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1. Introduction. One of the more frequently used iterative methods
[11, 14, 18] in numerically solving self-adjoint partial difference equa-
tions of elliptic type:
(1) Znaai,jxj:kii ai,iioy lé’bg’n,
J=1
is the Young-Frankel successive overrelaxation scheme [16, 4]. If super-

seripts denote the iteration indices, then the successive overrelaxation
scheme is defined by

t-1 n
(2) x(inﬂ) — w{j}“_‘ bi)jxg_nﬂ) ‘|“Z?”90(J") _|_ gi} + (1 _ 0))x(in) ,
~1 J=i+
where
— ;50 4, 1+ ] L
(2") bi,j: . .;gi:kz/am; 14,5570,
’ =17

The parameter w is the relaxation factor.

Since the introduction of this method, there has remained the ques-
tion of the effect of different orderings of the equations of (1) on the
rate of convergence of the overrelaxation scheme. Young [16] introduced
the concept of a consistent ordering of the unknowns for a class of
matrices satisfying his definition of property (A), and he conjectured
[17] that, with certain additional assumptions, these consistent orderings
were optimal' in the sense that, among all orderings, the consistent
orderings give the fastest convergent iterative scheme for the case of
w =1 of (2).

The problem of the relationship between orderings and rates of
convergence has been recently investigated by Heller [6], whose approach
was combinatorial. Assuming the n x n matrix A = ||a,,|| of (1) to be
multi-diagonal, Heller concentrated on the problem of finding all order-
ings whose associated Gauss-Seidel iterative method, the special case of
(2) with @ =1, had the same eigenvalues as the eigenvalues of the
Gauss-Seidel method based on the ‘‘usual ordering.’’

Our approach to the question of orderings is based on the Perron-

Received October 3, 1958. Presented to the American Mathematical Society April 18,
1958.
I For some preliminary results on this conjecture for optimum orderings, see [17].
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926 RICHARD S. VARGA

Frobenius theory of non-negative matrices.” Our main result (Theorem 4)
contains as a special case a proof of Young’s conjecture. On the
other hand, while certain orderings may produce faster convregent itera-
tive schemes than others, we prove (Theorem 5) that, for the case
w =1 of (2), different orderings have vanishingly small effect on the
rate of convergence of the Gauss-Seidel iteration method for slowly con-
vergent problems. This last result proves a conjecture by Shortley and
Weller [10, p. 338] who observed this phenomenon in the numerical
solution of the Dirichlet problem.

2. Preliminary definitions. We first define the class S of matrices.
We shall later show in § 5 that the results, based on this class of mat-
rices, hold for a large number of matrix problems (1) arising from the
numerical solution of certain partial differential equations of elliptic type.
We let B denote the square matrix of coefficients b, ; defined in (2').

DEFINITION 1. The matrix Be S if and only if B satisfies the fol-
lowing conditions:
(i) B=|b,,ll is a non-negative % xn matrix, with zero diagonal
entries, i.e., b, ;=0 for 1+ 4, and b,, =0 for all 1 < 4,7 < n.
(ii)) B is irreducible [5, p. 458], i.e., there exists no permutation
matrix 4 such that

B, B?)
0 B, ’

where B, and B, are square submatrices.
(iii) B is symmetric.
For any permutation, or ordering, ¢ of the integers 1 <1 < n, let
Ay denote the corresponding n xn permutation matrix and let B,=/1,BA;=
A4BAG', where in general A’ denotes the transpose of the matrix A.
For B e S, B, is symmetric with zero diagonal entries, so that we can
decompose B, into:

(3) By =Ly + L,

ABA- = <

where L, is a strictly lower triangular matrix.” We define
(4) Myo) = 0oL, + L, a>0.

It is clear that M,(o) is a non-negative irreducible matrix for every
o >0 and ¢. Thus, by the Perron-Frobenius theory [8, 5] of non-nega-
tive matrices, M,(o) possesses a positive simple eigenvalue, m (o), which

2 A similar approach was employed Kahan [7’] in generalizing the results of Young
[16]. Although Kahan was not directly concerned with the question of orderings, many
of his results, stated without proof in [7], are nevertheless similar.

3 An mxn matrix L = |[l;,;]| is strictly lower triangular if and only if [; ;=0 for
i<, 1=1i,j=<n.
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is greater than or equal in modulus to all other eigenvalues of My(a),
and to m,(g) can be associated an eigenvector with positive components.
It can be shown, based on further results of the Perron-Frobenius theory,
that my(o) has the following properties:

J(i) my(0) is a strictly increasing function of ¢ [3, p. 598].
((ii) my(0) is an analytic function of o, for all ¢ > 0.

(5)

Before proceeding, we briefly state some of the terminology and
conclusions of the Perron-Frobenius theory, which we shall frequently
use. If C is an arbitrary non-negative irreducible n xn matrix, we say,
following Frobenius [5], that C is primitive if the positive eigenvalue »
given by the Perron-Frobenius theory is strictly greater in modulus than
all other eigenvalues of C. If there are k(>1) eigenvalues of C with
modulus », then C is said [9] to be cyclic of index k. In particular, if
C is cyclic of index k(> 1), then [9] there exists a permutation matrix
A such that

0 0 0 C
c,0 .-« 0 0
0 C --- 0 0

( 6 ) AC A =

00 --- C,0

where the diagonal blocks of /JAC /A~ are square submatrices with zero
entries. For any matrix C, we shall let 77{C| denote the spectral radius
of C, i.e., p[C] = max |\,|, where )\, is an eigenvalue of C.

J

3. Spectral radius as a function of ordering.

LemMA 1. If BeS, then my(o) = | Blo"’hy(Ino), where hy(x) =
hy(—a) for all real «, and hy0) = 1.

Proof. For ¢ > 0, there exists an eigenvector x with positive com-
ponents such that M,(o)x = my(o)x. From definition,

—_ ro__ B 1 ] - ’ 1
My(o) = oLy + L) = a(L(,, - —(r—L"’> =oM (,,<;> .
Thus, M ’,((1I )x = %Ofi)x Since M, and M) have the same eigenvalues,
then

(7) Om(,,<—}7—> = my(7), 0 > 0.

¢ Since mgy(s) is simple root of det [My(s) — AI] =0, the analyticity of my(s) can be
proved by means of the implicit function theorem.
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If

ho(l = —m([,(O') _1/2, 0 ’
+(Ina) E] o' o >

then equation (7) shows that h,(«), a = Ino, is an even function of «.
For 0 =1, my(1) = p[B] by definition, and thus #A40) =1, which com-
pletes the proof.

From (5) and Lemma 1, it follows that h,(a) is an analytic function
of a for all real values of a.

LEMMA 2. Let A(a) = e*L + D + eI/, where L is a non-negative
strictly lower triangular matriz, and D 1s any non-negative diagonal
matrix. If L 4 L' is irreducible, and 0 < a, < «,, then plA(a)] =
1A(a)].

Proof. If C=L -+ D+ I/ =lle; ||, then by assumptions stated in
the lemma, C is non-negative and irreducible. Assume now that C is
primitive, and consider any non-zero cycle v of C of length m = 1:

V = Ci0,Cigiy ** iyt —igr where ¢, >0,5=0,---,m—1,

‘m—-1 Jrii+1
It is clear that the corresponding cycle for A(e) is t = ¢™v, where ¢ is
an integer. From the symmetry of C, there is another cycle ¢’ of A(«a)
of the form: ¢’ = e¢~%v. Since ¢ and t' are contained in the 7,-th diagonal
entry of A™(«), it follows that the trace of A™(«) is ecomposed of terms
of the form: 2v cosh(qa). Using the monotonicity of cosh(x), we obtain,

for 0 < a, £ a,,
(8) tr[A™(ay)] = tr[A™(a)]

for all m = 1. By assumption, C is primitive, which implies that A(«)
is primitive for all real a. Since the trace of a matrix is equal to the
sum of its eigenvalues, then

(9) tr[A™(@)] ~ (L A(@)])", m — oo .

Combining the results of (8) and (9), and taking mth roots, we obtain
the desired result, under the additional assumption that C is primitive.

But if C is not primitive, then C = C + BI, 8 > 0, certainly is, and
since

A[A(a) = eL + D + BI + e=*L'] = glA(a)] + /3,
the desired result again follows.

THEOREM 1. If Be S, then hy(a) is mon-decreasing for a = 0.
Moreover, for any « =+ 0,

(10) 1 £ hy(a) < cosh(«/2) .
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Proof. For ¢ > 0, consider the matrix

= MJ(O) 1 —1/2T !
(11) Pyo) = ———t = _——_{d"’L, + 07'"L}} .
T EBle* T w1 Y ’
By definition, pg[Py(0)] = hy(Ing). For any a, = a, = 0, hy(a,) = hy(a,) if
and only if f[Py(e*)] = [ Py(e™1)], and thus the first conclusion follows
from Lemma 2, with D the null matrix.
To prove the second part of the theorem, we write Py(o) in the form

(12) Py(e") = cosh(a/2) - T, + sinh(e/2) - K, ,
where

’ _ 1 . — 1 T
(127) T, = BT (Ly + Ly); K, = B (Ly — L) .

For any real a, Py(e*) is a non-negative, irreducible matrix. If x is the
eigenvector of Py(e*) with positive components corresponding to the
eigenvalue hy(a), so normalized® that (x, x) = 1, then

(Py(e”)x, x) = hy(a) = cosh(a/2) - (Tyx, x) + sinh(a/2) - (Kyx, x) .

Since K, is skew-symmetric, then h4(a) = cosh(a/2) - (Tyx, x). But, T,
is symmetric, non-negative, and irreducible, so that (Tyx, x) < p[T,] = 1.
Thus, from the first part of this theorem and Lemma 1, we have that
1 = hy(a) < cosh(a/2) for all real . Assuming o # 0, suppose that
(Tyx, x) = p[Ty] = 1. This is true only if x is also an eigenvector of
T, and thus, from (12), x is an eigenvector of K,. But since K, is a
skew-symmetric matrix, the eigenvalues of K, are pure imaginary num-
bers. By the irreducibility of B, there exists at least one positive entry
in the first row of L}, and thus the first component of K,x is a nega-
tive real number, which contradicts the fact that x is an eigenvector of
K;. Thus, for a + 0, (Tyx, x) < 1, and we have the inequality of (10),
which completes the proof.
Since h4(a) is analytic for all real «, we conclude the

COROLLARY. If BeS, then either hy(a) =1 for all real a, or hy(x)
18 strictly increasing for a = 0.

DEFINITION 2. If Be S, then ¢ is an h-consistent ordering for B if
and only if Aga) =1 for all real a. Otherwise, ¢ is a mnon-consistent
ordering for B.

We remark that the above definition of an h-consistent ordering
generalizes for the class S the definitions of a consistent ordering given

5 Here, (x, y) denotes, as usual, the scalar product of the vectors x and y. If the

n
components of x and y are wx;, ¥4, respectively, then (x, y) Eiz ;.
=1
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both by Young [16] and Arms, Gates, and Zondek [1]. To show this,
assume that Be S satisfies Young’s property (A), and that + is a con-
sistent ordering for B in the sense of Young. Then, as shown by Young
[16, p. 97], both M,(s) and ¢'*B have the same characteristic polyno-
mials, and hence the same eigenvalues. Thus, m,(0) = ¢"*f[B], from
which it follows that %,(«) = 1, proving that +r is also an h-consistent
ordering in the sense of Definition 2. That consistent orderings in the
sense of Arms, Gates, and Zondek for matrices Be S also satisfy De-
finition 2 can be proved in a similar manner.

THEOREM 2. If BeS, then there exists an h-consistent ordering ¢
for B if and only if B is cyclic of index 2.

Proof. 1If B is cyclic of index 2, then by (6) there exists an order-
ing +» and a permutation matrix 4, such that

OBI>
B, 0/’

where the diagonal blocks are square submatrices. Thus,

(18) A,BA7 =B, = (

0 B,
M) =( O),
and
oB,B, 0
Mf“(a):< 0 oBzB1>’

and thus Mi(o) = oM3(1). It follows then that m.(v) = g[Blo"’, and
h,(a) = 1, proving that - is an h-consistent ordering.

Since Be S implies that B is non-negative and irreducible, then B
is either primitive or ecyclic of index k,k > 1. Since B is moreover
symmetrie, it follows from (6) that B is either primitive or cyclic of
index 2. We shall now that if B is primitive, no ordering of B is an
h-consistent ordering. With B primitive, let ¢ be any ordering, and
consider

1 (. T

(14) Ayla) = 77-rBj-{e Ly +e*L}},a=0.

Following the notation of Lemma 2, suppose that every cycle of A,(«)
of length m has ¢ = 0, for all m = 1. This implies that every non-zero
cycle of A,(a) contains precisely the same number of terms from above
the diagonal as from below the diagonal of A,(«). Since A,(«) has zero
diagonal entries, then every non-zero cycle of Ay(«) has an even number
of terms. Thus, the greatest common divisor v of the lengths of these
non-zero cycles is evidently 2. It is known [9] that v = 2 if and only
if Ay(a) is cyclic of index 2, and, for any real «, A,(«) is cyclic of index
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2 if and only if B is cyclic of index 2. This being a contradiction to
the assumption that B is primitive, there than exists a positive integer
m,, and a positive integer g, such that the tr[Ajvu(c)] contains a term
v cosh(q,v), v > 0, while t#[A}:(0)] contains the corresponding term v. As
in the proof of Lemma 2, it follows that, for o = 0,

(15) triie)] = tr[A3e(0)] + vlcosh(qex) — 1} .
Since this particular cycle of length m, can be repeated cyclically, then
(157) trlA()] = tr[Ag"(0)] + v'[cosh(ggla) — 1].

Since B is primitive, so is Ay(a) for all real «, and from (9) and the
definition of h,(), we have

(16) hy(20) = (A ()] ~ (Er[AF()])'™, m — oo .
For a sufficiently large so that ven* > 1, we obtain from (15’) and (16)
am hy(20r) = (Ve )™ > 1,

Thus, if B is primitive, no ordering ¢ of B is an h-consistent ordering,
which completes the proof.

We finally remark that it has already been pointed out [2] that, in
general, Young’s property (A), on which Young’s definition of consistent
ordering depends, for the matrix of coefficients of (1) implies that the
matrix B of (2) is cyclic of index 2. The same is true of its general-
ization [1] to property (A7). This relationship to eyelic matrices has led
to a further generalization [15] of the Young-Frankel overrelaxation
scheme to matrices B of (2) which are cyclic of index p, p = 2.

Returning to the successive overrelaxation scheme of (2), if x™
denotes the vector with ecomponents x{™, then for B symmetric, we can
write (2) equivalently as

(18) x( D = o2 x™  f

where

(19) L= (I — oLy oL + (1 — o)},
and

19" f=wl—wL)%.

Accordingly, we make the

DeFINITION 3. &, = (I — wLy)""{wL} + (1 — w)I} is the successive
overrelaxation matriz, corresponding to the matrix B and ordering ¢.
The quantity @ is the relaxation factor.

LEMMA 3. Let BeS. If, for w >0, there exists a positive real
for which
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my(7) = (LZ)H—> )

then t is an eigenvalue of <3 .. Moreover,if 0 < w <1, pu[.<;,] is the
unique positive value of T for which

Proof. It is known® that for w >0, < v = w if and only if
(20) OL, + Lyyo = (lff‘”;l)v ,
0]

from which the first part of the lemma follows. Since L, is a strictly lower
triangular matrix, then (I — wLy)™ = I + wL, + -+ + w"'Ly~*. Clearly,
Ifor 0 < w <1, &, is a non-negative irreducible matrix.” Thus, the
argest in modulus eigenvalue of &7, 1t /7.1, is positive, and its corre-
sponding eigenvector v can be chosen to have positive components. From

Z U = (%4 Jv, we have, by (20), that ms(s) and <2j_f;_4> inter-

sect in p[.%7,]. By continuity, the result is true also for w = 1, which
completes the proof.

We remark that %{0 + @ — 1}, graphed against ¢, defines a family

of straight lines through the point (1,1). Figure 1 illustrates the second
part of Lemma 3.

(ere=)

(.1) my()

]
1
1
1
I
1
1
1

ATEAN

Figure 1

DerFINITION 4. If BeS, and 0 < ®w <1, then &[B], w) is the
g+ w— 1)
D)
For the class of matrices S, the following theorem sharpens results
due to Stein and Rosenberg [12], and Kahan [7,7'].

unique positive value of ¢ for which ¢[Blo"? =<

6 See, for instance, [16, p. 99].
7 It is, moreover, primitive.
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THEOREM 3. Let Be S, and assume 0 < w < 1. If p[B] <1, then
for ¢ a mon-consistent ordering for B,

20— o) + apB] )

2—owpB] /)’
and for ¢ an h-consistent ordering for B, E&(p[B], )= p[.<.]. If
Bl =1, then [<5.]=1. If p[B]>1, then for ¢ an mnon-consistent
ordering of B, &(p[B], w) < pl.~4; .1, and for ¢ an h-consistent ordering
for B, &p[B], w) = p[<5,.].

E(FIB), 0) < A% < (

Proof. We consider only the case when 1[B]< 1, since the other
cases follow similarly. If ¢ is an h-consistent ordering for B, then
my(0) = p[Blo"*. From Definition 4 and Lemma 3, it follows that
Ep[B], w) = y[4.,]. If ¢ is a non-consistent ordering for B, then,
from Theorem 1 and its corollary, h4(a) is strictly increasing for a = 0,
and 1 < hy(a) < cosh(a/2) for a + 0, these inequalities giving directly

— : — Ina —rp7 [0+1
1/2 1/2 . /-
(21) g[Blo"* < my(o) < p[Blo cosh(——2 ) [{[B] < 5 ), o+1.
Consider the function k,(o) defined by
- _(oto—=1
(22) ks(0) = my(o) ( ), w>0.

For & = £(p[B], w), it follows from Definition 4 and the first inequality
of (21) that k(&) > 0. On the other hand, k(1) < 0 since k(1) = p[B]—1.
Thus, since k4(o) is continuous in ¢ for all ¢ = 0, there exists a r with
E<t<1 for which ky7) =0. By Lemma 3, p[.%,] =7, so that
Ep[B], w) < p[.~;.]. Using the second inequality of (21), we have that

0 = ky(t) = my(r) — (1:'%:_1_> < ?j[B]<T‘flz‘1> _ (z‘—}—w — 1) ’

(0]

from which it follows that

21— o) + 0FIB])

T =gl < < 2 — wp|B]

which completes the proof.
The special case w =1 gives rise to inequalities like that of Stein
and Rosenberg [12]. Since &(¢[B], = 1) = t’[B], we have the

COROLLARY.® For the Gauss-Seidel method, ® = 1 of (2), if p[B] < 1,
then

8 If BeS and ji[B] <1, Young conjectured [17] that for ¢ a consistent ordering of
B, u[#¢.1] = i[£s,1] for all orderings ¢ of B. Applying the first part of this corollary,
we have a proof of this conjecture.
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FIBl = L < (512 )

equality holding i1f and only tf ¢ is an h-consistent ordering for B. If
A[B1 =1, then gl 1 = 1. If H[B] > 1, then [B] < f[-<7.], equality
holding if and only if ¢ is an h-consistent ordering for B.

We now consider the subclass of matrices Be S for which #[B] < 1.
Following Young [16], we define the quantity:

2.7 @Bl T
@ o=y =1 [ STy |

so that’ 1 < w, < 2. In Figure 1, it can be shown that @, is the unique
value of the parameter w, 0 < w < 2, for which the straight line

<E+_:;)__1> through the point (1, 1) is tangent to the curve g[Blo'’.

Thus, for 0 < w = @,, the quantity &(#[B], w) can be defined as the
largest positive value of ¢ for which

It is known [16] that if the matrix B € S satisfies Young’s property (A),
with z#[B]< 1 and ¢ a consistent ordering (in the sense of Young) for
B, then o, is the overrelaxation factor which minimizes #[.%5 ], and thus
gives the fastest convergence in (2). A similar conclusion is obtained
for the generalization of [1]. Thus, for certain matrices, w, is the
optimum overrelaxation factor.

THEOREM 4.° Let Be S, and assume p[B] < 1. Then &uB, ®) <
g, for 0 < o = @, with equality of and only if ¢ is an h-consis-
tent ordering for B. For w, < w <2, .2, = o — 1, with equality
Jor all w in this range vf and only if ¢ is an h-consistent ordering
for B.

Proof. By Theorem 3, we need only consider the case w >1. If
¢ is a non-consistent ordering for B, then A (a) > 1 for all real « = 0.
from this, it follows, as in the proof of Theorem 3, that the straight

line <—0—+%:-1> intersects my(o) in a point whose abscissa is greater

than &(¢[B], w), for all @ with 1 £ o £ ®,. Thus, by Lemma 3, .&;

“h,w

has at least one eigenvalue greater in modulus than &z[B], w), so that

9 Since B€S, B is non-negative and irreducible, which implies that z[B] > 0.
10 Without the discussion of the case of equality, this result was stated in [7], and
proved in [7’].
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EplBl, w) < gl<5 ] for 1 < w < w,. If ¢ is an h-consistent ordering for
B, it can be shown, using basically the proof of this as given originally
in [16], that the following functional relationship

(24) N+ o — 1) = o

holds, for w # 0, between the eigenvalues A of &}, and the eigenvalues
p of B. From (24), it follows easily that &(¢[B], w) = p[.«5,] for
1 < w £ w,, which completes the proof of the first part of the theorem.

For w, < w <2, we use a result of Kahan [7], which states that
for any ordering ¢ and any real value of w, ¢#[.“3,] = w| — 1|. Thus,
for the indicated range of w, [} .] = w — 1. If ¢ is an h-consistent
ordering for B, it follows, using (24), that p[. 5 .,] = w—1 for 0, <w < 2.
If ¢ is a non-consistent ordering for B, then by the first part of this
theorem, #u[.7;, 1> &(@B], w,) = w, — 1, the last equality following
from (24) and the definitions of & and w,. Thus, if ¢ is a non-consis-
tent ordering for B, then g[<5 .= w —1 for w, < w < 2, with strict
inequality for @w = w,, which completes the proof.

COROLLARY. If Be S, and p[B] < 1, then for all real w and all
orderings ¢

(25) min{min [~ I} = w, — 1,
b ®
with equality if and only if B is cyclic of index 2.

Proof. For w =0, and w > w,, p[.<,] > w, —1 for any ordering
¢, by Kahan’s result [7]. For pg[B]< 1, we have that E(¢[B], w)
is a decreasing function of w for 0 < w < w,. Since, by Theorem 2,
there exists a consistent ordering for B if and only if B is cyclic of
index 2, the result follows directly from Theorem 4.

4, Asymptotic rates of convergence. If Be S and f[B] <1, we
define, as usual [16], the rate of convergence of the iterative scheme (2) as

(26) Ry, = —lnpul<;,].

In particular, we consider the Gauss-Seidel iterative scheme, the special
case of (2) with w = 1. By the corollary to Theorem 3, in this case,

If R= — Inp[B], we have

THEOREM 5. If BeS and p[B] < 1, then for all orderings ¢
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Ryn o1 . In2—F[B])
27 1> 26t > = 4 PRETAP
7 - 2R 2 + —2inp[B]
Thus,

lim R,, _
(28) :I[B]rlfR_ =1.

Proof. The inequalities of (27) follow directly from the discussion
above. Applying L’Hospital’s rule,

lim M2 = PBY) _ g9
wlBIN ——2l’n‘ll[B]

from which (28) follows.

The above result contains as a special case a proof of a conjecture
of Shortley and Weller [10], who observed, from numerical data, that
for the numerical solution of the Dirichlet problem in a rectangle on a
fine uniform mesh, the rate of convergence of the Gauss-Seidel iterative
method is virtually independent of the order in which the points are
swept. For illustration, we suppose, following Shortley and Weller,
that we are solving numerically the Dirichlet problem in the unit square.
Assuming that there are p equal intervals of subdivision in each coordi-
nate direction, we let u, , denote numerical approximation to w(zx, y), the
analytic solution of the Dirichlet problem, where

c=",y=L,1<4,j<(p—-1).
p

KA
p ’
Making the well-known five-point approximation to Laplace’s equation

(29) mJ=ime+mﬂﬁwmﬂ+m¢mlé@j§@~D,
4

where u, ;, U, ;, U;,, and u,,, determined by the given boundary values
of the Dirichlet problem, are known, (29) is except for iteration super-
seript of the form (2) with @ = 1. The corresponding (p — 1)*x(p — 1)
matrix B,, whose entries are one-fourth or zero, is obviously contained
in S, and, as is easily shown, u[B,] = cos(7/p).

For completeness, we include also the well-known nine-point approxi-
mation to Laplace’s equation,

1
30)  wuy,; = g{qu,j F Uimn, s Ui g+ Uy g}

+ {ui—l,]+l F Uy 41 T Uiog, 5o + ui+1,j—-1}) 1=24,5=0m—-1),

3
20
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corresponding to a (p — 1) x (p — 1)* matrix B, which is also contained™
in S. It can be shown that

7B,] = ﬂs(g—@—{zx + cos(z/p)} .

The following table gives information about the quantity

1, @ — B
31 i(B]) = — 1 + 22— BD ]
(31) QD = {1 + M
po | B QB Bl | QB |
10 .951 057 .976 103 1941 747 971 595
25 .992 115 .996 073 1990 550 .995 065
50 .998 027 .999 014 .997 633 .998 818
100 .999 507 .999 753 .999 408 1999 704
TABLE 1

Thus, for either the five- or nine-point approximation, with p = 25 as
an example, there is less than one-half of one percent difference in the
rates of convergence of the Gauss-Seidel iterative scheme for all 576!
orderings of the 576 unknowns.

5. Elliptic partial difference equations. We now show how the
preceding results can be applied to the numerical solution of certain
partial differential equations of elliptic type.

Given a closed bounded region £ in Euclidean n space with interior
R and boundary /7, and given a function g(x) defined on /I, we seek a
function u(x) defined in Q which is continuous in 2, twice differentiable
in R, which satisfies

(32) 3 Ad@) 2 4 Fo = G@), v R,
and
(33) u(x) = g(x), xel .

It is assumed" that the functions F, G, A4,, ---, 4, are given functions
of x which are continuous in 2 and twice-differentiable in R, and satisfy
the conditions

(34) Ai(x) >0, F(x) £0, xeQ, 1<ksn.

After a cartesian mesh is laid over the closed region £, the above
partial differential equation and boundary conditions are approximated
[16, 14] by the following system of N linear equations

1 For p =3, the matrix B; is cyclic of index 2, while B, is primitive.

12 For the numerical solution of (32) where F,G, Ay, ---, A, are only piecewise
smooth, see for example [14].
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=

(35) a; x; =k, 1<9

A

N,

J

1t
[y

where N is the number of mesh points interior to £. If the mesh is
sufficiently fine, the discrete approximation can be derived in such a way
that the N x N matrix A = ||a, ;|| satisfies the following properties:

(36) (i) A = lla; ;|| is symmetric and irreducible.
(i) a;;,=0fori+j,1<4,<N.
(i) Sa,,=0 for all i, 1 =i = N, with strict inequality
Jj=1

for some 1.

The matrix A is thus positive definite [13]. If D is the N x N positive
diagonal matrix with entries «,;, we may write (35) in the equivalent
form:

(35) (D *AD?)D'* =x D'k

where x and k are column vectors with components «, and k;,, 1<1< N,
respectively. If D'’x =y, D '*k = g, and D' AD'? = A, (35") reduces
to

(37) Ay=g.

~ ~

Since A has unit diagonal entries, we define the matrix B as B
and (37) can be written in the form

(37) y=By+g.

Il
~
I
»

It follows from the definition of B that B is a non-negative irreducible
and symmetric N x N matrix, which has zero diagonal entries. Thus,
BeS. Since A is positive definite, so is A, and from A =1 — B, it
follows that ﬁ[ﬁ] < 1. Thus, the discrete numerical approximation to

(32)-(33) can be reduced to the form (37’) where B e S, and the results
of the preceding sections are applicable.
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