 4.2 that L'NV is dense in V.. Consider the bilinear
operator B = {(x, a) > (Ta)x} which maps L' x (L'NV) into L?. From
3.7 we see that B is a continuous bilinear mapping of L° x (L'N V) into
L?, Since L°" and L'NV are dense in L* and V., respectively, it fol-
lows that B has a (unique) continuous extension B, to L* x V.. Ac-
cordingly, if ae V.., then

(10) I B,(x, a)ll, = 27%,\lailllz]l, (if xe L")
If ae L'NV, then (from 3.5) '

1) B,(z,a) =2 * Ya (if ze LY.
5.1 NoTATION. We henceforth identify functions equal almost-every-
where on G. If the sequence {f,} converges in the mean of order p

(i.e., in the topology of L?), then its limit will be denoted (L”)limf,.

5.2 LEMMA, Let 7, be the function defined by
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1a(0) = (sin 27nd)[m0 0e@).
If fe L®, then f= (L") limf =y, as n— oo,

Proof. Observe that Dunford’s proof [2, p. 51, Lemma 3] for the
case p = 2 holds without alteration whenever 1 < p < <o,

6. The main result. Suppose ¢=0,1. When f is a locally inte-
grable function, we set

(12) [(Y)f1 = (L) lm LY (4, - /)] -
As in 3.1, we lighten the notation by writing Y,f =I[(Y,)f] and
Vof = 16Y)r 1

6.1 REMARK., If fe L' then [(YV,)f]=[Yf]. The following de-
finition is an extension of the one used by Mihlin (‘‘Multipliers of Fourier
integrals’’?).

6.2 DEFINITION. A locally integrable function a is called a “‘mul-
tiplier of type L*’ if both the following conditions hold:

{the transform Y (a-[¥«x]) exists and belongs to L? whenever x € L*
oo == sup{l| Y(a-[T2Dl,: xe L’ and ||z]|, =1} .

Let A(L®) denote the set of all multipliers of type L?. When ae A(L"),
then (¢,a) is defined as the continuous extension to all of L” of the
transformation {x — Y, (a-[¥x])} defined on L°.

6.3 THEOREM. If ae V., then aec A(L") and (t,a)x = B,(x,a) for
all x in LP,

Proof. Note first that a, = (y.-a)e L'NV. Suppose ze L’. From
(11) we see that

[B,(z, a,)], = Sdﬂ-x(&)gdt-e"—”’”“”’an(t) (when xe @) .
By Fubini’s theorem
[B(z,a)l, = Sdt-an(t)e‘““f[wmt (for all » in G) .

Or, equivalently

Bp(xr an) = Y(X'n'a'[wxj) .

2 See [6]; in that article, Mihlin gives a condition which ensures that a differentiable
function be in a(L?).
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From (10) and 4.1 we can now infer that
B(x, a) = (L") im Y (x,- {a-[T2]}) .

From the definition (12) now results that B,(x,a) = Y, (a-[Fx]) for all
x# in L°. This completes the proof, in view of (10) and 6.2.

7. Hille’s definition. Set ¢ = p/(p — 1). The following definition
is found in [3, p. 566]: a function a is said to be a factor function for
Fourier transforms of type (L,, L,) if and only if

a-[Tx] e ¥z 2z e L}

wherever ¢ ¢ L?. This definition seems to require the restriction p < 2,
since [¥ 2] need not exist otherwise.

7.1 THEOREM. Suppose 1< p=<2. If a 1s a factor function for
Fourier transforms of type (L,, L,), then a e A(L").

Proof. 1f a is such a factor function, there exists a bounded linear
mapping (tha) of L?(G) into itself (see [3, Theorem 21.2.1]); this operator
is defined by

a-[¥x] = ¥ ((ta)x) for all x in L* .
In view of [11, 5.17], this implies
13) Y, (a-[¥ x]) = (t,a)x for all © in L7 .

The conclusion follows from 6.1 and 6.2.

7.2 THEOREM. Suppose 1 < p <2 and aec V.. Then a is a factor
function for Fourier transforms of type (L,, L,); moreover,

(14) ¥ (B,y(x,a)) = a-[¥x] (when ze L”) .
Proof. Since B,(x,a)e L” when xe L” (see §4), it will suffice to

prove (14). Consider first the case (x,a)e L' x V,. From (12) we see
that

(15) ¥(By(x,a)) = (L") limg, ,
where ¢, = (). B,(x,a)]. From (11):
9.0\ = S d{)-e”‘“"gdm #O[Yalpe  (when re@).

A repeated application of the Fubini theorem yields
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9,00 = Sdt-a(t)[llf 2, S d0.e=2-%  (when \eG).

In the notation of 5.2 we accordingly have
g, = {a'[wx]} * %n

Since a - [¥x] is in L%, it can be inferred from 5.2 and (15) that
¥ (B, a)) = (LM lim ({a-[F2]} * 7,) = a-[Fx] .

Keeping ¥x = ¥« in mind (see 6.1), it is clear that (14) is now proved
in the case (x,a)e L* x V,. Consider the bilinear operator R = {(x, a) —
-l defined on L” x V.; since ||Z 2|, < llzll,, it follows that
Bz, a)ll, < llzllllell., and from (9) results that R is a bounded bilinear
mapping of L”» x V. into L% In view of (10), this remark also shows
that the bilinear operator J = {(x, a) - ¥ (B,(x, a))} is a bounded bilin-
ear mapping of L? x V. into Lo

Having shown that R(x, a) = J(x,e) whenever (x,a)e L’ x V,, the
desired conclusion R = J can now be inferred from the denseness of L°
and V, in L? and V.., respectively (see 4.2).

8. Concluding remarks. From 6.3, 3.2 and 3.5 follows that, if
fel'NV and xe L*, then (¢t,f)x = B, (%, f) = Tf; hence, if F is the
Fourier-Stieltjes transform of f, we have (from 3.3) the relation

[(tpf)x]A:%gg (e)F (0 = wg

e @)
which was announced in the introduction. Property (ii) of the introdue-
tion follows from (11) and 6.3. If Ae L' we denote by A,, the bounded
operator {#x — x = A} defined on L?. Let S be the setof all ¢ in L'NV
such that Yae L', and observe that (Ya),, = ({,¢) when a€S. Again
if ae S, then A = Yae L' and a = ¥A; from [4] it is seen that the
spectrum of (f,a) is the closure of the range of a.

8.1 REMARK. Set G =1[0,1] and G = {0, +1, +2, ---}. We will
now sketch a proof of the properties (i')-(ii’) described in §1. Denote
by |l All, the total variation of A on G, and suppose ||A|l, # . Observe
that, since AeLl(G), we may borrow from [5, p. 10] the following con-
clusion: ¢« = YAe A(L”(G)) and ¢,(YA) = A, is a bounded linear operator
on L*G).

This is all of (i’)-(ii’) except for the inequality. The main result of
[5] can be stated as follows®:

3 The definition of Vo(a) is given in {5, p. 8].
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(16) W)l = 2k, Vila) .

Note also that |[YA].| < |2zn|Y|A|l, when ne G (this is obtained by
integrating by parts, as in 3.2); consequently V. (a) = VAYA) < m,||All,.
In view of (16), the proof of the inequality in (i’) is completed.
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