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CHAINS OF INFINITE ORDER AND THEIR

APPLICATION TO LEARNING THEORY

JOHN LAMPERTI AND PATRICK SUPPES

1Φ Introduction* The purpose of this paper is to study the asym-
ptotic behavior of a large class of stochastic processes which have been
used as models of learning experiments. We will do this by applying
a theory of so-called "chains of infinite order" or "chaίnes a liaisons
completes." Namely, we shall employ certain limit theorems for sto-
chastic processes whose transition probabilities depend on the entire past
history of the process, but only slightly on the remote past. Such theo-
rems were given by Doeblin and Fortet [3] in a form close to that we
employ; however, in order to accomodate certain cases of learning models
we found it necessary to relax somewhat their hypotheses. A self-con-
tained discussion of these and some additional results is the content of §2.

We should emphasize that this section is included to serve as prep-
aration for the theorems of § 4, and it is original with us only in some
details and extensions. In addition to [3], papers by Harris [7] and
Karlin [8] contain very closely related results and arguments, but not
quite in the form we require.

The processes which we shall study with these tools are called ' 'linear
earning models." From a psychological standpoint these models are
very simple. A subject is presented a series of trials, and on each
trial he makes a response, which consists of a choice from a finite set
of possible actions. This response is followed by a reinforcement (again
one of a finite number). The assumption of the model is that the sub-
ject's response probabilities on the next trial are linear functions of the
probabilities on the present trial, where the form of the functions de-
pends upon which reinforcement has occurred. Many results about such
models may be found in Bush and Mosteller [2], Estes [4], and Estes and
Suppes [6]. We will also study here models constructed along similar
lines for experiments involving two or more subjects and a type of in-
teraction between them [6, Section 9] and Atkinson and Suppes [1].
Precise definitions of these processes are given below in §3.

The references mentioned above do not, except in very special cases,
give a thorough treatment of asymptotic properties. We shall prove
that under general conditions linear learning models exhibit "ergodic"
behavior; that is, that after much time has passed these processes be-
come approximately stationary and the influence of the initial distributions
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goes to zero. This is not the case for all models which have been
used in experimental work, but it seems as if ergodic behavior can be
proved by our method in almost all the cases in which one might expect
it. Our theorems to this effect, their proofs and some corollaries are
given in §4.

The major work so far on limiting behavior of learning models is
Karlin [8], who obtains detailed limit theorems for certain classes of
models. However, the results and even the techniques of Karlin's paper
do not apply to many cases of interest. His starting point is a repre-
sentation of the linear model as a Markov process whose states are the
response probabilities. Two typical situations when such a representa-
tion is impractical arise (i) when the probabilities with which the rein-
forcement is selected depend on two or more previous responses, and (ii)
in the many-person situations mentioned above. Both these situations
can (and will) be studied using infinite order chains, and ergodic behavior
established under mild restrictions. On the other hand, Karlin's work
treats interesting non-ergodic cases outside the scope of our approach. For
example, consider a Γ-maze experiment in which the subject (a rat, say)
is reinforced (rewarded) on each trial regardless of whether he goes left
or right. In the appropriate linear model, the probability of a left turn
eventually is either nearly 0 or nearly 1, and which it is depends upon
the rat's initial response probabilities. The model of this experiment
has been thoroughly studied in [8, Section 2], and these results have
been generalized by Kennedy [9].

In conclusion we comment that both more detailed results and other
applications seem possible using the ideas of "infinite order chains."
We hope to contribute further to this development in the future.

2. Chains of infinite order. In this section we present a theory
of non-Markov stochastic processes where the transition probabilities are
influenced only slightly by the remote past. The original convergence
theorems for this type of process are due to Doeblin and Fortet [3];
they are given here in a generalized form (Theorems 2.1 and 2.2). The
weaker hypotheses make the proof of Lemma 2.1 more complicated than
it is in [3], but the other proofs are not much affected. T. E. Harris
has also studied these chains; we shall not use his results but remark
that his paper [7] gives additional references and background on the
subject. Finally we point out that the restriction to a finite number of
states is not essential, and the theorems can be extended to the de-
numerable case without much change of methods.

Let / consist of the integers from 1 to N (to represent the states
of the chain); we shall use the notation x for a finite sequence iQ,ίlf

of integers from I. The subscript " m " on xm merely adds the specifica-
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tion that the sequence has m terms; the "sum" xm + %' will be the
combined sequence i0, , ίm_19 ij, ί{ . The starting point for the theory
will be a set of functions p^x) defined for all i e I and all sequences x
(including the sequence φ of length zero) and having the properties

(2.1) Vi{x) ^ 0, Σ Pi(x) = 1
i

The function pt(x) will be interpreted as the conditional probability that
a path function of the random process will go next to state i, having
just occupied state ΐ0, previously i19 etc. With this interpretation in
mind we define inductively the "higher transition probabilities":

(2.2) P\»\χ) = Σ Pj(x)p(rv(j + x) ,
jei

where of course pγ\x) = p^x), the given function. It is easy to see that
these higher probabilities also satisfy condition (2.1). The functions
p\n\x) are the analogues of the terms of the matrix Pn for a Markov
chain with transition matrix P; the theorems we shall give generalize
the convergence properties of the matrices Pn.

We shall first impose a positivity condition on the transition proba-
bilities; specifically we assume that for some state j0, some positive
integer nQ, and some 8 > 0,

(2.3) p(y(x) > δ for every x .

We also need to make precise the "slight" dependence of these proba-
bilities on the remote past; indeed, this is the crux of the whole theory.
Define

(2.4) em = sup \p,{x + x') - pt(x + x")\

where the sup is taken over all states i, all sequences xf and x", and
all sequences x which contain the state j0 at least m times. We shall
use the postulate

(2.5) Σ em < c* .
m = 0

(In [3], εm is defined in the same way except that the sup is taken over
all x of length at least m. Since this results in larger ε'msf and since
it is also assumed there that Σ εm < °° > our hypotheses are strictly
weaker.) Throughout this section, (2.3) and (2.5) will be assumed.

LEMMA 2.1.

(2.6) lim [sup \pT\x + x') ~ p\n)(x + x")I] = 0 ,
ra~>oo

where the sup is the same as in (2.4) (i.e., x contains j0 at least m
times); the convergence is uniform in n.
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Proof. We define quantites εj^) by using p[k) instead of pi in (2.4);
then of course ε^} = εm, and the conclusion of the lemma is equivalent
to ε(m} -> 0 uniformly in k as m -• oo. Now

- I Σ {v?-ι)U + x + χ')Pj(χ + O - v?~ι)U + χ + χ")vj(χ + χn)} I

g Σ ί>Λ& + O l p r υ 0 * + ̂  + O - v?-λ)U + χ + x")I

+ Σ l2>j(a? + *') - Pj(x + a;")lPί*""(i + » + «")
j

Suppose that x contains i 0 m times. Then the second term of the above
estimate is less than Nεm. The absolute value in the first term is less
than ε^~υ, but if j — jQ this can be improved to ε^;^. Taking account
of (2.3) and assuming that nQ = 1, we obtain the estimate

(2.7) ε<ϊ> £ Nem + Se\^ + (1 - 8)ε\^ .

(In case nQ > 1, the same idea can be carried out; the details are more
cumbersome and will not be given.)

Now (2.7) can be iterated to obtain an estimate of ε^} in terms of
εm. After some computation the result is

If the series are extended to infinity, the inequality remains true; call-
ing these (infinite) series Ao, A19 , A^ we have

Σ ί

But it can be shown without much difficulty that

Λ + 1 - A, = (1 - S)Aι+ι ,

or Aι+1 = Λj/δ. Since Ao — δ"1 we obtain Aι = δ~^+1), and hence

(2.8) εϊ'^δ-^Σs^.
i-0

Recalling hypothesis (2.5), the uniform convergence of ε^} follows from
(2.8).

LEMMA 2.2.

(2.9) lim \p\n)(x') - p\n)(x")\ = 0
n-><χ>

and the convergence is uniform in x' and x".
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Proof. For clarity we shall use probabilistic arguments, although a
purely analytic rephrasing is not hard. Consider two stochastic processes
operating independently with transition probabilities Pi(x), one with the
sequence xr for its past history up to time 0 and the other with x".
In view of Lemma 2.1, for any ε > 0 there is an m such that if the
two processes have occupied the same states for a period which includes
j0 at least m times and ends sometime before time n, then their proba-
bilities of being in state i at time n differ by at most ε/2. But it fol-
lows from condition (2.3) that with probability one, there will sometime
be a period of length m during which both processes remain in state j 0 .
We can take n large enough so that this simultaneous "run" of state
j0 will occur before time n with probability not less than 1 — ε/2. For
this and all greater values of n, therefore, the two processes have proba-
bilities of occupying state i at time n which differ by at most ε, and
this proves (2.9). It is also easy to see from (2.3) and Lemma 2.1 that
n can be chosen uniformly in x' and cc".

With this much preparation we shall now prove the first theorem:

THEOREM 2.1. The quantities

(2.10) ]impln)(x) = πx
W->oo

exist, are independent of x, and satisfy X πt — 1; the convergence is
1

uniform in x.

Proof. Applying (2.2) repeatedly, we have

pin+m)(x)

= Σ Pim_λ{x)pim_2{im-i + x) pφi + + ίm-i + x)pϊn)(xm + x)
xm

where xm — ί0, ily , ΐm_1# Therefore

|p(/Λ+m)(x) - p(

i

n)(x)\

^ Σ P i m J % ) Pi0(iι + + i m - i + x ) \ P l n ) ( x m + x ) - P(il)(x)\
xm

and by Lemma 2.2, for any ε there is an n such that each term within
absolute value signs on the right is less than ε. Since the weights
Pi _(#)••• PίQ(h + + im-i + χ) sum to one, we have

\ p { n + m \ x ) - p T \ x ) \ < e ,

and so p^Xx) has a (uniform in x) limit nt. Since there are a finite
number of states,

Σ τrt = Σ lim P^ix) = lim Σ p[n\x) = 1 ,
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and th is completes t h e proof.
N e x t we shall define joint probabilities. If xm is i0, ί19 •• ,ΐm_1, let

(2.11) PxJx') = p<£(χ')

This is, of course, the probabilitity of executing the sequence of states
xm starting with past history x\ We can define also the higher joint
probabilities:

(2.12) pWx') = Σ Vjix'Wr'XJ + %') .
m j e I m

Analogues of Lemmas 2.1 and 2.2 can be proved for these quantities by
the same arguments used already; in this way it is not difficult to prove

THEOREM 2.2. The quantities

(2.13) lim p™(x') = πXm

exist, are independent of xf, and satisfy Σ πχ ~ 1/ the convergence

is uniform in xf.

REMARK. These two theorems imply the existence of a stationary
stochastic process with the Pi(x) for transition probabilities. The idea
is that the quantities πx can be used to define a probability measure
on the "cylinder sets'' in the space of infinite sequences of members
of I, and this measure can then be extended. This stationary process
need not concern us further here.

Finally we will prove convergence theorems for certain "moments"
which are useful in studying experimental data. The idea is that if we
have a stochastic process with the functions pt(x) for transition proba-
bilities, the probability Pi(xm) that the state at time m is i given the
past history xm is itself a random variable, and so it makes sense to
study E(p](xm)). More formally, define

(2.14) a\(m, x) = Σ VX&m + %)PχA%)
i ί
*0' '*m-l

where px (x) is defined by (2.11). Thus a](m, x) is the same as p[m)(x).
Theorem 2.1 states that \im a}(m, x) — πt exists. We shall now prove

THEOREM 2.3. The quantities

(2.15) lim a](m,x) = a]
m->oo

exist for every positive integer v; convergence is uniform in x and the
limit is independent of x.
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Proof. We use a simple estimate to show that a\{m, x) is a Cauchy
sequence:

\a](m + k + h, x) — a\(m + k, x)\

xm + k + lι xvι + k,

^ Σ \pXχm+κ+h, + %) - v\(χm + x)\v*m+k+h(x)

+ Σ \vϊ{χ,n+, + χ ) - Pi(χn + χ)\px (x)
xm + k

+ I Σ Pii^m + %)p*m+κ+h(
χ) ~ Σ P)(χm + χ)pXmΛ.t(χ)\.

xm + k+h xm + k

If m is chosen large enough, the first two terms will be arbitrarily
small; this involves nothing more than the conditions (resulting from
(2.3) and (2.5)) that εm -> 0, and that a long sequence x contains j0 many
times with high probability. The last term may be rewritten by carry-
ing out the summation over all the indices except those in xm; this yields

I Σ vϊ(χm + χ)(pίk

m

+h' (χ) ~ * W ) I ^ Σ I P%h)(x) - P(^(χ) I
xm xm

which is small for all h (and for all x) if k is large enough, by Theorem
2.2. Thus if n — m + k, \oc\(n + h, x) — al{n, x)\ is small for all h, and
this proves that the limit (2.15) must exist; the limit is uniform in x
since oc\{m, x) is uniformly Cauchy. Another estimate along much the
same line can be made to show that for any ε > 0,

\a\(m + k, x) — a\{m + k, x')\ <; ε

provided m and k are large. Since the limit of a\{m + k, x) exists as
m + k -> co, we can conclude that the limit is the same for all x.

It is also desirable to consider some additional "cross" moments
involving pt(xm) for several states at once; accordingly we define

(2.16) α ^ ^ίm, x) = Σ p]\(xm + χ)p)Kχ

m + a?) . . . pζ(xm + x)pxjx) .
xm

The following theorem is then a generalization of Theorem 2.3, which

treats the case k — 1:

THEOREM 2.4. The quantities

(2.17) lim ajKY.)*(m, x) = a)1"?*
k

exist uniformly in x for all non-negative integers vx vk and all
ji 3k e /, and the limits are independent of x.

The argument used in proving Theorem 2.3 works in this case also
with only trivial changes, and need not be repeated. Finally we remark
that moments involving several values of n can be considered, and it
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can be shown that their limits exist also. This provides a generaliza-
tion of Theorem 2.2.

3* Definition of linear learning models. The models we consider
apply to an experimental situation which consists of a sequence of trials.
On each trial the subject of the experiment makes a response, which is
followed by a reinforcing event. Thus an experiment may be represented
by a sequence (Alf Elf A2, E2, An, En, •) of random variables, where
the choice of letters follows conventions established in the literature:
the value of the random variable An is a number j representing the
actual response on trial n, and the value of En is a number k represent-
ing the reinforcing event on trial n. The relevant data on each trial
may then be represented by an ordered pair (j, k) of integers with
1 <Z j <£ r, and 0 <^ k <L t, that is, we envisage in general r responses
and t + 1 reinforcing events. Any sequence of these pairs of integers
is a sequence of values of the random variables and thus represents a
possible experimental outcome. The general aim of the theory is to
predict the probability distribution of the response random variable when
a particular distribution, or class of distributions, is imposed on the re-
inforcement random variable.

In dealing with the general linear model with r responses and
t + 1 reinforcing events we are following the formulation in Chapter 1
of Bush and Mosteller [2], although our notation is somewhat different,
being closer to Estes [4] and Estes and Suppes [6].

The theory is formulated for the probability of a response on trial
n + 1 given the entire preceding sequence of responses and reinforce-
ments. For this preceding sequence we use the notation xn. Thus

/γ ( JΛ /) JT n » Ί-f O \
"n — X^nf Jn> "ΊΛ-U J n-u > %> J ί)

(It is convenient to write these sequences in this order, but note that
the numbering here is from past to present, not the reverse as in §2.)
Our single axiom is the following linearity assumption:

Axiom L. If En = k and P(xn) > 0 then

(3.1) P(An+1 = j\xn) = (1 - θk)P(An = j\xn^) + θkXjk ,

where 0 ^ θkJ XJk ^ 1 and Σ Xjk — 1.

We obtain the linear model studied intensitively in [6] by setting:

9k = θ ΐor k Φ 0

9k = 0 for k = 0

(3.2) XJJ = 1

λjfc = 0 for j φ k
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A linear model satisfying (3.2) we shall term an Estes Model, and for
such models (3.1) may be replaced by the simpler condition:

(3.3)

Axiom L satisfies the combining classes condition of Bush and
Hosteller. Upon replacing θ by 1 — a in (3.1) essentially their general
formulation of the linear model is obtained, although they do not ex-
plicitly indicate dependence on the sequence xn.

We also define here certain moments which are of experimental
interest and whose asymptotic properties we investigate subsequently.
The moments a)>n of the response probabilities at trial n are:

(3.4) a\n = Σ PV(An = j I Xn-i)P(Xn-i) .

And if the appropriate limits exist, we define

(3.5) a) = lim a\n .

The moments (3.4) are formed in an unsymmetrical way; however,
they enter in a natural way in the expression of quantities which are
easily observed experimentally—for instance, the joint probability
P(An+1 — j , An — j). (For other examples, see [6].)

We are also interested in studying extensions of the linear model
to multiperson situations. We may suppose that we have s subjects in
a situation such that the probability of a particular reinforcing event for
any one subject will depend in general on preceding responses and re-
inforcements of the other s — 1 subjects as well as on his own prior
responses and reinforcements. The data on each trial may then be re-
presented by an ordered 2s-tuple (jlf k19 , j 8 , ks) of integers with
1 <: j \ <£ rt9 0 <; kt ^ ti9 for ί — 1, , s, and any sequence of such tuples
represents a possible experimental outcome. Let A^ and E%} be the
response and reinforcement random variables for the ith subject on trial
n. We may then generalize Axiom L to:

= k and P(xn) > 0 thenAxiom

(3.6)

where 0 S

M.

P(A

For

nil = il*») =

= 1 and

( i -

V

if E

- θ'f)

*% =

n

Pi

1.

Experimental tests of Axiom M for two-person situations are reported
in Estes [5] and in Atkinson and Suppes [1]. Let x(JU be just the
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sequence of first n — 1 responses and reinforcements of subject ί. It is
a consequence1 of Axiom M that

i W = j\x^) = P(A<p = j\xn.λ) ,

and it is in terms of α#2i that we define moments a^Un exactly ana-
logous to (3.4). We shall also be interested in the joint moments

(3.7) 7)v... j s , n = Σ PW = 3i, , W - 3,\Xn-l)P(Xn-l) ,

and their asymptotes Ύĵ . . j if they exist. To work with these
latter moments in terms of Axiom M we need the additional reasonable
assumption that when all the n — 1 preceding responses and reinforce-
ments are given, the s responses on trial n are statistically independent:

Axiom I. If P{xn--ΐ) > 0 then

P(A™ = j \ , , A^ = j8\Xn-i) = Π P(AIP - jΛxn-d .
i = ί

The experimental restriction implied by Axiom / has been satisfied in
the multiperson studies employing the linear model.

4. Asymptotic theorems for learning models. After dealing with
some matters of notation, we state general theorems on the existence
of asymptotic moments. The hypotheses of the theorems give some
broad conditions which guarantee ergodic behavior. We begin with the
one-person models satisfying Axiom L.

In this section it will be convenient to use some of the notation of
§2. Thus we may write P(An = j\xm + x') m place of P(An = j\xn-Ύ)
to indicate we are interested in the last m terms of xn-λ. The "sum"
xm + xf is just the combined sequence xn-1. We reserve the subscript
m for counting back m trials from a given trial n.

To clarify the general theorem it is desirable to define in an exact
way the notion of the conditional probability of a reinforcing event de-
pending on only a finite number m of past trial outcomes and inde-
pendent of the trial number.

DEFINITION. A linear model has a reinforcement schedule with past
dependence of length m if, and only if, for all fc, n and nf with n, nf > m
and all xm, xf and x"

(4.1) P(En - k\xm + xf) = P(Enf - k\xm + x") .

(It is understood that xm includes the response AjtΛ which precedes EktΛ

on trial n.) It is to be noticed that the use of n on one side and nf on
the other side of (4.1) yields independence of trial number. The term

Proof of this fact is analogous to that of Theorem 4.8 of [6].
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reinforcement schedule has been used because of its frequent occurrence
with approximately this meaning in the experimental literature. For the
conditional probabilities of (4.1) we shall use the notation

(4.2) πkίXm

We may now state the first general theorem.

THEOREM 4.1. Let Ss? be a linear model such that
(i) J^ has a reinforcement schedule ivith past dependence of

length m*,
(ii) there is an integer fc* such that
(a) Θ»ΦO
(b) there is a δ* and an m0 such that for all sequences x and all

integers n

Then the asymptotic moments a) of ^ζf all exist and are independent
of the initial distribution of responses.

Proof. The central task is to characterize J5f as a chain of infinite
order and show that satisfaction of the hypotheses of the theorem im-
plies satisfaction of conditions (2.3) and (2.5). With this accomplished
the asymptotic theorems of §2 may be applied to J2f It is most con-
venient to take as states of the chain the ordered pairs (j, k), where j
is the response on trial n, say, and k is the reinforcement on the pre-
ceding trial. Consider now the reinforcement fc* of the hypothesis of
the theorem. Let j * be a response such that λ^* Φ 0. (There is at
least one such j * since Σ Xjk = 1; in the Estes model j * = &*.) With

the pair (i*, fe*) as the state j0 of the infinite order chain, we shall
establish (2.3) and (2.5).

To verify (2.3), we use (ii)b of the hypothesis and the following
equalities and inequalities, which hold for all x and n:

mo+l = J i -PJn+md ~ *$ \%n)

mo+i — J \^n + mQ ~ ^ > %mQ-l "f" ^n)

• P(En+mo\xmQ^ + xn)P(xmQ-i\xn) .

Applying Axiom, L, the right-hand side becomes:

= Σ [(1 ~ θ

mo = fc*|^0-i + Xn)

Σ

by
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To establish (2.5), consider the following equalities and inequalities:

(4.3) \P(Anf+1 = j , E n t = k\x + %') - P(AnfM1 - j , Enfr^k\x + x")\

= πkίXJP(Anf+1 = j \ E n , = k,x + x ' ) - P{Ann+ι = j \ E n n = fc, x + x " ) \ ,

where xm* means the last m* terms of x, and where the sequence x
contains at least m occurrences of fc*, with m > m*. The equality
follows from (i) of the hypothesis, for by virtue of (i)

π f c , v = P ( E n t = k \ x + x') = P{Enn = k \ x + x") .

Applying Axiom L once to the right-hand side of (4.3) we get, ignoring
π *>*n*

:

\ P ( A n f + ί ^ j \ E n f ^ k y x + x') - P ( A n n + 1 = j \ E n n ^ k , x + x")\

- ( 1 - θ Λ ) \ P ( A n , = j \ x + x') - P { A n t t - j \ x + x")\ .

We do not know that θk Φ 0, but as we apply Axiom L repeatedly, we
obtain the factor (1 — θ^) at least m times, so that

(4.4) | P ( A n , + 1 - i , Ent - k\x + x') ~ P(Anfr+1 = j , Enn = k\x + x")\

nf-h = j \ x ' ) - P(An,,-Λ\x")\ ,

where h is the length of x\ The difference term on the right of this
inequality is not more than 1, so that from (4.4) we obtain the estimate
for m > m*

c < (I _ β \m
^m = V-1- uk*) J

whence

Σ ε m < ° ° yΣ

which is (2.5).
On the basis of (2.3) and (2.5) we know from Theorem 2.4 that the

asymptotic cross-moments of ^f exist and are independent of the initial
distribution of responses. But

P(An = iK_i) = Σ P(An = j , En.x = k\xn^) ,

and so the moments a)tΛ can be expressed as sums of the cross-moments
for the infinite order chain =Sf which insures the existence of the limit-
ting moments (3.5) and that they do not depend upon initial conditions.

There are several remarks to be made about the theorem just

2 If all θfc Φ 0, the original condition given in [3] would be satisfied; our weaker con-
dition (2.5) allows inclusion of cases where some of the 6% are 0 (i.e. where there can be
trials without a reinforcement).
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proved. First, we observe that a simple sufficient (but not necessary) con-
dition for (ii)b is

(4.5) min π^tX „, Φ 0 .

The interpretation of (4.5) is that the reinforcing event fc* has positive
probability on every trial no matter what sequence xm* of responses and
reinforcements preceded. A number of interesting experimental cases
of the linear model can be described in terms of (4.5), (i) and (ii)a of
Theorem 4.1.

I. Contingent case with lag v. In the Estes model let P(En =
k\An_υ = j , x) — πkJ(v), for all x such that P(An-υ = j , x) > 0. To satisfy
(4.5), we need only that for some k, τrjk(v) Φ 0 for all j . Experimental
data for v = 0, 1, 2 are given in Estes [5].

II. Double contingent case. Let

P(En = k\An = j , Aw_x = j ' , x) = πkJjt ,

for all x such that P(An = j , An-λ — j ' , x) > 0 .

Then (i) of Theorem (4.1) is immediately satisfied, and for (ii)a and
(4.5) we need a k such that θk Φ 0 and for all j and j ' , πkιJj, Φ 0.

An interesting fact about (I) and (II) is that although they are
simple to test experimentally and their asymptotic response moments
exist on the basis of Theorem 4.1, there is no known constructive method
for computing the actual asymptotes. (The Estes [5] test of (I) excludes
non-reinforced trials which cause the computational difficulties.) It may
also be noted that the convergence theorems in Karlin [8] do not in
general apply to (II), and apply to (I) only if v = 0.

On the basis of the proof of Theorem 4.1 we may, by virtue of
Theorem 2.2, conclude that the asymptotic joint probabilities of successive
responses also exist:

COROLLARY 1. If the hypothesis of Theorem 4.1 is satisfied, then
for every m the limit as n-+ co of

exists.
We may regard the quantities P(An = j\xn^)9 for 1 ^ j ^ r as a

random probability vector with an arbitrary joint distribution Fλ on trial
1, and distribution Fn on trial n. The following corollary is a consequence
of the existence of the moments a) independent of the initial response
probabilities.



752 JOHN LAMPERTI AND PATRICK SUPPES

COROLLARY 2. // the hypothesis of Theorem 4.1 is satisfied, then
there is a unique asymptotic distribution F^, independent of F^ to which
the distributions Fn converge.

For the multiperson situation characterized by Axioms I and M, we
have a theorem analogous to Theorem 4.1. For use in the hypothesis
of this theorem we define the notion of reinforcement schedule with
past dependence of length m, exactly as we did in (4.1), namely, we
have such a schedule if for all k, 1 <̂  i <; s, all n and nf with n, n' > m
and all xm, xr and x"

C1) —

k«\ , E(

n

8) = fcco \Xm + a ̂ ) .

THEOREM 4.2. Lei ^/^ 6β an s-person linear model such that
(i) ^// has a reinforcement schedule with past dependence of

length m*,
(ii) there are integers kcί)\ for 1 ^ i ^ s, sπc/̂  ί/ιαί

(a) ^{,̂ 0,
(b) ί/̂ ere is a δ* and an m0 ŝ c/̂  ίfeaί /or aίi sequences x and

all integers n

Ẑ (.s) _ MS)*\r \ > ^ * \ A

fcβ asymptotic moments 7V

(1), (2),.. , a) °/ - ^ a ^ βxΐsί and are

independent of the initial distribution of responses.

Proof. The states of the chain are now defined as 2s-tuples
(i(1\ •> i ( s \ &(1\ •• ,fc(s)), where i ( υ is the response made by the ith
subject and &(i) is the reinforcement for that subject on the preceding
trial. Using the reinforcements k(l)* of the hypothesis, let j(i)* be such
that λ $ ) V 0 * Φ 0. We take (i(1)*, , j ( s ) * , k^\ , /b(s)*) as the state j0

for which we establish (2.3) and (2.5). To simplify notation, it is con-
venient to define:

Pn+iti, k\x) =

Pn+ί(Jω\k, x) -

Moreover, we omit the superscript notation from θ and λ.
To verify (2.3) we proceed exactly as in the proof of Theorem 4.1,

applying now Axioms I and M instead of L, and we obtain that

P» + ro0+iO\ k\Xn) ^ Π^ j f c ( 0 *λ . ω * f c C ί )*δ* .
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For (2.5), we first observe that by virtue of (i) of the hypothesis
and Axiom I

\Pn>+iUfk\x + xf) - Pn»+i(j, k\x + x")\

= πk,JU VwΛPΛk, x + x')- Π Pn»+1U«Άlc, x + x")\ .
ί-1 i = l

We notice next that the right-hand side is

k, x + x')\Πpn,+1(j(i> \k, x + x')

+ Π pn,,+1(3χi) \k, x + x")\Pn'+ιU(1) I ft, * + x')-Pn-+ι(J<Ό\k, x + x")\ •
1 = 2

Continuing this same development, we obtain:

^ Σ l2>n'+i(i(°|fc, x + χf) - 2v<+i(i(X)|fc, x + χ")\
ί

And by the line of reasoning used in the proof of Theorem 4.1, if the
sequence x contains state (i (1)*, , fc(s)+) at least m times the last
quantity is

s Σ (i - ekii>r.

Provided m > m* this inequality yields an estimate of εm from which
we conclude that (2.5) holds. The existence of the asymptotic moments
then follows from the theory of §2 as in the case of Theorem 4.1. Q.E.D.

A pair of corollaries follow from the theorem just proved which are
exactly like the two given after Theorem 4.1.

Finally, we want to remark that Axiom L involves linear functions
which are distance diminishing, i.e., have slope less than one. The
asymptotic results of this section apply to many learning models in
which these linear functions are replaced by non-linear functions having
this property.
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