Pacific Journal of Mathematics

MULTIPLICATION FORMULAE FOR THE E-FUNCTIONS REGARDED AS FUNCTIONS OF THEIR PARAMETERS

T. M. MACROBERT

Vol. 9, No. 3 July 1959

MULTIPLICATION FORMULAE FOR THE E-FUNCTIONS REGARDED AS FUNCTIONS OF THEIR PARAMETERS

T. M. MACROBERT

1. Introduction. The formulae to be proved are

$$\begin{split} \sum_{i,-i} \frac{1}{i} E(p; m\alpha_{r}; q; m\rho_{s}; ze^{i\pi}) \\ &= (2\pi)^{-\frac{1}{2}(m-1)(p-q-1)} m^{m(\Sigma\alpha_{r}-\Sigma\rho_{s})-\frac{1}{2}(p-q-1)} \\ &\times \sum_{i,-i} \frac{1}{i} E\left\{\begin{matrix} \alpha_{1}, \alpha_{1} + \frac{1}{m}, \cdots, \alpha_{1} + \frac{m-1}{m}, \cdots, \alpha_{p} + \frac{m-1}{m} : \\ \frac{1}{m}, \frac{2}{m}, \cdots, \frac{m-1}{m}, \rho_{1}, \cdots, \rho_{q} + \frac{m-1}{m} : \end{matrix}\right. \\ &\left(\frac{z}{m^{p-q-1}}\right)^{m} e^{i\pi} \right\}, \end{split}$$

where m is a positive integer, p > q + 1, and $|amp\ z| < 1/2(p - q - 1)\pi$. If $p \le q + 1$, both sides vanish identically.

For all values of p and q

$$\begin{split} E(p; \, m\alpha_r; \, q; \, m\rho_s; \, ze^{\pm i\pi}) \\ &= (2\pi)^{-\frac{1}{2}(m-1)(p-q-1)} m^{m(\Sigma\alpha_r - \Sigma\rho_s) - \frac{1}{2}(p-q+1)} \end{split}$$

$$(2) \times \sum_{n=0}^{m-1} \left(\frac{m^{p-q-1}}{z}\right)^n E \begin{cases} \alpha_1 + \frac{n}{m}, \cdots, \alpha_1 + \frac{n+m-1}{m}, \cdots, \alpha_p + \frac{n+m-1}{m} : \\ \frac{n+1}{m}, \frac{n+2}{m}, \cdots * \cdots, \frac{n+m}{m}, \rho_1 + \frac{n}{m}, \cdots, \end{cases}$$

$$ho_q + rac{n+m-1}{m} : \left(rac{z}{m^{p-q-1}}
ight)^m e^{\pm i\pi}
ight)$$
 ,

the asterisk indicating that the parameter m/m is omitted. The proof of (1) is based on the formula ([1], p. 374)

(3)
$$E(p; \alpha_r; q; \rho_s; z) = \frac{1}{2\pi i} \int \frac{\Gamma(\zeta) II \Gamma(\alpha_r - \zeta)}{II \Gamma(\rho_s - \zeta)} z^{\zeta} d\zeta ,$$

where the integral is taken up the η -axis, with loops, if necessary, to ensure that the pole at the origin lies to the left and the poles at Received January 7, 1959.

 $\alpha_1, \alpha_2, \dots, \alpha_p$ to the right of the contour. Zero and negative integral values of the α 's and ρ 's are excluded, and the α 's must not differ by integral values. The contour must be modified if p < q + 1; and if p = q + 1, |z| < 1; but we are here concerned only with the case p > q + 1. Then z must satisfy the condition $|amp \ z| < 1/2(p - q + 1)\pi$.

From (3) it follows that, if p > q + 1, $|amp z| < 1/2(p - q - 1)\pi$,

$$(4) \qquad \sum_{i,-1} \frac{1}{i} E(p; \alpha_r; q; \rho_s; z e^{i\pi}) = \frac{1}{i} \int \frac{HI'(\alpha_r - \xi)}{I'(1 - \xi)HI'(\rho_s - \xi)} z^{\xi} d\xi \ .$$

For, on substituting on the left from (3), a factor $(e^{i\pi\zeta} - e^{-i\pi\zeta})$ appears in the integral, and

$$\Gamma(\zeta) \sin \pi \zeta = \pi/\Gamma(1-\zeta)$$
.

The three following formulae ([1], pp. 154, 406, 407) are also required.

If m is a positive integer,

(5)
$$\Gamma(mz) = (2\pi)^{\frac{1}{2} - \frac{1}{2}m} m^{mz - \frac{1}{2}} \Gamma(z) \Gamma\left(z + \frac{1}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right);$$

(6)
$$\int_{0}^{\infty} e^{-\lambda} \lambda^{k-1} E(p; \alpha_{r}; q; \rho_{s}; z/\lambda^{m}) d\lambda = (2\pi)^{\frac{1}{2} - \frac{1}{2}m} m^{k - \frac{1}{2}} E(p + m; \alpha_{r}; q; \rho_{s}; z/m^{m}),$$

where R(k) > 0, $\alpha_{p+1+\nu} = (k+\nu)/m$, $\nu = 0, 1, 2, \dots, m-1$;

(7)
$$\begin{split} \frac{1}{2\pi i} \int & e^{\xi} \zeta^{-\rho} E(p; \alpha_r; q; \rho_s; \zeta^m z) d\zeta \\ &= (2\pi)^{\frac{1}{2}m - \frac{1}{2}} m^{\frac{1}{2} - \rho} E(p; \alpha_r; q + m; \rho_s; zm^m) \;, \end{split}$$

where the contour of integration starts from $-\infty$ on the ξ -axis, passes round the origin in the positive direction, and ends at $-\infty$ on the ξ -axis, amp ξ being $-\pi$ initially, and $\rho_{q+1+\nu} = (\rho + \nu)/m$, $\nu = 0, 1, 2, \dots, m-1$.

2. Proofs of the formulae. On applying (4) on the left of (1) and replacing ζ by $m\zeta$ the left hand side becomes

$$\frac{m}{i}\int \frac{\pi \Gamma(m\alpha_r - m\zeta)}{\Gamma(1 - m\zeta)\pi \Gamma(m\rho_s - m\zeta)} z^{m\zeta} d\zeta$$
.

Here apply (5) and get

$$(2\pi)^{-\frac{1}{2}(m-1)(p-q-1)} m^{m(\sum \alpha_r - \sum \rho_s) - \frac{1}{2}(p-q-1)}$$

$$\begin{split} \times \frac{1}{i} \int & \frac{ II \left\{ \Gamma(\alpha_r - \xi) \Gamma\left(\alpha_r + \frac{1}{m} - \xi\right) \cdots \Gamma\left(\alpha_r + \frac{m-1}{m} - \xi\right) \right\} }{ \Gamma(1 - \xi) \Gamma\left(\frac{1}{m} - \xi\right) \cdots \Gamma\left(\frac{m-1}{m} - \xi\right) II \left\{ \Gamma(\rho_s - \xi) \cdots \Gamma\left(\rho_s + \frac{m-1}{m} - \xi\right) \right\} } \\ & \times \left(\frac{z}{m^{p-q-1}} \right\}^{m\xi} d\xi \ , \end{split}$$

and from (4), this is equal to the right hand side of (1). Formula (2) can be obtained by showing that

$$egin{aligned} E(::e^{\pm i\pi}z) &= e^{1/z} \ &= \sum\limits_{n=0}^{m-1} rac{(1/z)^n}{n\,!} Figg\{:rac{n+1}{m}, \cdots * \cdots, rac{n+m}{m}; (mz)^{-m}igg\} \ &= (2\pi)^{rac{1}{2}m-rac{1}{2}} m^{-rac{1}{2}} \sum\limits_{n=0}^{m-1} \left(rac{1}{mz}
ight)^n Eigg\{:rac{n+1}{m}, \cdots * \cdots, rac{n+m}{m}: e^{\pm i\pi} (mz)^migg\} \;, \end{aligned}$$

and then generalizing by employing (6) and (7).

Note 1. Ragab's formula [2]

(8)
$$\sum_{i,-i} \frac{1}{i} \int_{0}^{\infty} e^{-pt} E\left(\alpha, \alpha + \frac{1}{m}, \dots, \alpha + \frac{m-1}{m} : : e^{i\pi} z m^{-m}/t\right) dt$$

$$= (2\pi)^{\frac{1}{2} + \frac{1}{2}m} m^{-m\alpha - \frac{1}{2}} p^{\alpha - 1} z^{\alpha} \exp(-p^{1/m} z^{1/m}) ,$$

where m is a positive integer greater than 1, p is positive, $|\text{amp }z| < 1/2(m-1)\pi$, can be derived by substituting on the left from (4), changing the order of integration, evaluating the inner integral, applying (5), replacing ζ by $\alpha - \zeta/m$, and applying (3).

Note 2. It has been pointed out by a referee that there seems to be some connection between the formulae of this paper and certain formulae of Meijer's for the *G*-function which are reproduced on pages 209, 210 of the first volume of Higher Transcendental Functions [McGraw Hill Book Co., 1953].

REFERENCES

- 1. T. M. MacRobert, Functions, of a complex variable (4th edition, London, 1954).
- 2. F. M. Ragab, *The inverse Laplace transform of an exponential function*, New York University, Institute of Mathematical Sciences, Astia Document No. AD 133670.

THE UNIVERSITY GLASGOW

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG Stanford University Stanford, California

R. A. BEAUMONT University of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH C. E. BURGESS E. HEWITT

A. HORN

V. GANAPATHY IYER R. D. JAMES

M. S. KNEBELMAN

I. NIVEN T. G. OSTROM E. G. STRAUS G. SZEKERES

L. NACHBIN

H. L. ROYDEN M. M. SCHIFFER F. WOLF

K. YOSIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 9, No. 3

July, 1959

Errett Albert Bishop, A minimal boundary for function algebras	629			
John W. Brace, The topology of almost uniform convergence	643			
Cecil Edmund Burgess, Chainable continua and indecomposability	653			
L. Carlitz, Multiplication formulas for products of Bernoulli and Euler				
polynomials	661			
Eckford Cohen, A class of residue systems (mod r) and related arithmetical				
functions. II. Higher dimensional analogues	667			
Shaul Foguel, Boolean algebras of projections of finite multiplicity				
Richard Robinson Goldberg, Averages of Fourier coefficients	695			
Seymour Goldberg, Ranges and inverses of perturbed linear operators	701			
Philip Hartman, On functions representable as a difference of convex functions	707			
Milton Vernon Johns, Jr. and Ronald Pyke, On conditional expectation and				
quasi-rings	715			
Robert Jacob Koch, Arcs in partially ordered spaces	723			
Gregers Louis Krabbe, A space of multipliers of type $L^p(-\infty, \infty)$	729			
John W. Lamperti and Patrick Colonel Suppes, Chains of infinite order and their				
application to learning theory	739			
Edith Hirsch Luchins, On radicals and continuity of homomorphisms into Banach				
algebras	755			
T. M. MacRobert, Multiplication formulae for the E-functions regarded as				
functions of their parameters	759			
Michael Bahir Maschler, Classes of minimal and representative domains and their				
kernel functions	763			
William Schumacher Massey, On the imbeddability of the real projective spaces in				
Euclidean space	783			
Thomas Wilson Mullikin, Semi-groups of class (C_0) in L_p determined by parabolic				
differential equations	791			
Steven Orey, Recurrent Markov chains	805			
Ernest Tilden Parker, On quadruply transitive groups	829			
Calvin R. Putnam, On Toeplitz matrices, absolute continuity, and unitary				
equivalence	837			
Helmut Heinrich Schaefer, On nonlinear positive operators	847			
Robert Seall and Marion Wetzel, Some connections between continued fractions				
and convex sets	861			
Robert Steinberg, Variations on a theme of Chevalley	875			
Olga Taussky and Hans Zassenhaus, On the similarity transformation between a				
matirx and its transpose	893			
Emery Thomas, The suspension of the generalized Pontrjagin cohomology				
operations	897			
Joseph L. Ullman, On Tchebycheff polynomials	913			
Richard Steven Varga, Orderings of the successive overrelaxation scheme	925			
Orlando Eugenio Villamayor, Sr., On weak dimension of algebras	941			