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A NOTE ON KATO’S UNIQUENESS CRITERION FOR
SCHRODINGER OPERATOR SELF-ADJOINT
EXTENSIONS

F. H. BROWNELL

1. Introduction. Kato [2] has shown local square integrability with
boundedness at o« of the potential coefficient function to be a sufficient
condition for the Schriodinger operator in L.,(R,) to have a unique self-
adjoint extension in case dimension #» = 3. His statement is for n = 3p,
thus with p factors R, but with the condition on V stated separately
for each R, factor as is natural for application to quantum mechanics ;
this in essence amounts to » = 3 from our standpoint. Using the Young-
Titechmarsh theorem on Fourier transforms, we generalize Kato’s argu-
ment to general dimension n > 1. We show the connection of the re-
sulting criterion with our earlier construction [1] of a self-adjoint
extension as the inverse of a modified Green function integral operator.
We also give a variational characterization of the spectrum here.

2. Uniqueness condition. Let V(x) be a given, real-valued, measur-
able function over x € R,, euclidean n-space. We consider the following
additional conditions upon V, using the notation (x-y)=>7_, 2y, and
x| =1V (x-x) for x and y € R,, and also denoting 7 dimensional
Lebesque measure on R, by p,.

CoNDITION I. For some b < + o let V(x) be essentially bounded
(A =lesssup| V(x)|] < + ) over {x € R,||x| > b}, and let

(1) Lo V(022 6) = I, < -
taixl <o)
for some 0 > 0 satisfying also n + p > 2.

ConpITION II. Let V(x) satisfy Condition 1 with in addition
n+ =41 1) of dimension n < 4.

Condition II is our generalization of Kato’s uniqueness criterion, our
following Theorem T. 1 in the special case n = 3 thus being due to Kato
[2]. Following Kato, we define &, C L,(R,) as the linear manifold of
Hermite functions, polynomials in the coordinates x; multiplied by
exp(—1/2| x|*). Assuming Condition II), clearly the pointwise product
Vu e L,(R,) for all w ¢ &7,. Hence

Received December 30, 1958, amalgamation with addendum May 29, 1959. This work

was supported by an Office of Naval Research Contract, and reproduction in whole or in
part by U.S. Federal agencies is permitted.

953



954 F. H. BROWNELL

(2) LH, ul(x) = — pru(x) + V(x)u(x)

with p* = 37, (0*/0x3) the Laplacian, defines H, as a linear operator in
L,(R,) with dense domain &7,. Also the easily established Green’s iden-
tity for v and w € &, shows that H, is symmetric (see [3], p. 28-41,
p. 48-50 for terminology and theorems used hereafter).

Next for u € L,(R,) we have existent (see [4]) the Fourier-
Plancherel transform % € L,(R,) defined by

(3) wy) = um(i)"“ S IR

N\ 2T
with the limit in the L,(R,) norm sense over y € R,; similarly

(4) ulx) = Hm(J—)n/szllylszv)ei(x'y)ﬂ(y)dﬂn(y) ’

N-oo\ 277

with the limit also in the L,(R,) norm sense. In terms of (3) and (4),
define 2 as the set of u € Ly(R,) such that |y |*i(y) is also in L,(R,)
over y. Define T as a linear operation in L,(R,) with domain < by
Tu = w, wy) = |y *a(y) for uw e &, w e L(R,) existing uniquely for
such wu since (3) and (4) define a unitary operator and its inverse on
L(R,).

We may now state the main theorem of this section as follows. Ac-
tually, since Condition II will be seen at the end of the next section
to imply Condition S stated there, this theorem is a consequence of
Stummel’s theorem ([5], Th 4.2), p. 171), except for an awkward but
essentially trivial change of basic domain. Also our proof is rather
different, being much closer to Kato’s original argument. See also [6].

THEOREM T.1. Let V satisfy condition II. Then the pointwise
product [Vu](x) = V(x)u(x) has Vu € Ly(R,) for w € 2, and Hu =
Tu + Vu for u € & has H to be a self-adjoint operator in LR,) with
dense domain 2. Furthermore, &, C <, H, C H, and H is the uni-
que self-adjoint extension of H,.

Here &7, € &, and hence & is dense, follows clearly from the
fact ([4], p. 81, Theorem 57) that S*(=Z,) € =,, where S denotes the
unitary operator from L,(R,) onto itself given by (4), St = u, and where
S*u = 4 in (8) represents the adjoint and inverse S*. Thus Tyu=—Vu
for w € &, has T'u = Tu for uw € &, from [S*(Tw)](y) = | y |*u(y) by
integration by parts; hence T, € 7. Thus H, C H follows from the fol-
lowing lemma (Lemma 4 of Kato [2]), which represents the heart of our
argument.
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LemMA T. 2. Let V satisfy Condition 1I. Then for we & follows
both Vu € LyR,) and the LyR,) norm inequality

(5) I Vull <al|Tull + 8|l w|]

Sor some « and B positive and finite, for which a may be chosen as
small as desired with B depending on «.

To prove this lemma, we will first establish that < < L.(R,) with
' =2(n 4+ p)/(n —4 4 p) and p > 0 given in Condition II if dimension
n >4, and that & < L.(R,) if n =1,2, or 3. For this purpose we
start, for w € <7 and arbitrary w > 0 and with p > 0 as in Condition
II, with the Schwarz-Holder estimate

(6) ], i@ e dp, )

1/p’

<[], i rate iy ]| @+ oo |
= Dulf+ o Tu e o] ar [
o (1 + @)@
= [l ulf + o[ Tu [f117C, - @)
= CopLam @[ [ @9/ | T [

where

C - oo tn—l d 1/p’
n,e T [0n50(1+t4)(n+‘))/4 t] < ‘(“ oo,

where o, = 27"*[I"(n/2)]7' is n — 1 dimensional ‘‘ area’’ measure of the
unit spherical shell in R,, where 1/p+1/p’=1 with 2=p[2(n+ p)/(n+0+4)]
and thus 1 <p=1+4/(n+p0)<2, p[p=1/(p—1)=(n+ p)/4, —np/p’ =
—4n/(n 4 p), and 4 — np/p’ = 4p/(n + p).

Now if dimension » =1, 2, or 3, then # + p = 4 in Condition II and
(6) yields for uw € <7

»

(D (esssmiu@)) < (), 1) | dew

< (o) Cudomulf + @ Tu |

using also (4) with convergence almost (¢,) everywhere for a subsequence
from L,(R,) norm convergence.

Now if dimension n > 4, then in (6) define » = 2(n + p)/(n + o + 4)=
2/p, and hence 1<r<2from 1 < p =1 + 4/(n+p)<2. Now 1/r+1/r'=1
has
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1 1 _ 2(n+p)

TG T

Hence the Young-Hausdorff-Titchmarsh theorem ([4], Theorem 74), p. 96),
generalizing with negligible changes in proof from R, to E,, using sub-
sequences convergent almost everywhere to show that the known exis-
tent L,(R,) and L.(R,) norm limits in (4) must agree, yields in (6) for
uegif n>4

®) ||, 1o |

1 n(lj2=1fr ) N ” 1r
< (o)L i@ ) |

n(l/2-1/r")
<(52)" T € o e o wmi || Tupe

Thus we see if dimension » =1, 2, or 3 that (7) with Condition II,
n + p =4, yields for w € &

(9) 1 VaulP < (5o ) oMl || Tu |+ @ [l + 4[| w |}

over all w > 0. Thus, since V' ][aP+ |[b<|a]|+ |b], (5) follows with
« arbitrarily small as desired for Lemma T. 2, since 4 — n > 1 here.

If dimension n >4, then we use (8), Condition II, and over the
| x| < b portion of the integral a Schwarz-Hélder estimate with 27=r'=
2(n + o) —4 +p0)>2 from 1 < r <2, 1/r + 1/7# =1, and thus

2 _2m4p) 1
(m—4+p 4 2
1 ( n~|—/) >

2r = (n + p) .

Hence, if n >4, for uw € &

n(l- /')
) I G

(10) I VulP < (MP)4/(n+p)<E

X [U)4pl(n+p) Il Tu Hz + )il (e H »u [|2] + A2 H u Hz

for all @ > 0. Thus again (5) follows in this case n >4 with a arbit-
rarily small, since w*/ @+ — 0 as @ — 0*. Thus the proof of Lemma T. 2
is complete.

Returning to the proof of our Theorem T. 1, from the remarks pre-
ceding Lemma T. 2 we see this lemma permits H to be defined on <
dense, and H,C H from T,CT. Also T is self-adjoint with domain <.
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For by definition S*T'Sis a purely multiplicative operator, [S*TS#](y)
= |y |*u(y), with the natural domain of all 4 e L,(R,) such that
[y Pu(y) is in Ly(R,). It is well known and easy to see that this makes
S*TS self-adjoint, and hence so is T since S is unitary.

Next (Tu, u) = SR |y |2 li(y) I*d g (y) > 0 for || w || > 0 shows that the

spectrum of 7T is confined to [0, + o]. Hence (T + AI)~' is for real
A >0 a bounded Hermitian operator on L,(R,) with range <7, (T4+NI)< =
L(R,) following from the spectral theorem for self-adjoint 7. Thus
(much as in Kato [2], Lemma 5)), from (5), we have for all u € L,(R,)

A0 VT + N0 | < @l| T + ND7u | + 81T + VDu|
<(a+L)ju,

since || T(T 4+ MI)-*j| <1 and |[(T + N1I)|] < 1/3\* are clear from the
spectral representation of 7. Thus choosing a < 1/2 in (5), and then

2 sufficiently positive so that —fz— < —;—, we see from (11) that the oper-
ator V defined on <& by [Vul(x) = V(x)u(x) satisfies

(12) | (T + M) 11|<(a+ B)<1

Hence I + V(T + 2\*I)-'is a bounded linear operator on L,(R,) with range
L,(R,), since

[+ V(T + XD = 1+ 5 (= IV + ND7)

also exists bounded. Thus, for ) large so (12) holds,
(18) HA+NI=T+ M+ V =[I+ V(T + NI)"(T + \I)

takes <7 onto Ly(R,), since T 4 NI has already been seen to do so. Since
T = T* has been shown and since V is obviously symmetric, it follows
that H= T + V and H + \I are symmetric, H + I .C (H + 2I)*. But
(H + M)z = Ly(R,) in (13) thus makes H+\*I = (H-+NI)* = H*+\°1,
H = H*, and hence H is self-adjoint (see [3], p. 35).

In order to complete the proof of Theorem T. 1, it remains only to
show that the self-adjoint extension H of H, is the unique self-adjoint
extension Since here HcCH*CH=H*C Hf is Well known [3]
since H = H* Wlll make H* = (HH)** = (H**)* = = H=H}* a d
since H;* = H, the closure of H,, it suffices for this uniqueness to show
HcH,.
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In order to do so, we first (Lemma 1), Kato [2]) notice that orthogo-
nality of nonzero u, € Ly R,) to I+ Tyu = + THu for all v ¢ &,
would require 4, to be orthogonal to all (1 4 |y [?)i(y); equivalently,
since S*(<) < <, and S(o,) € &, makes S*( g, = &, = S(F,),
this would require #,(z)(1 + |y |*) exp (—(1/4) | y '), an element of L,(R,),
to be orthogonal to all polynomials in %, multiplied by exp (—(1/4) |y |).
But the density of <7, in L,(R,) and a change of scale by the factor
12 shows this to be impossible. Hence (I + T)<r, is dense in Ly(R,).

Thus given 4 € <» and 8 > 0 there exists u, € <7, such that

5> I+ Ty — (T+ Ty || = (T + S*TS) (i — )]
=[], a+1opriaw - w@rdmnw |

> (max [fu —ull, || T(w — uy) ) .
Thus by (5),

| Hu — Hou, || = || H(u — w) || < || T(w — w) || + || V(u — w,) ||
SA+)[Tuw—u)l|+B8llu—u|l <A+ a+p)d.

Hence the graph of H is contained in the closure of the graph of H,,
Hc H,and H is the unique self-adjoint extension of H, as desired.
Thus Theorem T. 1 is completely proved.

3. Connection with other conditions. We will show in this section
that Condition I, which is always implied by (and for » > 4 coincides
with) Condition II, implies our earlier one (Condition III, see eq. 19)
for the construction of a self-adjoint extension as the inverse of a modi-
fied Green function integral operator. In fact, it is easy to verify for
V(x) = | x|7" that Condition I and Condition III are each equivalent to
0 <7 < (min 2, n), so that in this sense they have the same strength.
We remark that Condition I is the natural one, used in a fortheoming
joint paper, for an asymptotic formula for the distribution of eigen-
values of the bottom part of the Schridinger operator spectrum. Finally
we will show, as noted before T. 1, that

Condition II = Condition S =» Condition III .

In order to give this connection with the modified Green function,
we need to introduce the fundamental singularity ,K,(r) for —p*+ 'l
with constant @ > 0. This may be defined (see [1], p. 555) uniquely by
the requirements that ,K.(r) be continuous over = > 0, that ,K,(|x|)e

L(R,) over x, and that [0 + |y "] = S KL x Derwdu (x) over ye
R,. Such ,K.,(r) >0 over » >0 and » >n(). We define
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nf{w(r) = M,r-®» exp(— 241:) for n >3,

Ko (r) = M1 + Vor ' [1 + In(1 + (wr)-Y)]e*,
and

K (r) = @o)e = K (r)

with M, the least possible real constant having K. (r) < K «(7) over all
r >0 and w > 0, such positive finite M, always existing. Finally define
for w > 0,

(14) V1. = esssun| L Kullx —u )| V)| drno)
TuroREM T. 3. Let V satisfy Condition 1. Then [V], < + o for

all @ >0 and

(15) Tim [V], = 0.

Moreover for all @ >0

(16) lim [V -V, =0,

P> +oo

where V,(x) = V(x) if |[V(x)| < p, Vi(x) =p if V(x) > p, and Vy(x) =
—pif Vixy< —p.

The proof is rather elementary, using for n > 2 the Schwarz-Holder
inequality with » = (1/2)(n + p) > 1 and 1/r + 1/»' = 1, and hence

o= 1 __nt+p
2 n—2-+p

n -+ 0

Thus Condition I yields in (14) for n > 2, the Schwarz-Holder inequality
being used on the |y| < b portion, and also K, (t/w) = w**,K,(t) and
(n—2)(n+ P)f(n — 2+ p) —n=—20/(n — 2+ p) <0,

(17) [V], < (M) e [%T{Jﬁ(t)} (el (n-240) t”’ldt]w
0
4 Aw“zangmnlzl(t)t“‘ldt .
0

In (17) the second integral is obviously finite, and so is the first for
n=2. For n>2 we see In the first integral that only the portion
0<t<1 is in doubt, and here we have to consider the integrand factor
t raised to the exponent

( )n—2+p+n n—2+p =
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Thus the first integral in (17) is also finite for n > 2 as well as for n=2,
and (17) shows [V], < 4 « for all ® > 0 and also that (15) follows for
n > 2.

Finally for (16), taking p > A so that V{(x) — V,(x) = 0 almost (z,)
everywhere over | x| > b by Condition I, we see that in place of (17)
we have, with ¢, < + o by the finiteness of the first integral in (17),
for n > 2

(18) l vV — VI, < an—zp/(nw)[s ) I V(x) _ Vp(x) l(llz)(n+p) dyn(x):lllx .

{z| 171 <v
Since lim, ... | V(x) — V,(x)| = 0 for all x € R,, and since | V(x) — V,(x) | <
| V(x)|, we see Condition I and dominated convergence in (18) yields
(16) as desired for »n < 2.

Finally consider n = 1, K.(r) = .K.(r) = (2w)~%~*". Notice that Con-
dition I with 1 -+ o > 2 clearly implies itself with o replaced by o' = 1.
Thus in place of (17) and (18) we have for n =1

a7y Ve < MQw)™ + Aw™

ay TV L] Ve - Viewldme),

{z]lz]<
which clearly yield (15) and (16) in the same way as above. Thus the
proof of Theorem T.3 is complete.

Now consider the following condition on V. As stated in Corollary
T.4 immediately thereafter, this condition is implied by Condition I, as
we see from (15) above.

ConpITION III. There exists some w,0 < @ < + oo, such that

(19) Vi,.<1.

COROLLARY T.4. If Condition I is satisfied, then so is Condition III.
Condition III is our earier condition in [1] mentioned above. For our
modified Green function, consider the formulae

@) Guxp) = Klx—yh+ S0 |

k3 7

| Ellx = 2DV, K12 = 2 DVC2) -
" VGRE b2 =y D2 dinGa)
21) [Gorl(x) = | G, uwism@) -

kA

By virtue of our earlier work ([1], p. 560, 567, Lemma 3.4, Theorem 3.5,
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Theorem 4.5), we have the following theorem, using [V|, < [V]., from
K1) < Ko (r) in (14) for o > o'

THEOREM T.5. Let the conditions of Theorem T.3 hold and let w,,
0 < w, <+ o, be chosen so that (19) holds. Then for w > w, the right
side of (20) converges almost (t, x p,) everywhere as a definition of
G(x,y),G.(x,y) =Gy, x) almost (u, x p,) everywhere, in (21) the
right side exists finite almost (,) everywhere and is in Ly(R,) for
ue Ly(R,), and the operator G, on Ly(R,) so defined is bounded Hermitian
|Goll < @1 — |V].)"'. Moreover the operator H, defined by

(22) H,=G;' — oI

exists as a self-adjoint operator in Ly R,) independent of w > w;.
Now under Condition I here, which is less than Condition II if

n < 3, the linear manifold .#"= {u € Ly(R,)|Vu € L(R,)} need no longer

contain <, and hence H;, may not exist as an operator in L,(R,).

Thus define Z, = .4+"N <, and as in (2)

(23) [H, ul(x) = — Vu(x) + V(x)u(x)

for w e <, ; thus H, satisfies (Hu, w) = (w, Hw) for u,w e . Note
= 2 and H, = H, if n > 4, Condition I and II coinciding. Hence,
after proving the following theorem, H, = H follows for » > 4.

THEOREM T.6. Let V satisfy Condition 1. Then the self-adjoint
operator H, defined by (22), known existent by Corollary T.4 and
Theorem T.5, is an extension of H, H, C H,

We note here that 7, need not be dense in L(R,) if n<3, although
ﬁl will not be a very respectable operator from the Hilbert space view-
point if <% is not dense, in particular not being symmetric. This
theorem is the same as our earlier one ([1]), Theorem 5.3, p. 572) except
for change in the initial domain from < = .4 N <& there to 921 = 4N
here. Merely sketching the proof, we first see

@) @9 =| (G + VE)PE — V) )

follows for ¢ € & and u € L(R,)N Ly(R,), the proof being unchanged
from the earlier one ([1], Theorem 5.1, p. 568) for ¢ having continuous
second partials and vanishing outside a bounded set. Taking @€ T =
A N7, in (24) and using the facts that G, is bounded Hermitian and
that L,(R,)NL,(R,) is dense in L,(R,), we obtain from (23)

(25) G + H)p = ¢
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for pe fZl Thus IZ C (range of G,) = (domain of G;'), and w’l + H C
G.Y, H, € G;* — oI = H, as desired, proving T.6.

THEOREM T.7. Let V satisfy Condition 1 and define h, =
lim, .(essinf,, s, V(x). Then this limit exists satisfying — A < h, < A
and the spectrum X of the self-adjoint operator H, defined by (22),
known existent by Corollary T.4 and Theorem T.5, has (— oo, h) N2
to consist of pure point spectra with (— o, h) N2 finite and having a
Jfinite dimensional eigenspace for all h<h,. If also ho-—[ess inf V(x)}>

— oo, then (— oo, h)N3Z is empty.

Slnce (19) and (16) follow from Condition I for large w by Theorem
T.3, this theorem follows from our earlier one ([1], Theorem 6.4, p. 579).

Finally we finish this section by proving in the following Theorems
T.8 and T.9 the implications asserted before, namely II = S = III. Since
Condition S, as noted before Theorem T.1, implies the conclusion of that
theorem, from II =S we have an alternate proof of Theorem T.1. For
knowledge of this work of Stummel [5] we are indebted to the referee.
Although Theorems T.8 and T.9 seem of sufficient interest to record,
their proofs are simple exercises in the use of the Schwarz-Holder
inequality.

We start by stating Stummel’s Condition S.

CONDITION S.

(26) {sup

xeRnS{ylix—yxsl)

| V@) | x — y|7dp@)}< + o
Jor some real v satisfying v >n — 4 and v > 0.

THEOREM T.8. If V satisfies Condition II, then it also satisfies
Condition S.

THEOREM T.9. If V satisfies Condition S, then equation (15) and
hence Condition 111 are satisfied by V.

To prove T.8 first, Condition II clearly yields (26) with v=0, which
thus takes care of the trivial case 1 <#n < 4.

Now consider dimension % > 4. Then for the p >0 in (1) of the
given Condition II, we may choose real v to satisfy

(27) n-—4<nﬁp>>y>n_4

and must then verify (26). Take p = (1/4)(n + p) > 1 and then 1/p +
1/p’ = 1, for which
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W+ p) =4 >+, ntp>dt @+l
(1-L)n+0) >4, p:(1/4)(n+p)>(1_l)“ ,
n n
D D n
and hence vp' < n. Thus for (26) we have the Schwarz-Holder estimate

e [ Vel i)

ip 1 , 1p
= U |V(y)|2”d/ln(y)] [ang e T"‘ldr}
{yl|x-yl=1} 0

with 2p = (1/2)(n 4+ p), v»' < m, and 0, as in (6). Thus the second factor
on the right of (28) is a finite constant, Condition II assures that the
first factor is bounded over xe R,, and (27) and (28) yield (26) for
Condition S. This completes the proof of T.8.

Now for Theorem T.9 it suffices to prove that Condition S implies
lim,.,.|V], = 0, since equation (15) yields the conclusion of Corollary
T.4 as noted there. Considering first the general case n > 4, and taking
B=n—2—92<n—2—(n—4)(1/2) = n/2 so that 28 < n from v >
n — 4 > 0, the Schwarz inequality yields

-w

@) | VOl i)

e
lix-yl=1) | x —

< B V@) x— v |-Vd;zn(y>]’” [Ungle“‘”?""‘l‘mdr]m .
{yllx-yl|<1} 0

On the right here the second factor is < [w~"*Pg,[(n — 28)]"*— 0 as
w— + o since n — 28 > 0; the first factor is independent of w and
bounded over x € R, according to Condition S. Hence we see that the
left side of (29) converges to zero uniformly over x € R, as @ — + o
for n > 4.

In order to estimate |V, we must also consider the left side of
(29) with the range of integration replaced by its complement in R,.
For this we define

B(j) = {xe R, || ®, — 2j(n)7"*| < (n)™"* for 1 <@ <n}, j=(JyJs -+, 0
for integer j,, and also 7(j) = inf.en; | x|. Noting that B(0) C
{x||x| <1} makes {x| x| > 1} € U;~B(Jj), we see with n >4
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e“wlx‘“yl
Wdﬂn(y)

<| . e Ve — 2 dpa)

(30) | V(y)|

Slyl 1x-y|>1}

—<_ Z e—m‘r(j) SB(j) l V(x — Z) ] dﬂn(z)

JF0
2 n/2 1/2 .
< | —== 2 —or(d |
= (Vn > [535’,, S(yl!x—y!ﬁl} V)| d#"(y)] {;‘1 ¢ }

Since |x — y|~? > 1 in (26), we see that Condition S assures that the
first factor on the far right side of (30) is a finite constant. Moreover,
we see that the second factor

{Z e“"”f’}—>0 as w— + o,

J#0

using
?’(J’)2<sup le)—2
X€ B(J)
to estimate the portion of this sum where

3 2 " “ —0(r=2)m-1
r(j) =3 by <~1/—n=> G"Sae = idr

which — 0 by dominated convergence, and using 7(j) >1/vn >0 for
J # 0 to estimate the remaining finite sum portion. Thus the left side
of (30) converges to zero uniformly over xe R, as ®w — + o, which
when combined with the same conclusion about (29) proved above yields
[V], — 0 and completes the proof of T.9 for dimension 7 > 4.

For dimension n < 4, we see Condition S becomes just (26) with

v = 0. Hence S [nli,(l x |)Pdp(x) = c,w= ", easily seen with ¢, <+
Rn
for n < 4 from the definition preceding (14), gives in place of (29)

(31) [sup

x€R,, S(ynx—wsn

| V) | K x—y ])dyn(y)] - o(w-a-m>

as w — + o. Also (30) still shows the integral over the complimentary
region to converge to zero uniformly over x € R, as w — + o if n =3,
and a very similar computation gives the same result if n =1 or 2.
Hence lim,_,.[V], = 0 follows from Condition S when dimension = < 4
as well as when n >4, and the proof of T.9 is complete.

4. Variational characterization of the spectrum. In this section
we will show (see T.13 following) that a variational characterization of
the spectrum, well-known at least for continuous V and bounded domains,
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also holds for H, with V subject only to Condition I. This is rather
easy to obtain ([2], p. 209, eq. (23)) under Condition II, and the major
effort in our argument amounts to showing that Condition I, which is
weaker for 1 < n < 3, actually suffices.

We start with the following theorem, where by the L, sense of the
Fourier transform # for we L,(R,) we mean (3) with no limit and

S replaced by the oridinary Lebesque integral S . Notice that
{xI]x] <N}

R’ﬂ/
if we L(R,) N L(R,), then by taking subsequences we may be sure that
the two definitions of u(y) are equal almost (¢,) everywere. Hereafter
|| # ||, denotes the L.(R,) norm of u, and ||u|| or ||« ||, the L,(R,) norm.

THEOREM T.10. Let V satisfy Condition 1 and let ), be in the point
spectrum of H,, defined by (22), with eigenvector u,e <, = G.(Ly(R,)),
Huy = M, and [[u, || =1. Then Vu,e Li({x| x| < b}) and over ye R,

(32) Ly ["uy) + Vo) = Nilo(y)

where ry = fo+ o, fo is the L, sense transform of fy(x) = V(x)uo(x)2(x)
with yx,(x) the characteristic function of {xe R,|| x| <b}, and g, 1is
the usual L, transform of g, = Vu, — f,.

If (» + p) >4, then Condition II follows from Condition I, H, = H
and u, € 2, = < by Theorems T.1 and T.6, Vu, € L(R,) by Lemma T.2

and hence eL,({x|] x| < b}), ¥, exists as defined and = I@O defined in
the usual L, sense, and (32) follows from Hu, = \u, and the definition
of H.

The proof of T. 10 thus being complete for (n + p) > 4 and hence

for n > 4, we now consider the remaining case 2 < n + p < 4, for which

1 <n <3. Since G uy = (\, + @) 'u, with A, + @* > 0 for v > w, fol-
lows from (22) and H,u, = \u, we see ([1], (3.5), (3.6), and (3.21), p.
558 and 562) by using the Schwarz inequality that wu, is essentially
bounded, u, € L.(R,) and || %] = eSEGiup |u(x)| < + oo. Thus by Con-
dition I, Vu, e L.({x||x| <b}) C Ll({Jncl |x| <b}) with r=1(n+ p)
satisfying 1 < r < 2, and 4, exists as defined.

Now, L, N L, being dense in L,, there exists a sequence u; € L,(RK,) N
L,(R,) such that the L, norm ||u, — u}|/,—> 0. Hence as above, u, =
N + ®»)Gu; has u, € L.N L, and both [[u, — u,|,—0 and also
|| %y — ||l — 0. Actually ([1], Lemma 4.1, p. 565), u, and Vu, € L,(R,)
also, and

(33) (" = MN)iy) + V(@) = (o + @) {ii(y) — (y)}

with , = I}\uk in the L, sense. Defining f, and g, from u, analogously
to f, and g, from u,, :fk + g, defined in the L, sense. Moreover,

1 Fo = Fulle < @)™ £y = fulh < @7) ™| V|1l 1y — 4[] — O
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with

Wihe = _ __1V@®ldm,

{x||x1<b}

and ||g, — gills < Alluy — uill,— 0 by using Condition I. Thus, after
taking subsequences, we may assume almost (y,) everywhere that

Vi) = @) + 6:w) — Fi®) + 6 = Vo), @) — ),

and @} (y) — ﬁo(y); since ||’&k — Wl = | wy, — uo”z—’ 0 and H&;c — ol =
[|up — oll; — 0. Thus (83) yields (32), and the proof of theorem T. 10
is complete.

We next give some approximation lemmas.

LEMMA T. 11. Let V satisfy Condition I with n + o > 4, and
hence Condition 11 also; let w, € 2. Then there exists a sequence of
U, € ', satisfying simultaneously ||u, — ugll — 0, [|T(u, — ux)|| — 0,
NV (", — up)|| — O for these L,(R,) norms.

This was proved in the last two paragraphs of § 2. In the following
we denote (z- &) = 37..2,£, |z| =1/(z- 2) for z and § e C,, unitary
n space. Z; = G, (Ly(R,)) for w > w, is the domain of H, as usual.

LEmMA T. 12. Let V satisfy Condition I with 2<n + p < 4 and
let w, € Z, satisfy Hu, = \u, and ||u,]| =1. Then |y|iy) € L(R,)
and u, € L.(R,) and u, € L(R,), and there exists a sequence of u, € Z,
such that simultaneously ||u, — ugl|,— 0, |4y — Uz}l — O,

[ 1V ) — w0 g =0,

and

[, 1Pentts0) = Puse) fd) — 0.,

where V denotes the ordinary gradient differential operator and Vg ,u
the C, vector valued function whose components are in Ly(R,) and have
the components of iyi(y) as their L, sense Fourier transforms.

To prove T. 12, first notice 2 <n + p < 4 makes 1 <7 < 3, and
hence, as shown in proving T. 10, %, € L.(R,) and f, ¢ L(R,) with
r=4%mn + p), 1 <r < 2. Thus, using the Young-Hausdorff-Titchmarsh
theorem as in (8), the L, sense f, € L,.(R,) with

7= 1 ___»n+p >2, and 7' = o
1-1/r n4+p—2

ifn+po=2
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Next notice that for 0 < v < 2 we have from (32)

Gy (F2) ) = A 1) D) — 04)

— A+ y) " fl) -

Thus we may conclude |y|“i(y) € LR,), as desired, whenever this
holds for both terms on the right of (34). The first term is obviously

in Ly(R,). For the second term we use fo e L, (R,) and the Schwarz-
Holder inequality with

n+p

1 . m4p
n+p—2

200 = ' = — =
a=r I—1ja 4—(m+p)

>2, o

holding even for n+p=2, for which @« = « and a’ =1. Thus, with
o, as in (6),

| folm) A [ g t ]/ -
(35) SRn Wd#u(y) < Sfoll| on o (1 + e dt <+
provided that

_ r— 2n+ 0)2 —v)
n < (2 —v)2a = It

This last inequality is equivalent to

[4 — (n+ o)ln
2(n + p)

2—yv>

b

and this to

4o +nn+p) _n 20
V< 2(n + 0) 2+n+,0'

We see for our n =1,2, or 3, p >0, 2 <n + p <4, that this last in-
equality is always satisfied for v =1 and for v = v, = n/2 4 p/(n + p).
Note n/2 < v, < 2, Thus we have shown |y|#,(y) and |y 4(y) to be
e Ly(R,).

Next for any finite set of v, > 0, define

[Liw) = (1+ 3 |yl Jie) -

As in the last two paragraphs of §2, L. is dense in L,(R,), since any
u € Ly(R,) has

(1+ Slypv)exo(—HuPiw) e LR,
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and therefore is not orthogonal to all Q(y) exp (—21|y|*) with polynomial
@, and thus % cannot be orthogonal to L<7,. Hence, for any u € L(R,)
such that Lit € Ly(R,) there exists (since < transforms onto =) a
sequence u, € <, such that ||L(% — it,)|l, — 0, and thus simultaneously

[ 1gi 1) — i) Pap@) -0

for the finite set of v, as well as ||u — w.]|, = ||& — .|, — 0. Applying
this result to u, € L(R,) with the finite set {1, v,} of v's, since |y|u(y)
and |y |"u,(y) were shown to be in L,(R,), there thus exists a sequence
of u, € &, such that simultaneously

= el = Il — =0, | [y Pi) — @ @) — 0,

and

[, 1w lio) — i@ () — 0

n

with

=" L K
“ 2+n+p>2

From the second limit statement just proved, and from |y|u(y) €
L(R,), we see that F,.u, exists as defined and that, since iyiL(y)
clearly has its components the L, transforms of the C, vector valued
funetion Pu,(x),

[, 17entn(@) = Puscolidpno) = {1y Pie) — d@idpmm —0.

n

Next for u € Ly(R,) having |y|"i(y) € L(R,),
@6 lulh<m|| @+ lpr)awidee |

< M+ M P awrdew |

M oo it dt 1/2
‘[”ﬂgomﬁ [T<+e,

using the Schwarz inequality and 2y, > n. Thus from |y|"i(y) e L(R,)
we conclude ||i,]], < +oo and %, € L(R,), and likewise ||it, — @/, — 0
follows from

[ 1wl — dwrdpe) — 0

shown above. Thus we have
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Nty — welle < (27)~"|[dhg — ]|, — 0

from the L, sense of (4) agreeing here with the L, sense as usual.
Hence finally

@) | V) — w@ P

<=l VeI + Al —

by Condition I with the right side — 0 as k— +o. Thus the proof of
Lemma T. 12 is complete.

We now are ready to give our variational characterization of the
spectrum Y of H,, assuming only Condition I. Define

h, = lim (ess inf V(x)> ,
r—>00 lx|=r

and by Theorem T.7 we know that 3 N (— o, k) for h < h, consists of

a finite set of N which are each in the point spectrum of H, with finite

multiplicity. Thus there is uniquely defined a finite or countable set

N =Y N (=, k), X, < N\pey, and the )\, = )\ repeat according to the

multiplicity of each X\ in the point spectrum of H,. In the statement
following, u 1 S means (u, w) = 0 for all w e S.

THEOREM T. 13. Let V satisfy Condition I and let {\,}, possibly
empty, be defined as above. Then each such \, satisfies

@8 = _sw { it | P+ VE) u@himeo)
S£L2(Rn), uegl Ry,
card S<p |lu|l=1,21S
and such X, exists for amy integer p > 1 for which the right side of
(38) is <h,. Moreover, in this statement <Z, may be replaced by =,
the set of all uw e Ly(R,) which possess continuous second partials
everywhere and such that u(x) together with all its partial derivatives
of order <21is O([1 + |x|"]exp (—4|x|?)) over x € R, for some integer
m > 0 depending on u.

For integer p > 1 define 7,(%/) as the right side of (38), and
similarly 7,(%,) with </ replaced by <. Z,2 & clearly makes
() < t(Z,). Thus to prove theorem T. 13 we need only show first
that any existing \, has \, > 7,(~)), and secondly that 7,(<Z) < h, has
A, existing with 7,(Z) > \,.

Now for each )\, we may choose ¢, € ., the domain of H,, such
that H,», = \,», and (9,, ¥,) = 8,,, since H, is self-adjoint. Thus
using T. 10 and multiplying (82) by ¢,(y) and integrating over R, we
have, since (®,, Pu) = (Ppy Pp) = Spprs



970 F. H. BROWNELL

(39) Mo = | 18P, @ + W) ) i)

the integral of each term in (39) existing finite in the Lebesque sense.
This finiteness is clear if n + p > 4, since then Condition II holds and
p, € L=, lylo,(y) € L(R,) and r, € L(R,) by T. 2. Otherwise
2<n+p<4, and T.12 yields |y|p,(y) € Ly(R,) and ¢, € L(R,) N
L,(R,); hence +, :fp + g, with g, e L(R,) and f,, e L.(R,) from
f» € L(R,) also makes the second term integral be finite as well as the
first. Also Parseval’s equality applied to the terms on the right side
of (39) yields

(40) Ny = SR {7 eca®n(X) + V souP (%)) + V(X)Pp() P, ()} df10()

n

provided that in addition we show

|, @3 @) = | e

in the case 2 < n + p < 4, where as usual f,(x) = V(x)@,(x)x,(x) as in
T. 10. Replacing V by the truncate V, defined for (16) and defining

qu = Vq%Xu» then qu € Lz(Rn) and (qur ¢p) = (qu (/)1") follows by
Parseval’s equality. Clearly Condition I, ¢, e L.(R, by T.12, and
dominated convergence over {x||x| <b} yields ||f, — ,f»li—0 as
q — +o, and hence also pr — qf,,H“.—>0. Thus ¢, € L.(R,) and
P € L(R,) by T. 12 in our case 2 < n + p < 4 gives the desired result

(41) [, 0P @) = lim (for o) = lim (.5, 2,)
=, rP, @,

and (40) is completely proved.
Now from (40), for u = >}j..c,»;, we have

@ | Pl + V@ @R = Sl
< 7&,,|:]>:’_:, le; I{I =N llull*.

Next by T. 11 and T. 12, since &, = & if n + p > 4, for each ¢, €
1 < j < p, we can choose a sequence ,p;, € <, having ||, — ;?;|l.— 0,

[ 17@19 - @@ dm@ -0,

and
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SR I Vgenq)J(x) - V,ﬂ)j(x) |2df’[n(x) —0

as k — o, and also satisfying ||@, — ., < 1/(8p) for all k. This last
requirement assures that |(,2,, x2,) — 8, ] < 0/p for some fixed § <1
(actually ¢ = § here), and hence the set {,»;} over 1 < j < p is linearly
independent and thus spans a p dimensional manifold _#, of <. Thus
given S ¢ L,(R,) with card S < p, the orthogonal projection of S into
the subspace _/, spans at most a p — 1 dimensional manifold, and
hence there exists w, € _#, ||u|l=1, uy L S. Also
U, = jg; kCs kP

has
» _ »
1=lu, ||2 :jJZlecj xC1 (kP sy kq)j') > 121 l xCs I
0 D 2 » 9
~Y(Shel) =@ -0 3wl
p Jj=1 j=1
by the Schwarz inequality,

Sl <A -0 < 4o,

and hence by taking subsequences we can assume ¢, — ¢, for some
complex ¢; as k— +c for each j, 1 <j<p. Thus u,= >}, ¢, P,
has u, — w, in each of the three quadratic form norms for which ., — ¢,
above, using the Minkowski inequality. Hence (42) for u, has the left
side to be equal the limit as k¥ — -+ of the same expression with u,
replacing u,. Since u, € 7, < <, ||u.]|=1, and wu, L S, we thus
see that 7,() <\, holds for existing \, < h;, which completes the
first part of our proof.

In order to complete the proof Theorem T. 13, we must show
() < hy, has 7,(Z;) >\, with A, existing. Consider fixed u, € Z.
The truncate V,, defined as for (16), with ¢ > A satisfies Condition II
clearly, and thus defines the self-adjoint ,H with domain & 2 &, as
in T. 1, and ,H D ,H, defined on </, by (2) with V,. Hence by inte-
grating by parts, and using the exponential bounds in the definition of
2, .l being the spectral measure for ,H,

@) | 1P + VL0 L) = (Hu )
= | a(Ee)u, w
={ & MBI} + [ B,
q" i< Azh

=15 BN )]+ Bl = S (BN Du,u)
q j<h q j<’b
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for any h < h,, the sum Z[}jm being finite then by T. 7 and here being
defined to give one term for each distinct A € Y.

Now taking ¢ — + oo in (43), by Condition I and dominated conver-
gence the limit of the left side is obtained by replacing V, by V. On
the right side [V —V,|,—0 by (16) under Condition I, and hence
| Go — Gu|l — 0 ([1], 3.20, p. 561). Defining F, as the spectral measure
of G, and f.(\) = 1/(» + ®?), we have ([1], Theorem 4.5, p. 567) E(B) =
F(f.(B)) for Borel subsets B of the spectrum X of H,; also the usual
loop integral formula

Fila, c) = g;lgj (I — G.)'dz

holds in the weak sense, where C is a rectangular curve in the complex
plane with sides parallel to the axes whose interior region intersects
the real axis in (a,c), provided both ‘““a’’ and ‘¢’’ are at a positive
distance from f(%). Thus ||G, — ,G.|| — 0 implies || E(B) — E(B)||—0
for any closed interval B C (— oo, k) whose endpoints are not in {\,}.
Hence ,\; —\; for \; existing, and (43) becomes

@y [ PP+ Ve ) )
>{ SaEOD w) + p{lul = S EO D, v}
= { Snle o)} + 1{lul = 3 1w, 0o}
J J

for v € &, and h < h;, the sum 3, ., meaning as usual one term for
each index j satisfying ), < h. ’

Now assume 7,(<;) < h, for some integer p > 1, set b’ = i[h, + 7,(<%)],
and thus 7,(=2;) < k' <h,. Now consider the particular S = {p, |\, < I’
exists and j < p} € LR,), for which (card S) < p clearly. Thus (44)
with |ju|| =1, (4, p;) =0 for ¢, € S, and h = k' would give 7 (=) = I’
if either ), did not exist or else )\, > h’, yielding the contradiction
<t (=) < k. Thus A, < k' < h, must exist, and (44) with |[|u || =1,
(u, p;) =0 for j < p, and h =, gives 7,(Z;) >\, as desired. Thus
the proof of Theorem T. 13 is complete.

REFERENCES

1. F. H. Brownell, Spectrum of the static potential Schriodinger equation over E,, Annals
of Math., 54 (1951), 554-594.

2. T. Kato, Fundamental properties of Hamiltonian operators of Schridinger type,
Trans. Amer. Math. Soc., 70 (1951), 195-211.

3. B. v. S. Nagy, Spectraldarstellung lincarer Transformationen des Hilbertshen
Raumes, Ergebnisse Math., 5 (1942).



A NOTE ON KATO’S UNIQUENESS CRITERION 973

4. L. C. Titchmarsh, Introduction to the theory of Fourier integrals, Oxford U. Press,
London, 1937.

5. F. Stummel, Singulare elliptische Differentialoperatoren in Hilbertschen Rawmen,
Math. Annalen, 132 (1956), 150-176.

6. (added in proof) N. Nilsson, Fsseniial self-adjoininess and the spectral resolution
of Hamiltonian operators, Kungl. Fysiogr. Séllsk. i Lund Férh., 29 (1959), no. 1, 1-19.

UNIVERSITY OF WASHINGTON






THE RING OF NUMBER-THEORETIC FUNCTIONS
E. D. CAsHWELL AND C. J. EVERETT

Introduction. The set £ of all functions a(n) on N = {1,2,8, .-}
to the complex field F' forms a domain of integrity under ordinary ad-
dition, and arithmetic product defined by: (a - B)n) = 3 a(d)B(n/d),
summed over all d|n, d e N. The group of units of this domain contains
as a subgroup the set of all multiplicative functions. Against this back-
ground, the ‘‘inversion theorems’’ of number theory appear as obvious
consequences of ring operations, and generalizations of the standard
functions arise in a natural way. The domain 2 is isomorphic to the
domain P of formal power series over F' in a countable set of indetermi-
nates. The latter part of the paper is devoted to proving that the
theorem on unique factorization into primes, up to order and units, holds
in P and hence in 2.

1. Definition. The class 2 of all number-theoretic functions «,
[4; Ch. IV], i.e., functions a(n) on the set N of natural numbers
n=1,2,83.-- to the complex field F', forms a domain of integrity (com-
mutative, associative ring with identity and no proper divisors of zero)
under ordinary addition: (o + B)(n) = a(n) + B(n), and an operation,
frequently occurring in number theory in various disguises, which we
call the arithmetic product:

(@« B)n) = X a(d)B(d")

the summation extending over all ordered pairs (d, d’) of natural numbers
such that dd’' = n.

The commutativity « + 8 = 3 - « follows from the fact that the cor-
respondence (d, d’) — (d', d) is one-to-one on such a set of ordered pairs to
(all of) itself, while the associative law a - (8 - v) = (« - 8) - v can be verified
by observing that, in either association, (a - B« ¥)(n) = > a(d)B(d)¥(d"),
summed over all ordered triples (d, d’, d”) with dd'd” = n.

The zero 0 and additive inverse —a of « are of course the functions
defined by 0(n) = 0, and (—a«)(n) = —a(n), and one sees at once that
the funection ¢ with e(1) =1, ¢(n) = 0 for n > 1, is the identity: ¢ - @ = «
for all « of Q.

That the ring £ has no proper divisors of zero may be seen in
various ways, three of which occur incidentally in the following sections
(2,4, 5).

2. A norm for number-theoretic functions. A function N(a) on

Received March 8, 1959.
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£ to the set of non-negative integers 0,1, 2, --- which is zero if and
only if @ = 0, and has the property N(a - 8) = N(a)N(B) for all «, 3 of
2, may be defined by setting N(0) = 0, and, for all « = 0, taking N(«)
to be the least natural number n for which a(n) # 0.

Indeed, we find that, if @ and B are non-zero functions of 2 with
N(a) = a and N(B) = b, then (a - B)(n) = 0 for all (if any) n of N with
n < ab, and (a - B)(ad) = a(a)B(®d) + 0. It follows that 2 is domain of
integrity, and that the norm N(«) has the multiplicative property.

3. Group of units, If for «, 8 in the domain of integrity 2, there
exists a v in 2 such that a« = 8- v, we say B divides a and write B|a.
The set 1" of all units v, i.e., elements of 2 which divide the identity e,
forms a commutative group under (-) with identity e. Two functions «,
B of 2 are called associates (notation a ~ 8) in case there is a unit v
such that 8 = a - v. One sees that « ~ 8 if and only if «|f and B|a,
and that (~) is an equivalence relation which splits 2 into disjoint
classes [ ] of associates. For example, the class [0] contains only 0,
while [¢] =7. These trivial properties are shared by all domains of
integrity.

In our ring 2, an element « is a unit if and only if a(l) + 0,
equivalently N(a) =1. For, if aa’ =¢, 1=¢(1) = a(l)a’(l) implies
a(l) + 0. To see that this is also sufficient, we first introduce the
(number-theoretic) function \(n) defined by 1) =0, Mp, --- p) = for
any product of [ (not necessarily distinct) primes. We have \(a) = 0 if
and only if ¢ =1, and \Mab) = Ma) + Mb) always. This function has
the property of classifying all natural numbers according to their length.
We have now to construct a function a’ in 2 with (a - a’)(n) = &(n) from
a given a for which «a(1) = A + 0. Manifestly, for n > 1, this relation
itself defines the value of a’'(n) unambiguously for each » of length
Mn) =1 in terms of values o/(d’) with Md') < [. Thus, if we define
a’(1) = 1/A for the single » of length 0, and proceed inductively on \(n),
we automatically obtain the desired o'.

We note in passing that if «, 8 are any two number-theoretic func-
tions and v -y =¢, then B =a - vif and only if « = B - v'. This trivial
relation between associates is the basis for the so-called inversion theorems
of number theory. (Cf. §7).

4. The degree of a number-theoretic function. Just as a natural
order 1 <2< 8 < --. of the set N permitted the definition of a norm,
so does the order implicit in the M function enable us to introduce what
we may call the degree D(«) of a non-zero function a of Q.

Specifically we take D(«) = d to mean that a(n) = 0 for all (if any)
n of N with Mn) < d, and that there exists an n with Mn) =d for
which a(n) #+ 0. Thus D(«) is a function on all non-zero « of 2 to the
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non-negative integers, with D(«a) = 0 if and only if « is a unit, and
D(« - B) = D(ax) + D(B) for all non-zero «, f.

We may indeed show somewhat more. Let D(a) = d, D(B) = e, and
suppose a and b are respectively the least integers with Ma) = d, Mb) = e,
for which a(a) # 0, B(b) = 0. Then (a - B)(n) = 0 for all (if any) n with
Mn) < d + e; (a- B)ab) = a(a)B(b) + 0, where, of course, Mab) = d + e;
and finally, indeed, (a - B)(n) = 0 for all » < ab with Mn) = d + e, that
is to say, ab is itself the least integer of its length at which «a - B does
not vanish.

5. A second norm. The final remarks of the preceding section
make it clear that another norm M(«) is available. Specifically, set
M(0) =0, and for a # 0 with D(a) = d, set M(a) = a, where a is the
least integer of length M\a) =d for which «a(a) # 0. It follows that
M(«) is a function on all « of 2 to the non-negative integers such that
M(«) = 0 if and only if @« =0, M(a) =1 if and only if « is a unit, and
M(x - B) = M(a)M(B8) always.

Thus M(«) has all the properties proved for N(a) and moreover
determines D(a) = M M(«)) for a + 0.

6. The multiplicative functions. This and the following few sections
(7-10) are to some extent expository, our object being to observe how
familiar results appear when considered from the point of view of the
ring £ or to propose some natural generalizations suggested by the new
notation. After this we return to the ‘‘arithmetic’’ of the domain £
itself.

A number-theoretic function « is said to be multiplicative in case
(@, b) = 1 implies a(ab) = a(a)a(b) and (to exclude the trivial a = 0) there
is an integer » for which a(n) # 0. In the presence of the former
property, the latter is equivalent to the condition (1) = 1, which signifies
for us that the set M of all multiplicative functions is a subset of the
group 1° of units of Q.

Clearly (1) a function o for which a(1) =1 and a(/1p*) = IHa(p®) is
multiplicative, a(p®) being quite arbitrary for each power a =1,2,---
of each prime p; and (2) two multiplicative functions identical on all
such p“ are equal.

That M- M < M follows readily from the definition of M, and the
identity ¢ is in M, seen perhaps most trivially from (1) above. To see
that M is a subgroup of T requires only the further fact that the inverse
«' of a multiplicative function «, which we know exists uniquely, is
itself multiplicative. This we prove in a way which provides a second
construction of the inverse in the case of a multiplicative function.
[5; p. 89]
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Given « in M, define a function B in 2 as follows. Set B(1) = 1.
For each p, define AB(p*) for a =1, 2, --- successively by the relation
Sia(d)B(d’) = 0, summed over all pairs (d, d’) with dd’ = p*. Finally,
define B(IIp*) = I1B3(p*). The B thus defined is in M by (1) above.
Since « is also in M, we know a- Be M- M c M. To verify that the
functions a8 and ¢ of M are equal, it suffices, by (2) above, to
observe that (a - B)(p*) = ¢(p*) = 0, which is the defining equation for
B(p*). Since the inverse of any unit is unique, the B so constructed
must coincide with that obtainable by the )\ construction of § 3.

7. The special multiplicative functions n*. Define the (multiplica-
tive) function vy, for arbitrary real & by v, (n) =n*. Its inverse v, is
seen by the preceding construction to be: vi(1) =1, vi(n) = (—1)nk
when # is a product of [ distinct primes, and zero otherwise.

Now (a) v, -y, =¢, and (b) if a, 8 are any two number-theoretic
functions, we have 8 = «a - v, if and only if @ = 8- v,. For the special
case k = 0, (a) yields the familiar equation 3,,,4(d) = &(n), and (b) becomes
the ‘‘Mobius inversion theorem’’ [Cf. 4; Th. 35, 38], since v, is the
Mobius function . Indeed, we may write vi(n) = p(n)n* for all k, n.

We may note one further generalization in this direction. If « and
B are any two number-theoretic functions, we see that

n n n [(m/a]
(1) S pm =3 S a@pimid) = S a@d) 380 .
In particular, if B8 is a unit, and o = 8’, we obtain
o [n/a]
1= >8() 80
Further specializing to 8 = v,,
n [n/al
1= m(d)ds > IF.
a=1 [=1
Finally, k£ = 0 gives the familiar [4; Th. 36]
1= Z‘l wd)n/d] .

8. The sum of the k-th powers of the divisors. It is clear that
the transform B(n) = 3,,a(d) of number theory [5, Th. 6-8] appears in
our notation as B =a -y, Thus in particular the number theoretic
function ag,(n) = Y.d* is seen to be the (multiplicative) function
O, =V, Y,€M+- McC M. The most familiar are 7 =o0,=1y, -y, the
number of divisors, and ¢ = ¢, = v, - v,, the sum of the divisors.

As an illustration, note that equation (1) of the preceding section
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yields

n

S5 (@ v)(m) = 3 a(@)n/d] ;

m=1

in particular, for a = y,,

and for a = y,,

é}la(m) = g;ld[n/d] .

The inverse oj(n) is 1 for n=1, (=11 (pi+2—a,) for n=pi1 .- p},
where 1 < a, < 2 and M = \(n), and zero otherwise. This may be seen
from o} = v - v; and the value of (v{- vi)(p*) obtained from §7. For
the special case k =0, we may write 7'(n), for n of the second type,
as (—1)2/a, «+- ai.

We note that the relation o} = v, - v, besides determining the
function o, explicitly as indicated above, yields also the equation
gin) = Sa.dd)p(n/d), in particular 7/(n) = >, (d)(n/d).

9. A generalized ¢-function. The well-known relations ¢ - vy, = vy,
and @ = y; - v, satisfied by the Euler @-function [4; Th. 39, 40] suggest
definition of a general function ¢, , = v; - v, specifically

Pu(m) = ! 3 p(d)d

which has the value »/Il,(1 — p¥-) for n =p% «.. p%, We should then
have the relation v, - ¢, , =y, or 3 ,.9; (d)d~* = nl-F,

It is clear that the derivation of relations between arithmetic func-
tions becomes simplified by employing the algebra of the ring 2, or of
the groups 1” or M. Consider for instance how' easily o =y, - v,
v, =y, @, and y, - y, = T implies ¢ = 7 - ¢,

Not quite so elegant is the generalization:

(1) o (n) = (Vg - v)(0)
(2) V=Yg Pi,y s
(3) Y, *» Yr(n) = nhr(n) (special case of (1)),

imply n’“al_k(n) = Zdlndkf(d)q)lc.[(n/d)-

10. The @-function. Define the number-theoretic function @(n) to
be the sum of the integers in N which are prime to » and do not ex-
ceed n. Obviously @(n) = ne(n)/2 unless » = 1 and @#(1) =1, Although
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¢ is thus a unit in V", @(ab) = 20(a)?(b) for (a,b) =1,a >1,b > 1, and
therefore @ is not in M.

If we classify the integers 1,2, ..., n according to their greatest
common divisor d with n, we find in the d-class the integers a with
(a,n) =d, 1 <a <n. There are exactly as many such a as there are
b with (b, n/d) =1, 1 £b < n/d. This yields for Landau [4; Th. 39] the
relation >,,2(n/d) = n and the formula for @ by Mobius inversion. We
may note that the same partition suggests the additional relation:

K(n) = w = zl a = 3d0(n/d) = @ - )

As a final example, we note that, since v, « y, = o,
Eey,=@ 0.

11. Primes. A number-theoretic function « is said to be a prime
in case a # 0, « is not a unit, and a = B - v implies B or v is a unit.
The associates of a prime are also prime. The remaining functions,
neither 0, units, nor primes, are called composite. The associates of a
composite function are composite.

Any function with N(a) a prime natural number is prime; more
generally any function with M(«a) a prime, or equivalently, any function
with D(a) =1. As an example, note that from §9 d=0—y =
Te@—Yy»@=(T—y)+ . Since §(1) =0 and 52) =1, we see that
M) =2 and so o0 — vy, and T — vy, are associated primes. If two non-
unit functions «, 8 are associates, we see that B(p) = (v - a)(p) = v(1)a(p)
for all prime p, where v(1) = 0. Hence there is a continuum of non-
associated primes even of this simple type.

Naturally there are many other kinds of primes, a fact which will
become glaringly obvious in § 16.

12. The chain condition. If a, # 0, a,]|a,, and in the correspond-
ing equation a, = «, - B, the (uniquely determined) B, is not a unit, we
say «, properly divides «, and write «,||a,. For example, every com-
posite element a has a factorization & = 8- v in which Blla and v||ea.
If in a domain of integrity, every chain of proper divisors --- a,||a,|la, # 0
is finite, we say the domain satisfies the chain condition. In any such
domain it is easy to see [2; p. 117] first that every « not zero and not
a unit has a prime divisor, and from this that every such « is expres-
sible as a finite product of primes.

That our ring satisfies the chain condition is an obvious consequence
of the properties of either the norm or the degree functions. For ex-
ample, a,lla,#0, ay,=a,-B, B, not a unit, implies D(B,) > 0 and
D(a,) = D(e)) + D(B,) > D(ar;), where D has non-negative integral values,
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Having come this far, it is natural to ask whether the expression
of a non-zero, non-unit number-theoretic function as a product of primes
is unique (up to order and units). We have been unable to find a refe-
rence for such a theorem, and offer a proof in the remaining sections.

In the presence of the chain condition, the existence of a greatest
common divisor for every two elements is necessary and sufficient for
the uniqueness property. [2; p. 120]. Although we have an abundance
of norms, we cannot hope to obtain a Euclidean algorithm, since we
certainly could not have linear expressibility of the g.c.d. For suppose
«, B are non-associated primes. Then («, B) certainly exists and is e.
whereas a linear relation ¢ = v+ a + 6 - B is impossible (consider n = 1),

13. A reduction theorem. It simplifies matters to show first that
if the uniqueness of factorization fails, it must fail in a particularly
simple way. Suppose indeed that uniqueness in false in 2. Following
an argument of Lindemann and Davenport [1; § 2.11] let us divide the
set of all non-zero non-unit elements of 2 into normal elements, whose
factorization into primes 4s unique, and abnormal elements, which can
be factored into primes in two essentially different ways. Clearly a
prime « is normal by definition.

We prove that if « is an abnormal element of minimal norm N(«),
and « =0,+-- 0, =7,++- T, are two essentially different factorizations
of a into primes, o,, 7,;, then necessarily m =n = 2 and g, g5, 7y, 7, all
have the same norm N.

Note first that neither m nor = is unity, since a prime is normal.
Moreover, no o, is the associate of any 7,, for if so, cancellation would
produce an abnormal element of norm N < N(a). Without loss of gen-
erality, we may assume N(o,) < N(g,) £ +++ < N(0n), N((7)) = N(t,) £
-++ < N(z,), and N(g,) < N(z,). Then N(g, - 7,) = N(0,) - N(7,) = N(7,))N(7,)
<N(r)N(r,) £ N(«). If any one of these (<) relations is actually (<),
we have N(o, - 7,) < N(a), which we will see leads to a contradiction.

Suppose indeed that N(o, - 7,) < N(«), and consider 8 =a — g, * 7,.
Certainly B8 #+ 0, for @« = ¢, - 7, implies o, ---0, = 7,, and since 7, is
prime, we have m = 2 and 7, ~ g,, contradiction. Also 8 is not a unit,
since 0,|8. From the definition of norm N and the assumption
N(o, - 7)) < N() it follows that N(B) = N(a, - 7;) < N(a). Hence B is
normal. However, the non-associates ¢,, 7, both divide B, and, B be-
ing normal, ¢,-7,|8. Hence o,-7 |l =0,++0,=0,-7,-7v. Thus
Oy+++0,=71,+7% But N(g,---0,) < N), and g,-++ g, is not zero
and not a unit (m = 2). It follows that ¢,:-- ¢,, = 7, + v is normal and
7, is associated with some ¢,, a contradiction.

We are forced to conclude that N(o,)N(t,) = N(t,)N(7,) = N(7,)N(7,)
= N(@) and so N(o,) = N(r) = N(tr,) =N and n =2. Hence N’=
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N(7;,)N(z,) = N(a) = N(a,) »++- N(0,) = N™ implies m < 2. But m > 1 so
m = 2, N(o,) = N, and all is proved.

Thus if unique prime factorization fails in 2, we should have an
element of form a- 8 =v-96, a, B, v, 6 primes (of identical norm N)
and a not associated with either v or 8.

14. The ring of formal power series. Let the primes p of N be
listed in any definite order p,, p,, p;, ---. Then every integer n may be
written uniquely in the form n = p#p2 ... and uniquely described by a
vector (a,, a,, --+) with non-negative integral components, finitely many
of which are non-zero, all such vectors being realized as n ranges over
N. Hence a number-theoretic function @ = a(n) may be associated with
a definite ‘‘formal power series’’ in a countably infinite number of in-
determinates =x,, ,, -+, having coefficients in the complex field F, by
means of the correspondence

a — P(a) = Sa(n)riedz «« - .

Here, the summation extends over all n = p&p% ... of N.

This correspondence is clearly one to one on 2 to the set
F, = F{x,, x,, «++} of all such power series. Moreover, addition is pre-
served, and P(a - B) = P(a)P(B), the latter operation being the usual
formal operation on power series involving multiplication and collection
of (finite numbers of) ‘‘like terms.”

Thus the ring of all number-theoretic functions is isomorphic to the
ring of all formal power series F, = F{x,, x,, ---}. We emphasize that
the only restriction on these series is that only a finitte number of z;
actually appear (i.e., have a; > 0) in any term. However, infinitely many
x, may well occur (in terms with non-zero coefficients) in the same series,
so that we have here a more general ring than that discussed by Krull
[3; §4]. Indeed, each series of Krull’s ring of power series (over F)
corresponds to a number theoretic function zero except on a set of
integers generated by some finite set of primes.

15. Some preliminaries, We deal in the remainder of the paper only
with the power series representation A = A{x,, ,, +++} = Za(n)xiag: -
of number-theoretic functions. The domain F, = F{x,, «,, ---} contains
(in the sense of isomorphism) for every [=1,2,--+ the domain F,=
F{x, «++,x} of power series in [ ‘‘variables.”” For the latter domains,
the theorem on unique factorization into primes is known. [3; §4 and
6; §2]. The units of F, are again the series with non-zero constant
term.

If / is any integer 1,2,... and if A = A{x, x,, ++-} is in F, or
some F,, with m =/, we mean by (4), the series A{w,, +++,%,0,0,---}



THE RING OF NUMBER-THEORETIC FUNCTIONS 983

obtained from A by deleting all terms of A actually involving any =z,
with 4 > /. Indeed, the mapping A — (4), is a ring homomorphism of
F, or F,, onto F|. One can write A =(A), + A}, where the latter series
involves only terms containing at least one x, with ¢ >/, and in this
way one sees that (AB), = (A)(B),

In reality all series we consider are actually in F,, but we do not
hesitate to say A{x,, «+-,%,0,0,---} is ““in F.”” Our objective is to
throw the proof of unique factorization in F, back onto the rings F),
[=1,2, .-+, in which the theorem is known to be true. But first we
have to show that the primes of F, are all of a special kind.

16. The nature of a prime. If a series A of F| is neither zero
nor a unit, then there is some minimal L = L(A) for which (A), is neither
zero nor a unit of F, [ = L. For A{0,0,.--} =0, and since A+ 0, A
must contain with non-zero coefficient some produet x%x% ... with
(@, @y, +++)#(0,0, «++). If in this term x, is the last variable with a,>0,
then (A4), # 0. Hence there is a minimal L with (4),+ 0, L = 1. But
then (A), is not zero or a unit for any [ = L.

Now if A is not zero or a unit in F,, and any (4), is prime in F),
where of course [ = L = L(A), then (A),, is prime in F,, for all m =/,
and also A is prime in F,. For example, if (4), = R,S,, where R,,
S,, are non-units in F,, then (4), = (4,), = (B,)(Sn), where neither of
the latter factors in F, are units. For such A, there is a minimal integer
P = P(A) =z L(A) such that (4), is prime in F, for all [ = P(4). We say
such primes are finitely prime.

The remaining logical possibility is that for some A, not zero or a
unit, we have (4), composite in F, for all [ = L(A). We shall show that
such an A is composite in F,, and hence the

Principal Lemma: all primes of F, are finitely prime.

17. Proof of the principal lemma. Let A be a fixed non-zero
non-unit series in F, with L = L(A), and suppose that, for every [ = L,
(A),= RS, where R, and S, are non-units of F;. We say R, and S, are
true factors of (A), and RS, is a true factorization of (4),. A true factor
of (A), is thus a non-unit proper divisor of (A4), in F), and so has a
companion of the same kind.

We shall call any chain [R,, R4y, -++, Ry] of true factors of the
corresponding (A), | = L, - - -, M telescopic if each R, = R(x,, «*+, -1, 0)
= (R);-,. Now observe that any true factorization (4), = R.S., m > L
induces a true factorization of (4),,-;=((A)n)m-1 = (Bp)m-1(Sp)m-1 = Bp-1Sm-1
and so down to (A4), = R,S,, where the chain of true factors [E;, «+-, R,]
18 telescopic. Thus we have from the original assumption on A, the
existence of a sequence
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gy, = [Roo]
K, = [Rl()r Ru]
Ky = [R‘zo’ Rzn Rzz]

.
.
.

of telescopic chains &, of t{rue factors R,;,, 7 =0,1,+++,% of (4)p+;.

We want to prove the existence of an infinite chain of true factors
£* = [R§, Rf, R¥, -+--] which is telescopic throughout. If we could do
so, we should have (A4),.;, = RS} for all 7= 0. Clearly the chain
[SS, SF, «--] is also telescopic, since (R},Si,) = (RFST)isj-r = (B )ras-r -
(SH)iss-r = R} (SF)14s-,. But any infinite telescopic chain defines un-
ambiguously a series of F,. If R* and S* are the (non-unit) series
defined by the R} and S} chains, we must have A = R*S*, since we
can prove identity of the left and right coefficients of any term by
regarding (A),., = R¥S* for suitable 5. Thus the principal lemma would
be proved.

Since unique factorization holds in F', there are only a finite number
of classes of associates into which the true factors of any (A4), ean fall.
Hence (pigeon-hole principal!) an infinite set of the chains x; have their
first entry equivalent to some one true factor T, of (A4),. Choose one
of these and call it «{. Of this infinite set, there is an infinite subset
of k, whose second entry is equivalent to some one true factor 7, of
(A);+;. Choose one and call it #;. Continuing in this way we are led
to a subsequence of (telescopic) chains

"’:t’J = [Rl;m ”']
£y = [R},, Ry, +++]
IC; = [RQO’ Rglr RL,’Zy . 'J

each of which extends at least to the main diagonal, such that the entries
on this diagonal and below have the property that, foreach j =0,1,2, .-
R;~ T, for all © =j.

We can now construct the telescopic infinite chain £* working only
with the main diagonal and the diagonal next below it, as follows.
Define Ry = Rj,. Since Rj;~ T, ~ R} in F,, there is a unit U, of F,
such that Rf = R,U, = (R;,U,);. Define R} = R,U, in F,,,, and note
that R} is a true factor of (4),.,, (R}), = R¥, and R ~ T, in F,,,.

To make the process perfectly clear and to avoid a formal induction,
we carry the construction through one more step. Since R, ~ T, ~ Rf in
F;.., there is a unit U, of F,, such that R¥ = R, U,., = (RLU. 1)1
Define R} = R.,U,,, in F,., and note that R} is a true factor of (A4),..,
(R¥),+, = R¥, and Rf~ T, in F,.,. The proof of the lemma is now
clear.
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18. Proof of unique factorization. Suppose unique factorization
into primes fails in 2 = F,,. By §13, we must have a series of the form
AB = CD where A, B,C, D are primes in F, and A is not associated
with C or D. Since all primes are of finite type, there exists an integer
P such that, in the equation (AB), = (4)(B), = (C)(D), = (CD), (A), (B);
(C), (D), are primes in F) forall /= P. Since factorization in each Fis
unique, (A), must be associated with either (C), or (D), in F, for each
| = P. Hence there must be an infinite increasing subsequence ¢ = {m}
of integers m = P such that either (A4), ~ (C), in F, or (A), ~ (D), in
F,, for all meo. Without loss of generality we may suppose the former
case. Then (4), = U,(C),, where U, is a unit of F),,, for each m of o.
If m <n are any two integers of the sequence o, U,(C), = (4), =
(A)n = (U)u(Co)m = (Up)u(C)y and U, is an extension of U, by terms
each of which involves a variable x; with ¢ > m and so does not occur
in U,. Thus the sequence U,, meo defines a unit U of F,, and
A = UC, by the same type of argument used in the preceding section
in showing A = R*S*. But then A ~ C in F,, which is a contradiction.
Hence factorization into primes exists and s unique in the rings £
and F,, up to order and units.
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ON CONTINUATION OF BOUNDARY VALUES
FOR PARTIAL DIFFERENTIAL OPERATORS

H. O. CORDES

Let
(1) L = 3, a(®)3/ow, + b(z)

be a first order partial differential operator acting on m-component
vector functions and defined in a bounded domain D with smooth
boundary I'. Suppose the m x m-matrices a,(x) are hermitian sym-
metric and continuously differentiable in D + I". Further let the m xm-
matrix b(x) be bounded and measurable over D + I".

Recently K. O. Friedrichs [3] has developed a theory of boundary
value problems of the type

(L — ayu = f, xeD

(2) Tu =0, xel

where « denotes a nonvanishing real constant and T a certain m x m-
matrix defined all over the boundary 7 and satisfying certain further
conditions. Concurrently the author worked on the same type of bounda-
ry value problem from a different approach extending Friedrich’s re-
sults to the case of nonlocal boundary conditions [1].

Study of these extensions showed that investigation of the follow-
ing problem is of basic importance for the author’s method:

The question is asked whether a given m-component vector function
@ defined on the boundary I’ can be continued into the domain D to
become a classical solution u of the equation

L(w) = f

where f is any arbitrary measurable function defined and squared in-
tegrable over D, which is not given in advance but may be defined
after @ has been fixed.

Obviously this question is trivially answered ‘‘yes’’ if the boundary
and the boundary function are sufficiently smooth. On the other hand
if this is not the case, counter examples can be given. It is trivial to
find counter examples for special nonelliptic systems but one also can
find some for elliptic systems. For instance if the boundary functions
Uy, v, on the periphery of the unit circle x* + y* = 1 are defined by

(3) u, = a(d) sin /2, v, = — a(d) cos /2, 0<9<2r

Received January 12, 1959. This paper has been prepared under the sponsorship of
the Office of Naval Research, Contract No. Nonr 2-228(09).
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and if a(J) is piecewise continuous and has a jump for any &, # 0, 27,
then it will be shown in §4 that there does not exist any couple u, v
of real or complex valued functions both being defined and continuously
differentiable in the open unit disk 2* + %* < 1 and such that

(2) —U Vv =f, Uyt V=g

both are squared integrable over «? 4+ %* < 1;

(b) u, v are uniformly bounded on #* + %* < 1 and
(c) lim u(r cos &, 7 sin &) = uy()

r—1

lim v(r cos &, 7 sin F) = v(P)

r-1

almost everywhere on 0 < ¢ < 2rx.

Considering this problem more carefully it shows that the essential
reason for this continuation to be impossible is the following:

The above problem can be connected with the differential operator

(5) L = a,0/6x + a9y

with a,, a, being the matrices

-1 0 0 1
(6) a=("y 1) @=( o)
Using this operator notation we can say that the equation
(7) Ly =

with ¢, 4» being two component vector functions has no classical solu-
tion, defined in the unit disk and achieving the boundary values defined
by

(8) P(@, ¥) = (U9, v(¥#)) @ =cosd,y =sind
in the sense of the conditions (a), (b), and (c) mentioned above.

If we define

(9) A() = a,cos ¢ + a,sin &
(10) A(®) = a,co8 9 — a, sin &
then

11) L = A@®)afor + r~A)a[od .

Hence A(¢) is the coefficient of the derivative in the direction
normal to the boundary.
We note that A(J) is a non-singular (even orthogonal) matrix for
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every . It will follow from our development that this is the reason why a
continuation of discontinuous boundary values becomes impossible. If
for some more general operator L the matrix which corresponds to A(#)
is singular on a point or on a set of points then this set can be allowed
to contain discontinuities of certain types. And conversely it will be
our main result that if ¢, is bounded measurable only at the boundary
and if in addition Ag, is Lipschitz continuous then a continuation in the
above sense is possible.

The main result is stated in Theorem 3.1. Essentially we will ob-

tain the continuation by use of the elementary solution of the parabolic
equation

(12) V*u = ou/ot .

We shall use this for a kind of mollifier. In §§1 and 2 we prove some
auxiliary results most of which will be known. In order to keep the
paper as self contained as possible most of the facts required have been
proved explicitely.

1. Auxiliary results. In this section we will establish some known
results which have to be used essentially in the following. Let

(1.1) =848+ ++0 + 8
and let the function

(1.2) O(s; ) = D(sy, + =+, 835 )
be defined by
1.3) O(s; t) = (4mt)~?2 exp (—|s|*/4t) .

It is known that this function @(s;t) is the elementary solution of
the parabolic equation

(1.4) Vi = iﬁ o0t = oufot .

First we note

LEmMMA 1.1.
(1.5) Slsl”‘e—lsl”e““zds = 27"x=?Pp(p 4+ 2)(p + 4) +++ (p + 2k — 2) .
Here the integral extends over the whole (s,, -+, s,)-space.

The proof of Lemma 1.1 can be obtained by repeated application

of Green’s formula.

LEMMA 1.2, Let
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(1.6) () =f(81 +2%,85)

be a (scalar) complex valued bounded measurable funmction defined and
nonnegative for

(L.7) <8< o, i=1,p.

Let s, be any point and let 4 denote the cube

(1.8) Is, — 831 <9, g=1---p.
Statement. If

(1.9) lim a-pS f(s)ds =0
80 4
then
(1.10) limS D(s, — ' £)f(s')ds’ = 0
t-0 J4

the integral in (1.10) being taken over the whole s-space.

Proof. 1t is obvious that we can restrict ourself to the case s, = 0.
Now, (1.9) being satisfied, let

(1.11) 5(e) = sup | 575 riors] "
and let
(1.12) 7(8) = 8(8 + B(8))

v(8) is a strictly monotonically increasing function of §, and v¥(0) = 0.
Hence the inverse function & = 8(v) exists in some right neighborhood
of y =10 and 8(0) = 0. Also

(1.13) 72| Flo)ds = o + BE) 7O
< BO)— 0,8 —0 .

Hence

(1.14) lim 'y‘”SA f(s)ds = 0.

Let

(1.15) T =38y,

then

(1.16) limz(y) = o .

-0
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Let 4’ be the cube |s;|<v,7=1,---,p. Then by (1.15) 4 can be
written in the form

(1.17) 4d=1d
and (1.14) reads

(1.18) lim fy"’g f(s)ds =0.
y—0 T4’
Now for any given ¢ > 0 set v = 2, then

(1.19) S(b(so — s ) f(s)ds' = S(D(s; t)f(s)ds = SM, + S

C(r4’)

where C(z4') denotes the complement of the cube 74’ with respect to
the whole s-space. But remembering the definition of @(s;t) we obtain
for the first integral

(1.20) < (47r)-mfy-p§ f(s)ds

74’

and hence for ¢t—0, i.e., v — 0 the first integral tends to zero by
(1.18). On the other hand f(s) is assumed to be uniformly bounded,
hence the second integral can be estimated by

(1.21) cOS O(s; t)ds
C(74dr)
< 00(471')"’/27"’{S e“’%zdo}p

lolzmy
_ -p 2J —o? r
= a4m)™! l&algfe do} '
But by (1.16)
(1.22) T = 1(7) = (')

tends to o at £t — 0. Therefore the second integral also tends to zero.
This proves the lemma.

LEMMA 1.3. Let @(s;t) be as defined in (1.83) and let

(1.23) ¥ (s;t) = 0/0s,D(s; t) .
Then

(1.24) Sds(ﬁ(s — &' t)P(s — 8”; t) = (8mt) "2 exp (—|s’" — s"|*8t)

(1.25) Sds%(s — T (s — s 1)
—"(4t)-(8rt) (L — (s] — sV')/At) exp (—|s' — 8" /8F)
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both integrals being taken over the whole (s, ---, s,)-space.

Proof. We only remark that

(1.26) exp (—|s — s'P/4t) exp (—|s — §"'|*/4P)
= exp (—|s’ — s"[8t) exp (—| 5 [//2t)

where we denote
(1.27) §=s—1/2(s" +s").

Therefore the integral (1.24) equals to

(1.28) (Azct)?exp (—|s8" — s”[2/8t)Sexp (—|5}2t)d s
and clearly

(1.29) Sexp (—|51/26)ds = (2xt)?'® .

This proves the first formula. For the second formula we note that

(1.30) V,(s; t) = —(2t)"'(4mt) s, exp (—|s|*[4t) .
Now
(1.31) (s, — s)(s; — si') = 8 — 1/4(s} — sI')" .

Hence the integral (1.25) gets the form
(1.32) (2t)-*(4xt)-* exp (—|s’ — s”|*/8t)
X {Ss exp (—|8}/2t)ds—1/4(s; — s;’)zg exp (—| §]2/2t)d§} .

But
(1.33) Ssi exp (—|8}/2t)ds = t(2mt)” .
If we substitute (1.29) and (1.33) into (1.32) then we get
(1.34) = (4¢)"'(8xt)~**(1 — (s} — s}')*[4t) exp (— |8’ — s”|*/8t)
which completes the proof.

LEMMA 1.4, Let
(1.35) Q.(s; t) = (2t)~*(4xt)-*? exp (—|s|*/4t)
(1.36) Q4(s; t) = |s|M(2t)~*(4nt)-*"* exp (— |s|/4L) .

Statement,
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(1.37) Sds.Ql(s — D2 — 87 D, (5 — S — o
— —1/2d)d4(8t)""" exp (— |8 — 5" [}/8¢))

ey

D
ds(s — 5 2,5 — 55 I (5 — 56 — 57)

(1.38) —1/2d/dt[(8t)-7*{(8t)- s’ — 8" |*

+ p8t)7s" — "' + 1/4(p + 2)(p + 4)} exp (—|s" — s"[[8t)] .

i

Proof. We introduce the notation
(1.39) g = (2t)"%(s — 1/2(s" + s")), g* = (8t)~1*(s" — s")

and we observe that

(1.40) S (s, — s)(s — sV) = 2t((|6 [P — |o*]) .

f=1

Now if we substitute (1.36) and (1.40) into the integral (1.37) this in-
tegral equals

(1.41) (2t)"'(8n°t)~*"* exp (— ]o*lz)g(I&P — |o*[*) exp (— |6 ['d5)

= (8m)~?*(p[4t-P2-* — 1/16]s’ — 8" |*t~?*-?) exp (— |8’ — s |*/8t)
Here for the evaluation of
(1.42) S;& Pexp (— |6 P)déo

Lemma 1.1 has been applied. Now (1.41) is equal to the derivative in
(1.37) as can be proved by differentiation. Therefore (1.37) is proved.
For the second integral we get in a similar way the expression

(1.48) (2t)-*(8n’t)~-"* exp (— |o*?)

x (o= 0* [+ a* (1" = |o* ) exp (~|61ds .
Here we were using that
(1.44) s — s = (2t)"%(o — o%), s — 8" = (206 + o¥) .
We observe that
(1.45) |6 — 16 + a*F = (6] + |0* ) — 4(00*)
and further that

(1.46) S(?w*)z(l 0" —|o*[) exp (—|6[)do
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= S{er@rasr — 1o exp (—16 o}
= plo*{[o (ol — 10 ) exp (—161)d .
Here we used that
(1.47) S&iirk(l&l? — o) exp (—|6[)de = 0,7 = k .

Substituting (1.45) and (1.46) into (1.43) we get the expression

(1.48) (2t)"(87r2t)‘1’/2e"”*‘25(16 L

+ |o* [ + 2(p — 2)/p|6 Plo* )6 — [0* e Cdé
Further
(1.49) (o] + [o*|* + 2(p — 2)[pl 6 [|a* )| — ™)

=[6]"4-(» — Ypl6|'|o*[" — (p — DIp|oP|o*|* — |o*|".

We substitute this into (1.38) and then use Lemma 1.2 to evaluate the
integral, then this integral equals

(1.50) w2 {1/8p(p + 2)(p + 4)
+ 1/4(p + 2)(p — Dlo™*['—1/2(p — Hlo™|* — |a*['} .

On the other hand by calculating the derivative (1.38) we get the ex-
pression

(1.51)  —1/28n)~**{—1/2(p + 4)t-"*""| o™ [*—1[2p(p + 2}t~ o* !
— 1/8p(p + 2)(p + 4)t-71*~1} exp (—|0* )
—1/@20)@8xt)**{|o* " + plo*|* + 1/4(p + 2)(p + 4)| 0™ [} exp (— 0™ )
= —(2t)7'(8xt)~*"* exp (—|0* ) {|o* " + 1/2(p — 4)| 0™ [*
—1/4(p + 2)(p — Ylo*[* — 1/8p(p + 2)(p + 4)} .
If we substitute (1.50) into (1.49) and then compare the obtained ex-

pression with (1.51) we find that both are equal. Therefore formula
(1.38) is proved.

2. Lemmata about special integral operators. The following lemma
was used earlier by K. O. Friedrichs [2]. It can be considered to be

a translation of a theorem about infinite matrices going back to I.
Schur [6].

LEmMMA 2.1. Let
(2'1) .X(S;S’):.X(Sl,-",SP;S;,"',S;,°",S;})
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be defined and continuous for s, s’ € D,, D, being any region of (s, «--, 8,)-
space, and let

2.2) v = supS | X(s;8")|ds’
seno Dy
(2.3) 8 =su S | X(s; s")|ds .
t’€DyJ Dy
Statement.
(2.4) S dsH X(s, s’)u(s’)ds’|2 < o g lu(s) | ds
D Dy Dy

holds for every complex valued measurable function u(s) which is squared
integrable over D,.

Proof. By Schwarz’ inequality
[, as "< as(| XG50 u(s) sy
Dy Dy Dy

< SDods{SDJ X(s; &) |ds’ SDJ X(s; )| |u(s)] 2ds'}

S X(s; s"yu(s")ds’

<v SDOI u(s’)P(SDUIX(s; s’)[ds)ds’ < Suolu(s’)lzds' .

Now let @(s; t), ¥.(s;t); 2.(s;t), 2s;t) be defined as in (1.1), (1.23),
(1.35), and (1.36).

LEMMA 2.2.

(2.5) ;; SS dsdt . g%(s — & tyu(s')ds’

"< [ s

for every u(s) squared integrable over the whole s-space and having
a compact carrier. Here the integral Sdt is taken over the interval

0 <t <1, the integrals Sds and Sds’ are considered to be taken over
the whole s-space. ‘

Proof. First of all by Lemma 1.3:
2.6) ¥ “ dsdt ’ S T (s — 5 yu(s)ds’ l
i=1
= lim._, SS ds'ds"u(s")yu(s") Sl dt Epj S ds¥(s — s'; )y (s — s"; 1)
€ f=1

= lim., SS ds'ds"u(Zyu(s") Sl dt(4t)-(8t)-7"

X (p — (4t)7'|s' — 8" | exp(— |8’ — s"|?/8¢) .
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But as we saw in the proof of Lemma 1.4 (formula (1.51)) this integrand
is equal to

2.7 — 1/2d[dt {(8nt)~?"* exp (— |8’ — 8"'|*/8¢)}
and hence the right hand side equals to

— — 1/2lim Sgds’ds”u(s’)u(s”)

g0
x {(Bm)=*"exp (— |8 — " |*8) — (8me)" " exp (— ¢’ — s"|*[8)}
< 1/21lim S ds’u(s’)S ds"(8me)=?? exp (— |8’ — §"|?/8e)u(s")
< 1/21lim {S [u(s) |*ds(8re)-"
£-0

X Sds’

S exp (— |8 — s |¥/8e)u(s")ds" ’ }' .

Here we were using that the kernel exp (— |s’ — s”|*8) is positive de-
finite as can be easily seen by Lemma 1.3. Since

(2.8) S exp (— |8 — §"|%/8e)ds’ = S exp (— |8 — §"|*/8e)ds = (8xe)?!?
Lemma 2.1 yields

2.9)  (8me)” g ds’ | S exp (— |8 — s |*/8)u(s"

"< S|u(s)|2ds .
This completes the proof of Lemma 2.2.

LEmmA 2.3. Let
(2.10) 2(s; t) = d/dtd(s; t)

and let v(s) be Lipschitz continuous over the whole (s, «--, 8,)-space and
with compact carrier.

Statement.

2.11) SS dsdtlgds’.@(s — & t)v(s)r <p S S:l0vjos,|"ds .

Proof. Since @(s;t) is a solution of the parabolic equation (1.29)
we get

(2.12) As;t) = 21 8/08.7 (s; )

and hence by Green’s formula
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(2.13) gds’Q(s — o5 () = 3 S Vs — s'; tywy(s)ds’
where we denote

(2.14) v(3) = 8/08,((s)) .
Consequently

(2.15) H dsdt

S ds'Q(s — §'; it)v(s’)l2

IN

> SS dsdt] S as'l'y(s — s'; t)vt(s’)

=1

» > (Z SS dsdt“ ds'¥ (s — s'; t)vz(s')r)

=1

I

<p Zp“ S|8v/asi |*ds

which prove the lemma.
In the following ¢ always denotes a constant not depending on u(s).

LEMMA 2.4.
(2.16) SS det]S ds'Q2(s — s'; t)(s; — s;)u(s’)l2 <c Slu(s)l"’ds

for any arbitrary w(s) with compact carrier and squared integrable over
the s-space.

Proof. Clearly

(2.17) Qs; t) = d[dtd(s; t)

= (4zt)~"*(|s|*/(4t)" — p/(2t)) exp (— |s|*/4¢)
= 2y(s; ) — pe(s; ¢) .

Hence the integral in (2.16) can be estimated by
(2.18) 2%, SS dsdtl S ds'Qy(s — 85 £)(s, — s;)u(s')|2

+ op? ; “ dsdt

S ds'Qi(s — s'; t)(s; — spu(s’) 2

Now this can be written in the form
(219)  2lim SS ds'ds" (& yu(s")
x [t 32 [ dss — 515 00,6 — 575 06, — si)s, — 1)

+ 2p*lim SS ds'ds"u(s")u(s")
€-»0
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X S:dt ﬁ‘, X dsi(s — 8'; £)2(s — 8"; t)(s; — si)(s; — s8) .

We apply Lemma 1.4 and this equals
2.20) — limS ds'ds" a5 )u(s")
g—0

x {@m)""Ey(|s — §'|*/8) — (8me) ""E(|s” — s”|[8e)}
x exp(— |8’ — s”|*[8¢)

where E,(a) means a certain polynomial in o with constant coefficients
and of degree two, the coefficients only depending on p. By a treat-
ment similar to the last expression of Lemma 2.3 we get the final
statement.

LEMMA 2.5.
(2.21) SS dsdt‘Sds'lQ(s — 8 t)||s — s'|"*ul(s) ’
< oe) S [u(s) | ds

for any positive € and for any arbitrary u(s) with compact carrier and
squared integrable over the whole space, c(¢) being a constant indepen-
dent of u(s).

Proof. Clearly it suffices to prove the corresponding inequality with

Qs — §'; t) replaced by 2,s — s’;t),7 =1,2. In order to achieve these
estimates we again use the notation (1.49) and estimate as follows:

(2.22) SdSI-Q:(S — 85 )12 — s"; O [lls — &'[*[s — 8”70+

= (2t)-*4(8°t)~?" exp (— | s’ — s”|*/8t) S dde 15"

x {(01* + |o* ) — 4Bo*y} eror
= (26)+*(8a) " exp (— |&' — 8" |*[81)J(s" — 5'|*[8t)

where
(2.23) J(|o*|) = Scilé‘<a"‘9*2{(|r}]2 + [a*]2) — AGa*yaron
< Sd&exp(— 161{|6]* + |o* |2 a+o
< 2‘-’§d&exp(-— (G190 [*+* + 20| g*|*** Sd& exp (— 6%

< 7€)t (8nt) """ exp (— [s" — 8" [*8[t)
+ (o)t (8mt) " | 8" + 8" |*[8t]'* exp (— |8" — " |*[8¢) .
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Here Hoelders inequality has been employed. Hence (2.22) can be
estimated as follows:

SS dsdt ' [ as

+ 7,(¢) S:dtt"‘l SS ds'ds" u(s")u(s")(8xt)-?"* exp (— |s’ — s”|%8t)

(s — s'; t)tls — s'|**u(s’) ’

+ 7,6 S‘dtte—l SS ds'ds" (5 )u(s")
0
x (8xt)=?*(|s" — s |*[8t)'** exp (— |s' — s"'|*/8t)
< 'y(e)gldtte‘l S [u|*ds = vy(g)** S |u(s)|*ds .
0
Here again Lemma 2.1 and Lemma 1.1 were employed. A quite analo-
gous argument is possible for Qs — s';t); therefore Lemma 2.5 is
proved.
LEmMMA 2.6.

(2.25) SS t*dsdt H Qs — §; tyu(s)ds’ '2 <c glu(s)lzds

for arbitrary u(s) with compact carrier squared integrable over the whole
s-space.

Proof. Again it suffices to prove this inequality for £ replaced by
2, and 2,. Now

(2.26) S dsQy(s — 83 )2s — s"; )

= 207870 exp (— | — " %80) | dir exp (— |51
= (2¢)~*(8nt)"* exp (— |8’ — §""|*8¢) .

Hence by Lemma 2.1:

(2.27) SS ds'ds"u(s"yu(s") Sds.Ql(s — 85 t)2(s — 8" t)
< @) |ue)ds .

Consequently

(2.28) SS tzdsdtIS Qs — 83 tyu()ds'|

< 1/4S|u(s)|2ds .
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Again a similar argument proves the corresponding inequality for £,;
therefore Lemma 2.6 is proved.
We finally use the preceding lemmata to establish

LEMMmA 2.7. Let
(2.29) A(s; ) = ((auls; 1))

be an m x m-matriz with coefficients a.(s; t) having uniformly Hoelder
continuous and uniformly bounded first partial derivatives in the
domain

(230) Dy = {s,+*+,8,;t9 — o0 <5, < + 0, k=1,+4,p;0<t <1} .
Let
(2.31) u(s) = (Us(8), ===, Un(8))

be an m-component vector function having a compact carrier and being
squared integrable over the whole (s, ---, s,)-space. Let the vector
function

(2.32) A(s; 0)u(s) = v(s)

be Lipschitz continuous over the whole (s,, ---, s,)-space.

Statement. There exist two constants c¢,, ¢, which are independent
of u(s) such that

(2.33) SS dsdt,A(s; ) S ds'Q(s — &' t)u(s’)r

»
=

<o (lu@ds + e, 3 | [ovos,|ds .
Proof. We decompose as follows:
230 AGsit) | ds'2s — o' tuls) = [ 966 = &' ol
(A5 ) — AGs3 0) | 2s — o' u(s)ds’
+ 526 - o6 - shus)as
+ | 26 - o3 DA 0) - A3 0)
— 35 (s — s0)9/0s1A(s'; Ou(s')ds’

where



ON CONTINUATION OF BOUNDARY VALUES 1001

(2.35) v(s) = A(s; 0)u(s), u(s) = [9/0si(A(s; 0))]u(s) .
By our assumption for A(s;t) we get

(2.36) [(A(s; t) — A(s; O)w]| < ct|w]

and

@371)  |[A(s: 0) — A(s'; 0) — 31 (s, — s)0/0s(A(s'; O]
< cls — ] u(s)]

Therefore we can use the Lemmata 2.3, 2.4, 2.5, and 2.6 respectively
to estimate the integrals in (2.33) for the succeeding terms in (2.34) by

either ¢ S |u(s)|* ds or S|6v/68i|2ds. Hence Lemma 2.7 is proved.

LEMMA 2.8. Let u(s) be a bounded measurable m-component vector
Sfunction defined in the whole s-space and let it have a compact carrier.
Further, with the notations of Lemma 2.7, let

(2.38) v(8) = A(s; 0)u(s)
be Lipschitz continuous over the whole s-space.
Let
(2.39) u(s; t) = S(D(s — §'; tyu(s')ds' .
Then
(2.40) lim u(s; t) = u(s) almost everywhere
t—0
and
(2.41) v(s; t) = A(s; thu(s; t)

is continuous all over in the domain D, defined in (2.30) and its boundary.

Proof. Let ¢ > 0 be given. Since u(s) is bounded and measurable,
by Lusin’s theorem a measurable set E. of p-dimensional measure m(E:)
less than ¢ exists such that u(s) is continuous on the complement C(&:)
of E. with respect to the s-space. If x(s) denotes the characteristic
function of E. and if 4 denotes the cube with sides 28 defined in (1.8),
then by well known facts

(2.42) limB‘pS Y(s)ds = 0
80 4

for every s, € C(E. + N.) where N, denotes a certain nullset. We will
show that for every s, € C(E. + E.) relation (2.40) holds. This will
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prove the first statement of the lemma, because then obviously it is
possible to construct a monotonically decreasing sequence of sets which
converges toward a nullset and such that after exempting any set of
the sequence the statement (2.40) holds.

Now, s, € C(N. + E.) being given, decompose as follows:

(2.43) S(D(so — 8" thu(s)ds' = S S + S
C(E.)N4 ByN4y o4y
where 4, denotes the cube (1.8) with side 8 = §,. Then
(2.44) S = 1, S D(s, — §; t)ds'
0(Eg)N 4, 0CEB;)N 4y

where 1, denotes a mean value of u(s) in the cube 4,.
But since w is continuous in C(E.) N 4 it follows that
(2.45) [y, — u(se)| < ¢

if 8, > 0 is sufficiently small. Also

(2.46) D(s, — 83 t)ds' < S@(s,, —sit)ds = 1.

SC(Es)ﬂdo

Consequently, using (2.44) and (2.46) we get
(2.47)

S D(s, — §'; Hyu(sds" — u(s,)
0(BIN4,

<y — )|+ o D6, — ' g
+c Sm )@(s — &' t)ds'

with ¢ = sup|u(s)|. Finally for the second and third integral in (2.43)
we obtain estimates

(2.48) S <o S O(s — '; tyy(s')ds’
By N4, 4
and
(2.49) S < cg O(s — ' t)ds’ .
o(dp) o4y

Hence by (2.43), (2.47), (2.48), and (2.49)

(2.50) ]S(D(s — 8 byu(s)ds’ — u(s,)

< [t — uls) 26| 0(s — o5 (s

+ 2c§ B(s — &5 t)ds’ .
C(4y
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Choosing first §, sufficiently small the first term can be made arbi-
trarily small; then keeping §, fixed by Lemma 1.2 and (2.42) the second
term also can be made arbitraily small by choosing ¢t small. Also the
last term for fixed &, becomes arbitrarily small if ¢ tends to zero.
Hence formula (2.40) is proved.

In order to prove the continuity of (2.41) we decompose

(2.51) v(s; t) = S@(s — 8’5 Hu(s')ds’
-+ S@(s — 8 t) (A(s; t) — A(s"; 0)u(s’)ds’ .

Since w(s) is assumed to be Lipschitz continuous, the first term obuiously
is a continuous function in D,. The second term is also continuous for
every t > 0. But since u(s) is assumed to be bounded we get

(2.52) S(D(s — o5 1) (A(s; t) — A(s's O)u(s) ds’

<ct S(D(s — 8’ t)yds' + c’Sd?(s — 8 t)|s—s|ds
="t et ——0, t— 0 .

Therefore the continuity is also proved for ¢ = 0. This proves the
lemma.

3. A continuation theorem. Let D be a bounded domain of the
(2, +--, x,)-space with a twice continuously differentiable boundary I
which consits of a finite number of simple nonintersecting hyper surfaces.
More specifically we assume that the boundary I” has second derivatives
satisfying a uniform Hoelder condition. Let

(3.1) a(®) = (@), i =1, --+, m, b(@) = ((bis(%)))

be m x m-matrices with complex coefficients defined in D + I'. Let
a,(x) be hermitian symmetric and its coefficients be continuously differen-
tiable in D + I" and let the derivatives satisfy a uniform Hoelder condi-
tion in D 4 I'. Let b(x) have continuous coefficients in D +4 I'. Let
A(xz), xe D + I be any hermitian symmetric m x m-matrix having con-
tinuously differentiable coefficients in D + I" and such that

(3.2) A(x) = ; a @) v,x), v e I

where v(x) = (vy(x), +++, v,(x)) denotes the exterior normal on I'. We
define the differential operator L, in ®, by

(3.3) Lo = g} a,(@)0u/dx, + b(x)u(x)
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for complex valued m-component vector functions
(3.4) u(@) = (uy(®), + =+, uy(2))

where D, is the space of all u(x) satisfying the following conditions:
(a) u, ou/ox;,, 1 =1, +--, n, continuous in D.
(b) wu(x) uniformly bounded in D.
(¢) lim.,,u(x — ev) = u(x) for every xe ', except possibily on an
n-1-dimensional null set.
(d) v(x) = A(x)u(x) is continuous on D + I’

() g | L [P dz < oo.
D
We prove the following

THEOREM 3.1. Let u,x) be an m-component vector function which
1s defined measurable and bounded on I' and for which

(3.5) vy() = A(@)uq(x)

18 Lipschitz continuous on I.
Then there exists a function w(x)e Dy, such that

(3.6) u(x) = uyx) on I .

Proof. We consider any arbitray point z,€ I". There is a certain
neighborhood

3.7) U,=1{x3 |z —x]<Le}

which can be mapped by a twice Hoelder continuously differentiable one
to one mapping

(3.8) ¥ = y(x)

onto a bounded region in the (y,, -+, ¥,)-space in such a way that the
point x, goes into the origin y = (0, ---, 0), the intersection

(3.9) r,=r,nu,

into a certain neighborhood of (0, ---,0) on the hyperplane y, = 0, and
the intersection

(3.10) D, =D+ N U,

into a certain half neighborhood of (0, ---,0) satisfying y, > 0. We
also can assume that the Jacobian does not vanish.

(3.11) det ((9y,/o,) £ 0, ye D, + Iy -
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The image y(D,) of D, under this transformation contains a cube of
the type

(3.12) Q, ={ye0 <y, <), |y, | <1/29(x), v =2, -+, n} .

We denote the intersection of Q, with the hyperplane y, = 0 by g, and
we set

(3'13) W(QIO) = ;9;01 x(qwﬂ) = qfco

where © = z(y) denotes the inverse transformation of (3.8). There is
a hypersphere

(3.14) Uiy ={za|e — x| < 9'(x)}
such that
(3.15) D, =D, n U, c O,

and such that the same inclusion still holds for %'(x,) being replaced by
a somewhat larger number.

This construction can be employed for every x,el’. Since I' is a
bounded closed set, the whole I" can be covered by the interior points
of a finite number of spheres

(3.16) U,,v=1 -+, N.
There is a decomposition of the identity, i.e., a set of N functions
(3.17) p(x), v=1,+¢, N

being defined and infinitely differentiable in the whole (x,, ---, x,)-space
and such that

(3.18) @,(x) = 0 outside of U;v

and

(3.19) S o @) =1onT.
V=]

Now any vector function u,(x) being given which satisfies the conditions
of the Theorem 3.1, define

(3.20) Uy o(2) = ufx)py (), xel’, yv=1,+.--, N.

Clearly wu, () also satisfies the assumptions of Theorem 3.1, especially
because

(3.21) A(x)uy, o) = (A@)u(x))Py(2) .

We will prove that every u, () can be continued to a function u,(x) € Dy,
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in the sense of the assertion. This obviously will prove Theorem 3.1,
because the sum of all u,(x) will be the desired continuation of wu,(x).

Now, if we apply the mapping just defined in each particular
neighborhood D, then the vector function u,,(x) will be transformed
into a certain function

(3.22) Wy,o(Y) = Uy ,o(2(Y))

defined and measurable on y(I", ) which contains the cube g, . Since by
definition u, (%) = 0 outside of D’ and since

(3.23) y(D,) C Q,,

holds, the function w, (y) is defined for yeq,, and has its carrier in
the interior of this #»-1-dimensional cube. We can consider w,  (y) as
being defined on the whole hyperplane y, = 0 by setting it equal to zero
outside of q,,. We would like to apply the various lemmata of § 2. In
order to do this we first transform the operator L, to the new variables y.

(3.24) L = X a@(u)o]oy, + bw) e y(D.,)
where
(3.25) Qi) = 3. 0y, foman(=@); by) = b)) .

Further we define

(3.26) Aly) = A(x(), yey(D.,) ,

Clearly it is possible to continue the matrix A(y) to a matrix function
being defined, bounded and continuously differentiable on the whole
semispace

(3.27) 1 >0, —o<y, <+oo, v=2, -+, 1;

its first derivatives satisfying a uniform Hoelder condition in every
compact subregion. Now we remark that for

(3.28) Y =1t, Y, =8, yszsm“‘:yn:'gp;p:n_l

the functions w, ((y) and A(y) satisfy every assumption necessary for
application of Lemma 2.2, Lemma 2.7, and Lemma 2.8. Hence the
function

(3.29) w0,) = (@ =55 yw, () ds’

satisfies the following conditions:
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(a) w,, ow,/0y; continuous for ¥, > 0.

(B) w, uniformly bounded for y, > 0.

(v) lim..,w,(y — €z) exists for every y with ¥, = 0 and every vector
z,=1,2,=0, j=2,---, n with the possible exemption of a
set of m-1-dimensional measure zero which is contained in Tz, -

(8) wv(y) = A(y)w,(y) is continuous for y, > 0.

(¢)

330 | {lw@F -+ Alow, oy [+ 5| 0w oy, fdy <eo .

¥120

Finally take any infinitely differentiable function ¢,(y) being =1 on
y(D:,) and having its carrier in y(D,) and take

(3.31) w(Y) = ¢(Y)w(y) .

Clearly ,(y) also has the properties («), ---, (¢). Transform this func-
tion back to the old variables and continue it zero outside of D, ().
Call the new function u,(x). Then it is clear that

(3.32) Uy (%) = U, o(x) on I,
Also u,(x) satisfies the conditions (a), (b), (¢), and (d). Since

(333) L[ < d | A@oufonl + 5 oujoy '+ |u [ |

(3.30) yields the condition (¢) too. Hence u,(x) is the desired continua-
tion and Theorem 3.1 is proved.

4., A counterexample. Let D be the unit circle x? + x? < 1 and
accordingly I' be the periphery of the unit circle x! + 22 = 1. In D we
congider the operator defined in formula (5) of the introduction

4.1) L, = a,0[0%, + a,0]0x,
with
(4.2) a, = (‘%) g’) azz((l) é)

Then the equation
(4.3) Lu=f
for the 2-component vector functions

(4.4) u = {U;, U}, = {fu, fz}
defined in D + ' is equivalent to the system



1008 H. O. CORDES

(4.5) — 0,0z, + 0u,/0x, = f;
ou,[0x, 4 Ou,/ox, = f, .

Hence for real valued u,, u, we get
(4.6) SD(ff + f)dx = Sn(aul/aoc1 — OU,[0,)* + (Ou,/0x, + Ou,/0x,)* dx
= gl)[(aullfml)2 + (0u,/0x,)* + (0u,/0x,)* + (Ou./0x,)*] dx
+ ZSD(ﬁul/axﬁuz/axl — Ou, 0w, du,/0x,) da .

Now, assuming u twice continuously differentiable in D + /" we can
apply Green’s formula to the last integral:

4.7) S (Ou,/ox.0u,/0x, — 0u,/0x,0uU,/0x,) dx
D

= S U (X,0U,[0%, — X,0U,[0U,[0x,) do .
r

Hence the last integral in (4.6) is equal to

(4.8) ZS U (2,0U,[0, — 2,0U,[0%,) do = — 2suu18u2/619 d
r 0

where

4.9) d = are tg x,fx, .

Now we impose on u the condition

(4.10) U, sin /2 + u,cos 92 =0,

Then

(4.11) —ZSMulauz/a&d& = (" a0z cot 92
0 o0

_ ~Y7tu§8/6t9(00t 812) d = 1/25"”‘ug sin=29/2 d .
o 0

This integration by parts is legitimate because the condition (4.10) implies
u,=0at ¢=0, 2r. Since u is supposed to have continuous first
derivatives it follows that u?sin-%%/2 remains bounded also for & = 0, 2x.
Consequently

(4.12) S | Lo do = g | FIP da
= | [ujony + @ujory + @ujow) + @uor)y) da
+ 1/25%; sin-*9/2 do .

Since the last integral is nonnegative we obtain
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(4.13) S | Lo [P do > S [(Oufo,): + (Ouaf015,)°
+ (0usfoz)’ + (Gufo)] dev .

Next assume ¢ = {¢,, ®,} to be some function satisfying the conditions
(a), (b), (¢), and (e), of Theorem 3.1 applied to the special operator L,
defined in (4.1). Also assume that on the boundary I

(4.14) @, = a(F) cos I2, ¢, =— a(H)sind[2, 0 < I < 27 .

Let a(J) be real valued and piecewise continuous but not continuous.
Then we will show that this leads to a contradiction.

First of all the vector function ¢ can be assumed to be real valued
in D+ I because any complex valued such ¢ being given, 1/2(p + ¢)
would satisfy the same conditions as ¢ and would be real valued.

Now, if L. in D, denotes the restriction of the operator L, in O,
to the space ©, of all functions twice continuously differentiable in
D + I' and satisfying the boundary conditions (4.10) then we obtain a
dissipative operator in the sense of R. S. Phillips [4], which is characterized
by local boundary conditions. For the matrix

(4.15) A= i ay, = a,cos ¥ + a, sin &
i=1

we get the representation

—cos ¢ sin & sin® /2, sin ¢/2 cos /2
(4.16) A®S) = ( ) - < )

~ \sin /2 cos /2, cos® /2
<cos2 3/2, —sin¥/2 cos &/2)
—sin #/2 cos ¢/2, sin®H/2

sin ¢ cos &

and it is easy to see that the two matrices of this last decomposition
are identical with the matrices P, and N, respectively which project
orthogonally onto the spaces of all eigenvectors corresponding to the
eigenvalues +1 and —1 respectively. The boundary condition

(4.17) Pu=0on I’

obviously is equivalent to the condition (4.10). Hence the inner product
uAu is <0 for all u satisfying the condition (4.17) (or (4.10)). Hence

(4.18) Qu, u) = 2Re§ aLo dz = S 7Aude <0,
D r
which proves that L_ in 9, is dissipative. On the other hand in the

sense of K. O. Kriedrichs [3] this boundary condition is ‘‘admissible’’,
because
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(4.19) A=P,— N, P,>0, Ny >0.

Also the rank of A is constantly equal to two.
Hence if L* in D, denotes the adjoint of L_ in , with respect

to the inner product
(4.20) Cuy v> = S w do
D

and if L, in D, denotes the operator analogous to L. in D, with the
boundary condition (4.17) replaced by Nju = 0, xe ", then
(4.21) L** = L* .

But ¢ is a function of L* because from the conditions (a), (b), (¢) and
(e) it follows immediately that

(4.22) (o, Lud> + (Lo, uy = Spg_oAu do =0
for all we®, . Hence (4.21) implies
(4.23) P E Dyxx .

Therefore a sequence ¢"e P, exists such that

(4.24) " — @, " —9pp— 0, n—
(4.25) L(¢" — 9), Ly(9" — 9> — 0, n—> oo .
Now (4.25) implies

(4.26) {Ly(p™ — ™), L(¢p" — ™)) — 0, n, m — oo .
Let
(4.27) grm = gn — g

then (4.13) yields

(4.28) (09" [0, 09" [0w,> + (O™ [0, O™ [0,

>0, n, m — o .,
Hence d¢"/ox,, 0¢"[0x, converges in the square mean. Let
(4.29) 0p™[0x, —— Y, B — o ,

and let w be any vector function continuously differentiable in D + I”
and vanishing outside of some circle |z| < r < 1. Then

(4.30) 0" [0y, uy =— {p", oulox;> .

For n — « we get
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(4.31) lp, uy =— Lo, ouloxy .

But ¢ is continuously differentiable for |x| < 1. Hence, using the
special properties of u, we get

(4.32) G, 1y =— L, qufomy = Opfow,, u .
Or
(4.33) G — Bplom,, up = 0

for all v with the above properties. But the set of all such « is dense
in the space L, hence

(4.34) Y = 0pfox, .
In the same manner we obtain the relation
(4.35) 0" |0x, — 0|0z, .

Hence the derivatives 0¢/ox, 0p/0x, are squared integrable and the
Dirichlet-integral of ¢ exists.

But it is a well known fact that a function ¢ with the properties
(a), (b), (¢) which is piecewise continuous on the periphery of the unit
circle and has a jump, cannot have the Dirichlet integral existing.
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n-PARAMETER FAMILIES AND BEST APPROXIMATION

Puinip C. CURTIS, JR.

1. Introduction. Let f(x) be a real valued continuous function
defined on a closed finite interval and let F'be a class of approximating
functions for f. Suppose there exists a function g, e F such that
Hf — goll =1infer Il f — g1l where || f]| = sup.eranlf(®)|. The problem
of characterizing ¢, and giving conditions that it be unique is classical
and has received attention from many authors. The well-known results
for polynomials were generalized by Bernstein [2] to ¢ Chebyshev’’
systems. Later Motzkin [10] and Tornheim [15] further extended these
theorems to not necessarily linear families of continuous functions. The
only essential requirement was that to any «-points in the plane with
distinet abscissae lying in a finite interval [a, b], there should be a uni-
que function in the class F passing through the given points. Such
a system F' is called an m-parameter family. Constructive methods for
determining the function from F of best approximation to f, due to
Remes [14] in the polynomial case, were extended to the above situation
by Novodvorskii and Pinsker [13]. In this paper and in the paper of
Motzkin two apparently additional requirements were placed on the
system F. One, a continuity condition, was shown by Tornheim to fol-
low from the axioms of F. The other, a condition on the multiplicity
of the roots of f— g,f, g€ F, also follows from the definitions as will
be shown in §2. In §3 the characterization of g, is discussed. Methods
for constructing g, are given in §4. These are based on the maximiza-
tion of a certain function of » + 1 variables. In §5 it is shown that
an n-parameter familiy has a unique function of best approximation to
an arbitrary continuous function in the L, norm if and only if F'is
the translate of a linear n-parameter family. The problem of the ex-
istence of m-parameter families on general compact spaces S is discussed
in §6. Under additional hypotheses on F' it is shown that S must be
homeomorphic to a subset of the circumference of the unit circle. If n
is even this subset must be proper.

2. n-parameter families functions. Following Tornheim we define,
for a fixed integer » > 1, an n-parameter family of functions F to be
a class of real valued continuous functions on the finite interval [a, b]
such that for any real numbers

Ty oo, Ly Yy 200y Yy @ 0, < Xy < 000 <xn£b
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there exists a unique fe F such that f(x,)) =y, t=1,---,%. For con-
venience we will usually take [a, b] to be the interval [0,1]. We will
include the possibility that 0 and 1 are identified. Then of course x, + x,,
and the functions of F' are periodic of period 1. We call such a family
a periodic n-parameter family. If we wish to consider specifically the
case when 0 and 1 are not identified, we will refer to # as an ordinary
n-parameter family. If F is a linear vector space of functions then we
will call F' a linear n-parameter family (e.g., polynomials of degree <
# — 1). The following continuity theorem of Tornheim [15] is a generali-
zation of a result of Beckenbach [1] for »n = 2,

THEOREM 1. Let F be an n-parameter family on [0,1]. For
k= 17 27 *t ey let xgk)y *ty x;bk)! ?/5’“; *c*y ’!/Zk), 0 < xgk) L oo < x;k) < 1

be given sequences of real numbers and let f, be the unique function
from F such that

flc(mgk)):ygk) t=1,¢2,1.
Suppose for each

i, imat® = 2, limyl® =y, and 0 < 2, < v <2, <1 2
—o0 k—o0

Let f be the umique function from F suchthat f(x) =y, 1 =1, -+, n.

Then lim .. fr = f uniformly on [0, 1].

Proof. If 0 and 1 are not identified the proof is given in [15].
Therefore, let 0 and 1 be identified and the functions of F' be periodic.
Suppose f;, does not tend uniformly to f. For some ¢ > 0, there exists
a sequence {u,} C [0, 1] such that for each k, | f(u,) — fi(ue)| > ¢. Since
a subsequence of {u,} converges, we may assume {u,} does and let
# = lim,_,.u,. By a suitable rotation of [0, 1] we may assume u, ©,,*++,%,
all lie in the interior of an interval [a, b],0 < a < b < 1. But F forms
an ordinary n-parameter family on [a, b] and hence f, — f uniformly on
[a, b] which is a contradiction. This completes the proof.

We now verify that n-parameter families are unisolvent in the sense
of Motzkin [10]. Let f,ge F and let x be an interior point of [0, 1].
If # is a zero of f — g and if f — g does not change sign in a suitably
small neighborhood about x then we will say the zero x has multiplicity
2, otherwise we say x has multiplicity 1. If 0 and 1 are not identified
and either is a zero of f — g, then the multiplicity is taken to be 1.
We shall denote the sum of the multiplicities of the zeros of f— g
within an interval [a, b] by m,.(f, 9). The following generalized con-

1 If 0,1 are identified we assume z(*> <1 and z, <1,
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vexity notion is also useful. A continuous function % will be said to be
convex to F' if h intersects no function of F at more than = points.
The following result extends Theorems 2 and 3 of [15].

THEOREM 2. Let F be an n-parameter family on [0,1] and let h
be convex to F. Then for any f, g€ F,m, (f, h) <n and m, (f, 9) <n—1.

Proof. We assume first that 0 and 1 are not identified and that F'
is an ordinary mn-parameter family. We verify the first statement by
induction on n. For n = 1 the result follows by [15] Theorem 2. Hence,
let & be a continuous function convex to a &k + 1 parameter family F
and assume the conclusion holds for all k-parameter families. For fe F
let ,,7=1, ---,m, be the zeros of f— I ordered from left to right
and assume m,(f, h) >k + 1. Choose a point % such that x, < u < ..
If F,= {ge Flg(x,) = h(x,)}, then F| is a k-parameter family on [u, 1].
feF, and h is convex to F|. By our inductive assumption m, (f, h) <
k. Therefore x, must be a zero of f — &, and m,, (f, h) =k + 2. By
the same reasoning we may assume zx,, is a double zero of f — k.

We now construct a set E of &k points from [0, 1] in the following
manner. First choose an ¢ > 0 such that =, + 2: < %,., — 26,2 =1, «-»,
m — 1. If x is a single zero of f — h then let x belong to E. If z is
a double zero of f — h,x = x, %, let x+4+¢ and x —¢c belong to E.
We add the points x, + ¢, %, —e. Since Myren —o(fi h) =k —2 it
is clear that K contains exactly &k points. Choose a point ', 2, + & <
2’ < x,—¢. Let f, be the unique function in F' such that

fa(®) = f(x), xe &

Fi@') = f(&) + Ssgn @) = hia)]
Now f, —f has k zeros which must all be simple by [15] Theorem 3,
Within the interval [z, z,]f, — & has exactly k simple zeros since
fn» was chosen so that at the points @, + 2¢,¢ =2, +--, m — 1, x;, + Z¢,
2, — 2¢, f lies between f, and h. Hence for 0 <z <, and z, <2 <1, f,
and % are on the same side of f (i.e., sgn[f.(®) — f(x)] = sgn [h(x) — f(z)].
But by Theorem 1, f, tends uniformly to f as n— . Hence for =
sufficiently large f, — h must have at least &k + 2 zeros which is a con-
tradiction.

The case when 0 and 1 are identified and F is periodic causes no

difficulty. For if «, ---,x, are the zeros of f — h, using a suitable
rotation we may assume that there is an interval [a,b], such that

0<a<mw <o <2, <b<1l F is an ordinary n-parameter family on
[a, b] and m, . (f, h) = Mo, (S, h) < n.
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The verification of the second assertion is very similar to the above,
and we leave the details to the reader.

COROLLARY. There are no periodic n-parameter families when n is
an even integer.

Proof. Suppose false. Let F be a periodic n-parameter family and
n an even integer. Let fe F and choose x; ¢ = 1, .-+, n such that 0 <
T, < Xy < 0o <2, <1, Choose ge T such that g(x,) = f(x,) 1 =1, ---,
n —1, g(x,) = f(z,) +1. By Theorem 2, f — g changes sign at each of
the points %, ¢+ =1,---n — 1; and since f — g can have no other zeros
within [0, 1], g(1) > f(1). On the other hand ¢(0) < f(0) which is a
contradiction, since f, g are periodic of period 1.

3. Best approximation in the L. norm. If g is continuous on
[0,1], g€ F, then {g — f} forms a new mn-parameter family. Hence
without loss of generality we may consider the characterization and con-
struction of the function j” € F such that

NA 1l = inferllfll =8

We first adopt the following notation. If S c [0, 1]
8s = inf ¢, SUDes | f(E) 1.

Let T denote the class of vectors u = (uy, ««+, ,.,) satisfying the con-
dition that 0 <wu, < u, < +++ Uy+; < 1. The statements and proofs of the
results of this section are valid when F consists of continuous periodic
functions on [0,1]. We shall assume, however, that F' is an ordinary
n-parameter family and leave the details in the periodic case to the
reader.

The following two lemmas are appropriate generalizations of results
of de la Vallee Poussin [6] for polynomials. Where possible we refer
the reader to [13] for proofs.

LEMMA 1. Forany u = (U, »-+, Ups) € T there exists a unique fe F
and unique real number A such that f(u,) = (— 1)n-1=1,---,n+ 1.
Moreover |\ =8, and f is the only function in F with the property
that max,., ... pe1l f (W)l = 8.. In addition suppose for k=1,2, -+« that

u® = WP, -+, u)e T and f, @F)=(— 1)r®

Then if u® —>u and ue T, it follows that f, — f uniformly on [0, 1]
and A® — .
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LEMMA 2. Let ueT and a sequence of mnon-negative numbers \,
1=1,+++,n 4+ 1 be given. If there exists an fe F such that

Su)=(—Dni=1,-v-,n+1o0r flu)=(—1)*Ni=1+-,n+1
then either min )\, < 8, < maxi, or A, =8,7 =1, -, n + 1.

Proof. Lemma 2 is a restatement of Lemma 1 of [13]. Everything
in Lemma 1 except the facts that |A| = 8, and the function f satisfying
maX,.... .+ f(4;)| = 8, is unique is proved explicitly in [13]. To prove
the latter statements observe that if there is a g e F satisfying |g(u,)|<
Ix] then f(u;) — g(u) =(— 1N, 2 =1,---,n+ 1 where either »; >0,
1=1,2,---,m+1lor \;<0¢=1,2,---,n-+ 1. In either case by [12],
Lemma 1, f — ¢ must have at least n zeros between %, and u,., counting
multiplicity which is a contradiction.

For ue T we will usually denote the function f of Lemma 1 by f,.
Next we define a function &(u,, ---, %,.;) of » + 1 variables.

B(u) = 3(%1, M) un+1) =96, if u= (ulv *t un+l)e T
= ( otherwise .

If we restrict the points u, to lie in some subset S [0, 1], then
8(Uyy +» -, Uyyy) Will be denoted Ss(uy, » -+, Uysr).

LEMMA 3. 8(uy, * -+, Upsy) 18 continuous on R*+*

Proof. Assume that 8(u,, +--, #,+,) is not continuous at some point
w= (U, *=*, Ups;). We may assume 0 <u, <u, < -+ < U,yy, <1, and by
Lemma 1 we may assume that m(< n) of the points wu; are distinct.
Consequently &(#,, ++-, #,.;) = 0. Suppose there exists an ¢ >0 and
a sequence {u,} C T such that u, — u and Ou, = €. Let u$ be the 4th
coordinate of u,. Choose n points ), 0 < u, < --- < u, <1 such that
m of the points u; coincide with the m distinct points u,. Let f, be
the unique function in F such that f(u]) = 0. Choose » such that for
any ¢ |u; — u;| <7 implies |f(u,)]| < ¢/2. Choose k so large that all co-
ordinates of u, are within » neighborhoods of some coordinate of u’.
Then fuk(ui"’) — fo(u{®) = (= 1)\, where sgn A" =sgni{®, i =1, n.
As in the proof of Lemma 1 it follows that fuk — fo must have at least
n zeros within [0, 1] which is a contradiction.

Using the function &(u,, ---, #,.,) one can give a simple proof of the
Theorem of Motzkin and Tornheim characterizing the function f which
has minimum deviation from zero.

THEOREM 3. There exists a unique f € F such that || f | =inf el FH.
f 18 uniquely characterized by the fact that for some u = (U, +++, Ups1) €T
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Il_fll = 98,. u will have this property if and only if 6(uy, <+, Uys,) 18 AN
absolute maximum, and then f = f..

Proof. Since 8(u,, +--, %,.,) is a continuous function on a compact
set, its maximum is attained for some u = (u,, +-+, U,,) € T. Assert
| full = 8.. If || full > 8., then there is a point x' in [0,1] for which
| fu@) = |l full. We form a new vector w' €T by replacing one co-
ordinate u, of u by «' in the following way. If uw, < ' < Uy, 2 =1,+-+, 0
and sgn f,(u;) = sgnf,(x) then let w;=wu, 7+ and u;=2o". If
sgn f(u;) = (— 1) sgnfu () let w,=u, 7 #4+1 and uj,, =2'. If ' <
(T > Uyyr) a0d SEN fo(t,) = 8N fiu(#') (SN fulUnsr) = 58N fu(2")) let uf=wu,
J#1(#n+1) and = &' (Up., = @'). If sgnf(u) = (— 1) sgn fu(e')
(sgn fu(Ups:) = (— 1) sgn fo(2')) then let ) = o', u} = u;., j =2, -+, n+1
)= Uy, 7 =1, «+-, n, u,,, = x'). Now either f,(u}) = (— 1) N1 =1, -,
n+1or fu(u) =(—1)*"Nt=1,+++,n+ 1 where ), = 8§, or \; =|[ full.
Therefore by Lemma 2, 8, < 8, < || f.ll which contradicts the maximali-
ty of §,.

It now follows immediately that || f,|| = inf,c-llf]l and that f, is
the only such function with this property. For if f,e F and || £, || < || full
then || f,ll < 8, which contradicts Lemma 1. Moreover the same argu-
ment shows that if there exists an f,€ F' and a ve T such that || fill =&,
then || foll = inf e, || fIl. It is clear that é(v,, ---, v,.,) must be an ab-
solute maximum.

In the above theorem if ||f|| is replaced by || flls = sup.es|f(t)|
where S is any closed set of [0, 1] containing at least n + 1 points, then
the same conclusions hold. Here of course, the function 8(u,, «++, Uys+1)
is replaced by 8s(uy, *++, U,+,) and the points u, are assumed to be in S.
The following generalization of [11] Theorem 7.1 is therefore relevant.

THEOREM 4. Let S;, S be closed sets of [0,1] such that for each
k, S;, contains at least m + 1 points; S contains infinitely many points,
and S, CS. Let fy, f, be functions from F which minimize || f |5, 11 |ls
respectively. If for each ¢ > 0 there exists an integer k, such that for
k >k, each point ue S is at a distance less than € from some point of
S, than f,,—«)fo uniformly on [0, 1].

Proof. We assume 8; > 0. S, c S implies ds, < 8s. Choose u =
(Uyy =+, Upsy) € T, u; €S such that 8s(u,, «--, u,.,) is an absolute maximum.
Let u, = (¥, ««+,u))e T, u” e S, be chosen such that u, —u. By
Lemma 1, §,, — &, and since Ou, <85, 85, — 8,=0s. Let v,=(v{", «-+, v,
eT,v®eS, be chosen so that for each FZ, SSk(vi’“), «eo, 20 is an ab-

solute maximum. Extract any convergent subsequence Uy, with limit v.
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If v=(w, -+, v,4,), thenv,eS and 5, = 8s. Also fk, :kaj tends uni-
formly to f,, the function from F with minimum deviation on v. But
by the uniqueness of f,, f, =f,. The above argument shows that any
subsequence of { f,c} contains a refinement which converges to f},. Hence
lim,c_,c,(,f,C :f'o uniformly on [0, 1].

4. The estimation of f. In [13] Novodovorskii and Pinsker con-
sider a direct method, due to Remes [14] in the polynomial case, for the
estimation of f. However the following Lemma shows that f is con-
tinuously dependent on estimates of the best approximation. Hence if
u is a vector in T for which d(u) is an estimate of inf,c||f|], then the
solution of the equation f(u,) = (— 1)1 =1, ---, n+ 1 is the appropriate
estimate of f

LEMMA 4. Let {8,} be a sequence of nmon-negative numbers converg-
ing to 8 = inf,c, || fIl from below. If u, are wvectors in T for which
8(u,) = 8, then lim,.. f. = f uniformly on [0,1].

Proof. 1f the conclusion is false there exists a subsequence {u,c}
and a number ¢ > 0 such that || f fu,c || >e. But {ukj} may be further
refined to obtain a convergent subsequence of vectors. Calling this
{u,c } and letting u,= lim .., u,, we have by Lemma 1 &(u,) = lim ;... 6(x; ).
By Theorem 3 fu, = f which 1s a contradiction.

We shall consider two algorithms for estimating 8 and prove con-
vergence of both.

Each of these algorithms can be used efficiently for actual numerical
calculations. A detailed description of method 2 for polynomials on a finite
point set can be found in [5]. Also for polynomials on an interval
a maximization procedure has been announced by Bratton [3].

For both methods the following notation is convenient. For u =
(Uy, *++, Ups,) €T define for 5 =1, «--,n + 1.

89)(90) = O(ty, ==~ WUja1y Xy Ujrry = *, U 1) if Ujmg LT < Ujyg
= 0 otherwise

where we take u, = 0, u,,, = 1. We now form 7,(2) = max ., ... ,+; 64(¥).
From the continuity of &(u,, «--, u,.,) it follows that for each j, §’(x) is
continuous, and hence 7,(x) is continuous. Therefore there exists a point
2,0 <2a"<1 and integer 1 < m <% + 1 such that

ou(e) = max |18l = Izl

yeee,

For a given vector u we define u’' = (ul, +- -, u,,,) by setting w)=u,, 7 # m,
u, = &',
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THEOREM 5. If vectors u, are defined inductively in the above fashion
with w, € T chosen arbitrarily, then lim,.. 8(u,) exists and there exists
u,e T such that o(u) = lim,_. 8(w,). Furthermore &(u,) is an absolute
maximum of the function &(u).

Proof. {6(u;)} is a monotonically increasing, bounded sequence hence
convergent. If & = lim,_. d(u,), then a suitable subsequence {uk }, con-

verges to u, and 6(u,)=38. We now assert 7, (¥) converges uniformly to
J
Nu(®). It suffices to assume u; < # < u;.;. Then
17 () — %,cj(x)l = [max (& (%), &;'(),)) — maX(Sikj(x), 8:;;11(90))1
< 8L (®) — &, (@)| + 1857 (2) — & ()] .
J J

Since 8(u) is a uniformly continuous function the latter expression tends
to zero uniformly in z.

Hence
12, Il = Hm [} ] -
Joroo
But
e 1| = (a1 ) < B(at,,) < 7,
Therefore ||7,,| :limij(u,cJ)=8(uO). It now follows by the same

argument as in the proof of Theorem 3 that || f, || = 8(x) and by Theorem
3, &(u,) is a maximum.

For the second method of estimation of f we alter slightly our
definition of &,(x) and &."(x). We now define

On(®) = 8(x, Uy, oo=, Upyy) If 0 <0 <y
= 8(“2! Usy ***y Upt1y x) if Up 1 <zr<L 1

M x) = Uy, == o, Uy, ) if w, < <1
:S(x’uu“‘,un) if o<z < U .

The algorithm proceeds as follows. First let ¢ >0 be chosen. Select an
arbitrary vector we T. Maximize 8.(x) over its domain of definition. Let
2’ be a point for which &%(x) is a maximum. If 8i(x’) > (1 + ¢)d(u), replace
u, by z' forming a new vector «’. If not, let &’ = u. We now maximize
8%,(x) and continue inductively. Special attention is necessary for &2+'(x)
and &i(x). If ' is a point for which &7*}(x) is a maximum and &.*'(x) >
(1 + ¢)8(u), then ' is formed in the following way. If &’ > u, then
U=y, T = 1,00+, m, u,,,=2"; if 2’<u, then w'=u"u, = u;_, 1=2, <+, n+1.
In the latter case, the next function maximized is &,(x). If the first
case occurs then &L (x) is maximized. Let 2" be a point for which &,.(x).
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is a maximum and &L.(x") > (1 + ¢)8(u’). If x” < u, then u) = z" and
w' =u; 1 =2,8,-+,n+ 1. If " >u,,, thenu =u;,,2=1, -+, n and
U, = 2. For the first case the next function maximized is 82..(x); the
second case, 80)(x). If

o () < (1 + €)d(u) (Bu(x”) < (1 + €)d(u))

then we take u’ = u (v’ = w’). When there have been n 4 1 consecutive
maximizations with no change in the vector u, ¢ is now replaced by ¢/2
and the process is repeated. We now continue inductively and pass to
the limit as ¢/2* — 0.

THEOREM 6. The conclusions of Theorem 5 hold if the sequence {u}
18 chosen inductively in accordance with the above algorithm.

Proof. As before, lim,.,.0(u;) = 8 exists. We choose a particular
convergent subsequence {u,} of {u,}. For each j let u, be a vector
of {u,} such that for each 4, i =1,---,24+ 1 and all appropriate
x, B,i,kj(.x) <1+ 8/21)8(u,cj). The algorithm guarantees that for each integer
7 such a vector u, exists in the sequence {u,}. Since a refinement of
this sequence is convergent, we assume {u, j} converges. Then if u,, —>
u,, 8(u,) = 8. Suppose 8(u,) is not a maximum of &(u), then || f, || > 3(u,).
Choose 2" so that | fu.(x)| = || £|l, and form «’ by replacing one point,
the 4th say, of u, by 2’ in the manner of the proof of Theorem 3. Form
u;, , by replacing the ith coordinate of u, by 2’ Then u@j—»u’ and
8(u;cj) — &(u'). Therefore for j sufficiently large, since é(u’) > 9,

S') + &

oa;) > 200

On the other hand for each j there is a point x and an integef m such
that

(k) = 8, (@) < (1 + —;-) Su,,) < (1 n %)5 .

For j sufficiently large this is a contradiction, therefore || f, || = 8(u,)
and 8(u,) is an absolute maximum.

5. Approximation in L, y norm. For N>=u let x, «--, 2y be N
distinet points of [0,1]. In place of the sup norm let || £ || = {3, ] f(w,)| ?}V»
and assume p > 1. The fundamental problem to be considered here is
to give necessary and sufficient conditions that the function f e F for
which || f || = inf,epl| f || is unique. Now the image of F under the
mapping f — (f(x,), «+-, f(xy)) is a closed set in N dimensional Euclidean
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space. By a theorem of Motzkin [9] as generalized by Busemann [4],
to each point x e E, there will exist a unique nearest point in a given
set S ¢ E, with respect to a strictly convex metric if and only if S is
closed and convex. Hence f will be unique if and only if F is convex,
but for n-parameter families we can say more.?

THEOREM 7. An n-parameter family F is convex if and only if F
is the translate of o linear n-parameter family.

Proof. If F is the translate of a linear =n-parameter family, i.e.,
there exists a continuous g on [0, 1] and a linear w-parameter family Fj
such that each fe F can be written uniquely as f =g + f/, fe F,, then
F' is obviously convex. Conversely suppose F'is convex. Choose 7 dis-
tinct points x,, «+-, 2, in [0, 1]. Let f,, fi, +--, f» be the unique functions
of I' such that fi(z;,) =0,7 =1, --,n; fi(x;) =0, fork, j=1,---,n
where §,, is the Kronecker delta. We assert that each fe F has a rep-
resentation as

S=rf+ é‘lxk(fk — fo) where X\, = f(xs) .

If such a representation exists it is obviously unique. Also the vector
space spanned by f, — fo, * -, fn — fo, is obviously an n-parameter family
and the theorem is proved. To prove the assertion let

Fy = {feFif(mkH):f(xkn): :f(xn):()}
Fi={feF\f(z)) =0 j=+k}.

From the convexity of F, F is a convex one parameter family on a suitably
small interval containing z,. We assert fe Fy implies f = f, + M(fx — fo)
where )\, = f(x,). By convexity this is obviously true for 0 <), < 1.
For ), > 1 if fe F}, f(x,) = », then by convexity

fo= ;kf+<l— ;)f

or f = fo+ N(fi — So) If % <0,

or f = f,+ \(fs — fo). To finish the proof we apply an induction. As-
sume fe F, implies that f = f, + Sk, \,(x;, — «,) where f(x;) =\, and

2 For a discussion of related results see the article by Motzkin in the Symposium on
Numerical Approximation, University of Wisconsin Press, 1959.
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suppose ge F., and g(x,)=p,j=1,---,k+ 1. Then if g, =f +
lec=12#1(fj - fo)’ g, = fo + 2#k+1(flc+1 - fo) lt fOHOWS that

_ 0+
el
4 2

k+1

and ¢'(x,) = p,,7 =1, +++,k + 1. Therefore

kE+1

9=49 + (5 — fo) -

Jj=1

6. The existence of #%-parameter families on compact space. Let
fi, *++, [ benlinearly independent real valued continuous functions defin-
ed on a compact set S in finite dimensional Euclidean space. Let V be
the span of the functions f,, ---, f,. In 1918 Haar [7] showed that to
each continuous real valued function g defined on S, there is a unique
feV satisfying || f — gll = infer || f — gll where [[f|l = sup,es|f(s)] if
and only if no non-zero function in V vanished at more than n» — 1 points
of S. Haar noted that the existence of such a set of functions V placed
a severe restriction on the set S. In 1956 Mairhuber [8] proved that if
V satisfied the above condition of Haar then S is a homeomorphic image
of a subset of the circumference of the unit circle. If n is even this
subset must be proper. It is clear that V satisfies the condition of Haar
if and only if V is a linear w-parameter family. The characterization
of those compact Hausdorff spaces on which there exist n-parameter
families F’ for n > 1 seems to be quite difficult. One can give a cha-
racterization if one imposes a rather strong local condition on F. The
result presented here includes the one of Mairhuber, and is proved by
somewhat different means. The following fundamental lemma is per-
haps of independent interest.

LEMMA 5. Let S be a compact connected Hausdorff space with the
property that for each point x € S there exists a mneighborhood U, and
continuous real valued functions fi, f, defined on U, such that for
y,2e U,,y # 2

(1) 5H1(y) fi(2) -0
Fiy) fi(2)

Then S may be embedded homeomorphically into the circumgference C of
the unit circle.

Proof. Without loss of generality we assume U, is a closed, there-
fore compact neighborhood of x. f,, f, never vanish simultaneously on
U, and therefore f,/f, defines a continuous mapping of U, into the
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compactified real line. (1) guarantees that the mapping is one to one
and ¢,(u) = Arctan (fi/f.)(u) gives a homeomorphism of U, into C.

We next verify that S is locally connected. To do this it suffices
to show that for each x e S there exists a connected neighborhood which
can be mapped homeomorphically into C. In fact if ¢, is the homeomor-
phism for a point xeS constructed above, and if C, = ¢, (U,), it is
enough to show that there exists a connected neighborhood V, in C, of
A, = ¢,(%). For then ¢;%(V,) is a connected neighborhood of % contained
in U,. But C, is a compact subset of C. Therefore let I, be the com-
ponent of A, in C,. I, is a compact connected subset of C. I, is then
either an interval or all of C. If I, is the latter we are through. Also
if I, is an interval and )\, an interior point (relative to C) then ¢;%(I,)
is the required neighborhood. Hence assume that ), is an end point of
I,. This will include that degenerate case when I, is just one point.
We may also assume that there does not exist a suitably small connected
neighborhood N of ), in C such that NNC, < I,. For then ¢;'(NNN,)
is an appropriate neighborhood of @. Therefore it now must follow that
for any connected neighborhood N of A, in C there exists A, )\, in the
interior of N such that x, N, & C, and O\, \) N C, = ¢. If we let F'=
&3 [, N) N C,] and G = ¢ [C, ~ (M, \y)] then FU(S~U,) and G
separate S which is a contradiction.

We note that S is certainly a separable metric since a finite num-
ber of homeomorphic images of subsets of C cover S. Hence by [16]
Theorem 5.1, S is arc wise connected.

We now assert S is homeomorphic to a subset of C. Let U, ---, U,
be a finite collection of connected neighborhoods covering S each of which
is homeomorphic to a subset of C. By a suitable rearrangement we
may assume that U,N U, + ¢ and U, ¢ U,. Let x,e U~ U, x,e U,~ U,
xe U NU, Let 4 bethe maximal subset of U,U U, connecting z,, x, 2.
This must be all of U, U U, for if ye U,UU, and y ¢ A4, then y may be
connected to any point in A by an are in U,UU,. If ¥ is connected to
A at an end point of A, this is an enlargement of A which contradicts
maximality. If ¥ is connected to A at a point other than an end point,
then no neighborhood of this point is homeomorphic to a subset of C.
This also is a econtradiction. If U,U U, is not all of S then U,U U, is
homeomorphic to an are, and by induction the homeomorphism may be
extended to all of S.

THEOREM 8. For n > 1 let F be an n-parameter family of func-
tions defined on a compact Hausdorff space S. Suppose in addition that
to each point x € S there exists a neighborhood N, and functions f,, f,€ F
such that
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f1(y) fi(2)
FAYy) f?)
for y,ze N,,y #+ z. Then there exists a homeomorphism of S into the

circumference of the unit circle. If n is even the image of S must be
a proper subset of C.

+ 0

Proof. First we note that S cannot have a proper subset W homeo-
morphic to C. If n is even this follows directly from the Corollary to
Theorem 2. If » is odd, choose x€ S ~ W and let F’ = {fe F|f(x) = 0};
then F’ is an n — 1 parameter family defined on W. Since n — 1
is even this is a contradiction. We may therefore assume that if = is
even S is not homeomorphic to C.

If I is a component of S then by Lemma 5 there exists a homeo-
morphism ¢ of I onto the closed interval [0, 1] considered as a subset of
C. We assert that if I is not all of S, then ¢ can be extended to an
open and closed set UD I. U and its complement then separate S. If
I is itself open in S then we take U= 1. If not, let x = ¢~(0),y =
¢~ '(1). Let N,, N, be compact neighborhoods of 2 and y respectively
and let ¢,, ¢, be homeomorphisms of N, and N, respectively into C.
We may assume ¢,(x) =0, ¢,(y) =1 and

¢, (N, N I)c[0,1] and [N, N I]C [0,1].
If we define ¢’ by

¢d'(z) = Hz) if zel
= ¢,(2) if ze N~ 1T
=¢,(2) if ze Ny~ 1

then ¢’ is a homeomorphism of N,UN,UI= N into C. Also int. NDI.
Now [0, 1] = ¢'(I) is the maximal connected subset of ¢'(N) containing
¢'(I). Therefore there exist sequences {\,}, {¢.} of real numbers tend-
ing monotonically to 0 from below, and monotonically to 1 from above,
respectively such that {»,} N ¢'(N) =¢ and {¢,} N$'(N) =¢. Choose
n large enough that ¢'~'[\,, 0] C interior of N, and ¢'~'[1, ] C interior of
N,. Clearly J, = ¢'"[\s, t,] is a closed set containing I. J, is open in
the interior of N. Hence J, is open in S.

Let T be the class of open sets O of S which can be mapped homeo-
morphically into C. We partially order 7T in the following way. If
0,,0,eT then O, <0, if 0,c0O, and if there exist homeomorphisms
¢, by of O,, O, respectively into C such that ¢, agrees with ¢, on O,.
By Zorn’s lemma there exists a maximal element O of T. We assert
O =3S. If not, let e S~ O. Then there exists an open and closed set
Us« and mapping ¢ such that ¢ maps U homeomorphically into C.
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ONU and O~ U are separated open sets of S. Hence if ¢’ is any
homeomorphism of O into C such ¢'(O)NHU) =¢. ¢ defined by
¢'(x) = ¢(x), e ONU, ¢"(x) = ¢'(x), t€ O ~ U is also a homeomorphism
of O into C. ¢"” has an obvious extension to UUO which contradicts
the maximality of O.

COROLLARY. If F is a linear n-parameter faomily (n > 1) defined
on the compact Hausdorff space S, then S is homeomorphic to a subset
of C. If n is even the subset must be proper.

Proof. We assume S contains more than n points. For a given
x €S choose n — 2 distinet points @, -+, z,-, of S outside a suitably
small compact neighborhood N, of . If F, = {fe F|f(x,) =0,v1=1,---,
n — 2} then F, is a linear 2-parameter family defined on N,. Therefore,
for any two linearly independent functions f, f, in F5,

f1®) fi(2)

Fily) fil)| O for yze Ny # 2.

We now apply the theorem.
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PROBLEMS IN SPECTRAL OPERATORS

URl FIXMAN

Introduction. An important problem in the theory of spectral
operators in Banach spaces initiated by N. Dunford [5; 6] is that of
deciding whether the linear operators of the types encountered in analysis
are spectral. Various conditions for spectral operators have been given
in [5], but further research is needed in order to apply them to specific
cases. J. Schwarz [11] has shown that a class of operators arising from,
not necessarily self adjoint, integro-differential boundary-value problems
consists of spectral operators. The present investigation originated in a
problem on stationary sequences in Banach spaces which led to the study
of unitary operators, namely linear isometries of the space onto itself,
from this point of view. Accordingly, attention was focused on the
class of unitary operators, and the limitations imposed on the operators
under study were designed to include it.

Section 1 contains a summary of definitions and results from [5; 6].
A distinction, significant only in non-reflexive spaces, is made between
spectral and merely prespectral operators according to the topology in
which o-additivity of the resolutions of the identity is required. As
shown in §2, a resolution of the identity of a prespectral operator
uniquely determines the resolutions of the identity of its spectral re-
strictions. A simple example shows how this can be used to prove that
certain operators are not spectral.

Known results are combined in § 3 to yield a necessary condition
for spectral operators of scalar type, which involves only the norms of
rational functions of the operators. If the space is reflexive and the
spectrum an R-set [1, p. 397], the condition is also sufficient. Using the
results of § 2 this condition is localised to ‘‘eyclic’’ subspaces generated
by single elements. A much more general approach to localization, via
the notion of vector measures associated with the operator, is expounded
in [3]. It is felt though that the present considerations retain their
interest owing to the explicit conditions given. The method of [3] also
implies the results of §2 on restrictions for the case of a reflexive space.
Section 3 ends with some characterizations of finite dimensional cyclic
subspaces.

The above results are specialized in § 4 to unitary operators which,
if the space is reflexive, satisfy all the subsidiary conditions. As a
corollary it follows that in a reflexive space a unitary operator is spectral

Received January 26, 1959. This paper is based on the author’s doctoral thesis written
at the Hebrew University. The author wishes to express his gratitude to Professor A.
Dvoretzky for his guidance and encouragement.
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if and only if every stationary sequence it generates is spectral.

The final section contains examples of non-spectral unitary operators.
It is shown that a unitary operator U in the space of continuous func-
tions defined on a compact Hausdorff space is not spectral provided the
homeomorphism determined by U is non-periodic. Using the boundness
of the norms of the values of a resolution of the identity, examples are
given of non spectral unitary operators in the spaces [,, 1 <p < o,
p # 2. The two methods used are combined to show that if in parti-
cular the permutation of the basis, determined by a unitary operator in
the last mentioned spaces has an infinite ‘‘cycle’’, the operator is not
spectral. Examples of non spectral unitary operators in the spaces L,
p # 2, (¢) and (c,) follow as corollaries.

1. Preliminaries. Let X denote a complex B-space and B the
Boolean algebra of Borel subsets of the complex plane p. A spectral
measure in X is a homomorphism E of B onto a Boolean algebra of
projections of ¥ such that: E(p) = I = identity operator, E(¢) = 0, and
| E(a)]| £ M < o, M independent of ¢ € B. The Boolean operations on
commuting projections A, B are defined, as usual, by

ANB=AB, AUB=A+B— AB.

A spectral measure F in X is said to be of class I' in case I" is a
total linear manifold in ¥* and #*E( )x is c-additive on B for x € %,
x*eI.

Let B(X) be the B-algebra of bounded linear operators of X into it-
self. If T e B(X) and 9 is a (closed) subspace of X, we denote by T'| Y
the restriction of T to 9), and by o(T') and o(T) respectively the spectrum
and resolvent set of 7. Thus, if ) is, invariant under 7T, (T | Y') denotes
the spectrum of T considered as an operator in 9. For ¢ e o(T),
(& — T)* is abbreviated to T(¢).

An operator T € B(%) is called a prespectral operator (of class I)
in case there exists a spectral measure E of some class I” such that

TE(o) = E(0)T , o(T|E@)X)< o, o0€B.

E is then called a resolution of the identity for T.

An operator in B(X) is called a spectral operator if it is prespectral
of class X*. In this case, E is o-additive on B in the strong operator
topology, and the boundness of its range is a consequence of the other
requirements [6, p. 325]. A spectral operator 7' has a unique resolution
of the identity E[6, Th.6]. If A € B(X) commutes with 7, then it
commutes with E[6, Th. 5].

It may also easily be shown that if the bounded subsets of %X are
weakly sequentially conditionally compact, in particular if X is reflexive,
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then every prespectral operator in X is spectral.

Let T e B(%X), x ¢ X. By an abuse of language, an X-valued func-
tion f defined and analytic on an open set D(f) < p is called an analytic
extension of T(¢)x if

C-Tr@) =2, ¢eD).

fE©=TE= on D(f)N o(T) for otherwise (¢ — T)(f(5) — T({)w) =
x — 2 =0 would imply ¢ € o(T). Further we have

1.1. THEOREM. If T is a prespectral operator, and f, g are analytic
extensions of T(&)x, then f(¢) = g(&) for & € D(f) N D(g). (6, Th. 2],
The further assumption D(f) 2 po(T'), which is made there, is not used
in the proof).

Hence there exists a maximal open set which may serve as a do-
main of definition of an analytic extension of 7'(¢)x. This set is called
the resolvent set of x, and is denoted by o(x) (or p,(x), when more then
one operator is involved in the discussion). Its complement a(x) (or o,(x))
is called the spectrum of x. The maximal analytic extension itself is
denoted by x(¢) (or z,(¢)).

The main use of the concepts above is through the following charac-
terization of spectral subspaces [6, Th. 4]:

1.2. THEOREM. Let T be a prespectral operator in X with a re-
solution of the identity E, and let ¢ C p be closed. Then

E(0)X = {x|o(x) C o} .
Let E be a spectral measure which vanishes on the complement of
a compact set g, and let f be a complex valued function continuous on

o. Then the Riemann integral | f(¢)E(d¢) exists in the uniform operator

topology [6, Th. 7]. An operator S is said to be of scalar type if it is
spectral and satisfies

1.3 s=epa) (= eB@n),

where FE is the resolution of the identity of S [6, Def. 1].

The reader is referred to [4] for the definition and properties of
f(T), where T e B(X) and f belongs to a certain class of locally holo-
morphic functions. In the sequel, f will in general be a rational func-
tion with poles in po(T'). If S is of scalar type with the resolution of
the identity E, then we have the functional calculus

1.4, £(8) = Sf(:)E(d:) .
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We refer to [6] for the general case of a spectral operator.

Finally we shall need the concept of the cyclic subspace [x] generated
by an element x € X. By this is meant the subspace spanned by
{T©)x|¢ e o(T)} [5, Def.1.4]. It has the following properties [5,
Lemma 1.5]:

1.5. LEMMA.

1.5.1. z e [z].

1.5.2. fF(T)lx] < [x].

1.5.3. If y € [x], then [y] < [x].

2. Restrictions of prespectral operators. The following is a generali-
zation of the uniqueness theorem for spectral operators mentioned in § 1.

2.1. THEOREM. Let T be a prespectral operator in the B-space X,
and let E be a resolution of the identity for T. Let 9 be a subspace
of % imvariant under T. Then if T|9 is spectral, its resolution of
the identity equals the restriction E|9Y of E to .

Proof. Let y € 9. The function y,g(¢) is an analytic extension of
T()y with domain Or,g(¥). Thus p,p@(y) C o:(y), or
(2.1.1) oY) © O'Tlg)(’.’/) .

Let F denote a resolution of the identity for T'|9). If ¢ is a closed
subset of the complex plane, we have by 1.2

opng(F(0)y) S 0.
Therefore, by (2.1.1),
o(F(o)y) < o,
and again by 1.2
(2.1.2) E(0)F(o)y = F(o)y .

If 7 is a closed set disjoint from o, we get, operating with E(s) on
E(T)F(7)y = F(7)y,

(2.1.3) E(o)F(t)y =0.

(2.1.3) and the o-additivity of F' in the strong operator topology show
that E(0)F(0’')y = 0 (¢’ denotes the complement of ¢ with respect to p).
This together with (2.1.2) gives

E(o)y = F(o)y , o closed.
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The properties of £ and F' now yield the same equality for every Borel
set.

The theorem above shows that invariance of ¥) under E (i.e., under
every value of E) is a necessary condition in order that 7'|9) be spectral.
This condition is by no means automatically fulfilled, and this fact can
be used to show that an operator is not spectral:

2.2. EXAMPLE. Let 2 be a compact topological space. We consider
the B-space C(2) of all complex valued functions f continuous on 2 with
| £l = max,co|f(®)]. Let e C(R), and let S be the operator of multipli-
cation by p. Heuristically, S cannot in general be spectral because
projections which ‘‘ought’’ to belong to the resolution of the identity
are not members of B(C(2)). This is made precise ag follows. Let T
be the extension of the multiplication to the space ¥ = M () of complex
valued functions f bounded on 2 with ||f]|] = sup|f(w)|. T is pre-
spectral with a resolution of the identity: F(o) is the multiplication by
X)), where y, is the characteristic function of ¢. The og-additivity
may be verified with respect to the total linear manifold generated by
the functionals z}¥, w € @, defined by z}x = x(w), x € M(2). To see
that o(T| E(0)X) < &, observe that if ¢ € ', (T | E(0)X)(¢) is the multi-
plication by x.(¢( ))& — )~ (here 0/0 = 0). We omit the details. Now
suppose, for instance, that g is not constant on a connected component
of 2, and that w, , are two points in the component such that
w,) # (w,). Then taking ¢ = {¢(w,)} we see that E(c) does not leave
C(9) invariant. Hence S = T'|C(2) is not spectral.

The next theorem is a partial converse of Theorem 2.1. We need
two lemmas.

2.3. LEMMA. Let T be a prespectral operator in the B-space X,
and let A € B(X) commute with T. If x € X, then o(Ax) < o(x) and

(Ax)(¢) = Ax(9), ¢ € p().

Proof. For ¢ e p(x), (¢ — T)Ax(¢) = A — T)x() = Ax. The con-
clusion follows by the definition of ¢(Ax) and 1.1.

2.4, LEMMA. If T is prespectral in X, x € ¥ and T 1s a connected
component of p(x) such that © N p(T) #= ¢, then x2(¢) € [x], ¢ € 7.

Proof. Since p(x) is open in the complex plane, ¢ has the same
property and is therefore a region. Let #* € X vanish on [2]. For
e o), 2¢)=TEwx e [x]; thus f(¢) = x*x(¢) vanishes on the open
subset 7 N o(T) of z. Being regular, f vanishes identically on 7. A
well known corollary of the Hahn-Banach extension theorem yields the
conclusion.
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It may also be shown that {¢ e o(x)|2(¢) € []} is open and closed
in p(x). If o(T) is dense in the plane, then x(¢) e [x] for every ¢ e po(x)
[5, Lemma 1.5.3]. Cf. however Example 2.6 below.

2.5. THEOREM. Let T be a prespectral operator im X with a re-
solution of the identity E. Let ¥) be a subspace of X invariant under
T©), ¢ € (T), and under E. Then T|% s prespectral with a re-
solution of the identity E|9. If T is spectral or spectral of type m
(v. [6, p. 336]), T|Y has the same property.

Proof. Since T = é%ga T(¢)de , where C is a circle containing o(T")
in its interior and the integral is in Riemann’s sense and in the uniform
operator topology, 9 is invariant under 7, and T'|%) is well defined. If
T is spectral, we may assume invariance under T instead of under 7'(¢),
¢ e o(T), using [6, Lemma 3].

All the assertions of the theorem are easily verified, except: For
every ¢ € B, o(T D) |(E|Y)0)) = o(T| E(g))) < 6. We have to show
that if ¢ e ¢’, then ¢ — T induces a one-to-one mapping of E(0)?) onto
itself. Since (7| E(0)X) C o, there is no z #+ 0 in E(0)X and hence in
E(0))) such that (¢ — T')z = 0. It remains to show that the range of
& —T)E@©)Y is E()). Let ze E(o)). Then E(o)z =2, hence
E(0)z =z, and therefore by 1.2 o(z) € d. Therefore ¢ € p(z), and since
(& — T)2(¢) = z it suffices to show that z(¢) € E(0))). Let m be an open
half plane with ¢ on its boundary. From 1.2 it follows that (& (z')z) <
7’ U o(z), and therefore {¢} U 7w < po(E(7')z). Since p(L(n’)z) is open,
it follows that ¢ belongs to a component of p(E(z’')z) which contains
arbitrarily distant points of the complex plane and thus points of o(T).
2.4 now implies (E(n')2)(¢) € [E(x")z]. The assumptions of the invariance
of 2 show that [E(n')z] £ . Therefore (E(n')2)(¢) € 9. But by 2.3,
we have (E(7')2)(¢) = E(7')2(¢); therefore

E(m)e() € .

Similarly one shows E(7)2(¢) € ¥). Therefore z2(¢) = E(n')2(¢) + E(m)2(¢) €
9). On the other hand, F(¢)z = z implies by 2.3 E(0)z(¢) = 2(¢). There-
fore 2(¢) € E(0)) as required.

It follows from the proof above that, under the conditions of the
theorem, z € Y implies 2(¢) € 9, & € 0(z). The following example shows
that without invariance of %) under E, this need not hold even if T is
a normal operator in Hilbert space. This, in turn, amplifies Example
2.2 by showing that even if T is spectral, and not merely prespectral,
%) is not necessarily invariant under FE.

2.6. ExaMpLE. Let X be the Hilbert space L*(2), where 2 is the
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disc {w||w| <1} in the complex plane. Let T be the operator of
multiplication by w. Then 7T is a bounded normal operator and spectral.
We define z € X by

x[w]={1 if :I<|wl<1
0 if lw| < %.

The maximal analytic extension of T'(¢)x, x(¢), exists for ¢ not in the
ring o(x) = {¢|4 < |¢| <1}, and then

1
w(@)lw] = {g —®
0 if 0| <%.

if $<]ol<1

We consider the subspace ¥ = [«], which is invariant under T'(¢), & € o(T)
by 1.5.2, and contains « by 1.5.1. [«] is the closure of the finite linear
combinations of the functions T(¢)x = x(¢) for ¢ € o(T) = 2'.

Now, suppose that for a fixed ¢, |¢| < %, x(¢) were approximable
by these linear combinations in the Hilbertian norm. Since all these
functions are holomorphic in o(x), %(¢) would be uniformly approximable
by the linear combinations on a closed ring 7 concentric with and inner
to o(x) [13, p. 96]. But this is impossible, since the approximants are
rational functions with poles in the unbounded component of <7’, while
the only analytic continuation of x(¢)|7 to the other component is
1/(¢ — w), which is not regular at ¢ (v. [13, p. 25, Th. 16]).

It may also be directly shown that there exist # and ¢ such that
E(o)x ¢ [x].

We now give an example to show that the assumption that 7|9 is
spectral cannot be dropped in Theorem 2.1 even if ¥ =X%; i.e., a pre-
spectral operator may have more than one resolution of the identity.

2.7. ExAMPLE. We specialize Example 2.2, retaining its notation.
We take for 2 the set of positive integers. Thus X = M () is the space
usually denoted by (m). For pr we chose a function belonging to %
which satisfies

(2.7.1) ml) =1;
(2.7.2) M #1, §>1;
(2.7.8) I@MﬁzL

As is well known [2, p. 34], there exists a real bounded linear functional
lim,, defined on the space (m), of all real bounded sequences, which
has the following properties:

(2.7.4) If 2,y € (m)z and y(j) =2(j + 1), J=1,2, .-,
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then lim,y = lim, «;
(2.7.5), lim 2(j) < lim, 2 < Iim 2(j) .

We define a functional lim on X by lim« = lim,«’ + 4lim, %", where
¢ =2 4+ 1x”, 4, 2" € (m);. Evidently, lim is a bounded linear functional
which enjoys the property (2.7.4) analogous to (2.7.4),. Further we have
(T defined as in 2.2)

(2.7.6) lim Tz =limx .

To see this, we write (Tx)(j) = ((4) — D)z(j) + #(j). By the linearity of
lim, it suffices to show that a(j) — 0(a(j) = p(7) — 1) implies lim az = 0.
This follows from (2.7.5), on separating a and x into their real and
imaginary parts. We define an operator A € B(X) by Az =limx - x,
where z,(j) = 8,; (Kronecker’s symbol). Using (2.7,1), (2.7.6) we get
TA = AT. On the other hand, A does not commute with £ (defined in
2.2). Taking ¢ = {1} we have, using (2.7.2), (2.7.4), AE(o)x = 0 while
E(0)Ax = limx - x,. Hence the function F', defined by

F(0) = E(o) + AE(0) — E(0)A , ceB,

differs from E. We show that F' is a resolution of the identity for 7.
A straightforward calculation, based on the fact E is a spectral measure,
shows that F' is a spectral measure (In verifying that F'(¢)F'(8) = F'(o N 9d),
one uses the fact that AE(t)A =0, 7 € B). F is o-additive with respect
to the total linear manifold generated by the functionals z} (xjx = (7)),
j>2 and «* = 2f — lim; since 2¥F(0o)x = xfE(o)x for j > 2, while
2*F (o) = % (1)(x(1) — lim z). Since T commutes with £ and A, T com-
mutes with F. Finally, to see that o(T| F'(0)X) € 7, we assert that the
restriction of (T'| E(0)X)(¢) to F'(0)X, ¢ € @', isan inverse of (¢ — T')| F (o).
As shown in the proof of [6, Th. 5], the prespectrality of 7 implies
E(6)AE(c) = AE(v). Hence E(¢)AE(c) = AE(o), whence it follows
that E(6)F (o) = F (o). Therefore F(0)X € E(0c)X, and the mentioned
restriction is well defined. Let z € F(0)X. Then d(x) € 7, by 1.2,
since © € E(0)X. Further, 1.1 and 2.3 imply

(T E(@)%)()x = 2(¢) = (F'(0)x)(¢) = F(a)x(?) .

Thus the range of the restriction is included in F'(¢)X. The truth of
our assertion is now evident.

3. Conditions for operators of scalar type. If T e B(%X), the jfull
algebra generated by 7T, denoted by A(T), is the smallest subalgebra of
B(¥) which is closed in the norm topology of B(¥), which is inverse-
closed and which contains 7 and I [6, Def.5]. Let o be a compact
subset of the complex plane. We denote by R(c) the set of rational
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functions regular on ¢. CR(c) denotes the closure of R(¢) in C(0).
Following [1, p. 397], a compact nowhere dense set ¢ in the complex
plane is called an R-set if and only if CR(0) = C(g). For properties of
R-sets used in the sequel see [1, p. 398] and the references there given.

3.1. THEOREM. Let S € B(X), then the following equivalent con-
ditions are mecessary in order that S be of scalar type:

3.1.1. There exists a constant H < oo such that for every f € R(a(S))
NS < Hggé}g{) O = HIFS) s, = HUm[[FS)" [ .

3.1.2. There exists a constant K < o such that for every f € R(a(S))
NP < K FS)] .

If X is reflexive and o(S) is an R-set, each of the mentioned conditions

ts sufficient. KEach of the following conditions implies 3.1.1:

3.1.38. For every x € X there exists a constant H(x) (independent
of f) such that for every f e R(o(S))

17(S)ell < Hmax | f(©)] - [ z]l = H@) [l F(S) sl 2] -

3.1.4. The same; with h(z), f € R(o(S|[x]) and
f(S ] < h(”)gerﬂﬁ}f[‘wlf@ | = (@) [ F(S LD s

3.1.5. The same; with k(x), f € R(a(S|[x])) and

LA TLaD [* < k@) [[FS 2D ] -

3.1.3 is implied by 3.1.1. 3.1.4 and 3.1.5 are necessary if S is of scalar
type and satisfies the following condition :

3.1.6. If E 1is the resolution of the identity of S, x € X and g € B,
then

E(o)xr € [x] .

Proof. For the equivalence of 3.1.1 and 3.1.2 see [9, p. 78] and for
the necessity see the beginning of the proof of [6, Th. 13]. If one of
them holds, then 2A(S) is equivalent to CR(a(S)), hence if o(S) is an
R-set, to C(a(S)). Therefore if X is reflexive, S is of scalar type by
[6, Th. 18 (IV)]. Since, from 1.5.2, a(S|[z]) € ¢(S) and || f(S)x|l <
| £(S|[2])] « || x|, the equivalent conditions 3.1.4, 3.1.5 imply 3.1.3. The
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proof that 3.1.8 implies 38.1.1 is much like the proof of the uniform
boundness theorem. 8.1.3 and Baire’s category theorem imply that at
least one of the sets

G, ={z e X[ fS)]| < I fO)ll2ll, feR(@(S)} 7=1,2---,

let it be the mth, contains a sphere {x ¢ X|||x — z,|| <7}, r > 0. 3.1.1
then easily follows with H = n(2|| x,|| + »)/r. If S is of scalar type
and satisfies 3.1.6, then every [2] is invariant under E (because if
y € [z], then E(o)x € [y] < [«] by 1.5.3) and S(¢) (by 1.5.2). Therefore,
by 2.5, S|[x] is of scalar type, and the necessity of 3.1.4, 3.1.5, which
are 3.1.1, 3.1.2 for S|[x], follows.

REMARKS. In case the conclusion of 1.2 holds, it may be convenient
to replace a(S|[x]) by a(x) in 8.1.4, 3.1.5. One always has o(x) < o(S|[x]).
By slight modifications in the proof of [5, Lemma 1.10], one shows that,
provided S is spectral, o(x) = o(S|[x]) (for every x) if and only if for
every x and ¢ e p(x), %) e [¢]. As remarked after 2.5, this is the
case if 3.1.6 holds.

Taking S as in 2.2, 8.1.1 is obviously fulfilled. By an appropriate
choice of 2 and p, we may achieve that S is not spectral although
o(S) =range of p is an R-set. Thus these conditions fail to assure
scalarity if X is not reflexive.

We conclude the present section with some characterizations of finite
dimensional cyclic subspaces.

3.2. THEOREM. If S is of scalar type, satisfies 3.1.6 and x € %,
then the following conditions are equivalent:

3.2.1. [x] is of finite dimension.

3.2.2. A(S)x is of the second category in [x] (or x = 0).

3.2.3. For each y € [x] there exists a U(y) € B(X), commuting
with S, such that U(y)x = y.

3.2.4. For each y e [x] there exists a V(y) € B([x]), commuting
with S|[x], such that V(y)x = y.

3.2.5. oa(x) is finite (equivalent to 3.2.1 by mere scalarity).

Proof. Evidently we may assume z # 0. 3.2.1=3.2.2 and 3.2.3:
Since {f(S)|f € R(a(S))} is dense in A(S), A(S)x is a dense linear
submanifold of [x]. By 8.2.1, A(S)x is of finite dimension; hence closed.
Therefore A(S)x = [x], whence 3.2.2 and 3.2.3 follow.

3.2.2 or 3.2.3=3.2.4: Under either hypothesis the set

Z={z=U()z| U(z) € B(lz]), U(2)S = SU()}
is of the second category in [x]. Suppose f., € R(a(S)), || f.(S)x]| =1
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and z € Z. Then {f,(S)z} is bounded since

7Sl = (| fu(S)U R || = [| UR)fu(S)a |l
<NU@NFS)ell =TGR .

Therefore, by the uniform boundness theorem, {|| £,(S)|[«]|} is bounded.
Hence, if f. € R(0(S)), [|fu(S)r ]| =1 and y e [z], then {||fu(S)y]]} is
bounded. This shows that there exists a constant c¢(y) < o such that
NS < el (S]], fe Ro(S)). We define the transformation
V(y) on {f(S)z|f e R(a(S))} by

Vi fS)e = f(Sy .

V(y) is bounded by c¢(y) on a dense linear submanifold of [x]. Therefore
it is uniquely defined, and can be extended by continuity to a bounded
operator on [x]. Evidently, this operator satisfies our requirements.

3.2.4=38.2.56: We first show that for each y e [x] there exists a
constant ¢(y) such that

IE(@y | <c)| E(o)x], oeB.

As in the proof of 8.1, S|[x] is of scalar type with the resolution of
the identity E'|[x]. By the commutativity theorem, mentioned in §1,
E|[x] commutes with V(y). Therefore for every Borel set ¢

NE@y|l = | E@)V@e|l = [[(E@)| DV ()=l
=[[V)E@)|[[Dr || < [[ V@) [ E(@)=]l .

This proves our statement. Hence, if we define
G,={y elz]||E(@y| <JjllE()]|, e B}, 1=1,2, .-,

we have U,G, = [x]. Since the G,’s are closed, it follows by the usual
category argument that there exists a constant ¢ < o such that

| E(o)|[]]] < c[[ E(o)z ], oe®B.

Since the norm of a non null projection is at least 1, it follows that

E(o,)x — 0, 0, € B=> There exists an 7, such that E(s,)|[xz] =0
for n > n,.

Now, suppose o(x) were infinite. Then we could represent it in
the form a(x) = U;..0,., where the ¢, are pairwise disjoint, ¢, € B and
0, Mm <1 are non void sets open relative to g(x) (we omit the easy
proof). From the g-additivity of E in the strong operator topology it
follows that E(s,)x — 0. Hence, by what was proved above, there exists
an m > 1 such that E(s,)r =0. 0, = d(x) N 7, where 7 is open in the
complex plane. We have
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E(7t)x = E(v)E(o(x))x = E(t N o(x))x = E(o,)x = 0.

Therefore E(z')x = x. Since 7’ is closed, 1.2 implies ¢(x) € ’. Thus
we get ¢,, = g(x) N T = ¢, contradicting the choice of o,

3.2.5=38.2.1: Since we assumed x * 0, we have o(x) + ¢. Let
o) = {¢, ---,¢}. If y e [x] there exist f, € R(o(S)) such that

FuS)x —y. By 1.4, fn(S)zg fA6)E(d¢). Using Riemann’s sums ap-
proximating the integral, we get

FAS)IB(o@) = SAEVEWE) -

But f.(S)E(a(x))x = f.(S)x; therefore

(") SAEIEEDE — v -
Now
(**) E({e})x, 5 =1, -+, r are linearly independent:

If S E({¢,})x = 0, then operating with E({¢,}), we get o, E({¢})x = 0.
But E({¢:})x # 0 for otherwise

¢ = E(o(x)e = E(o(x) — {&:})r + E({g)e = E(o(x) — {¢.}

would imply by 1.2 the contradiction o(x) € a(x) — {¢i}. Therefore
a, =0. From (**) and (*) it follows by a well known argument that
the sequences {f,.(¢;)};-. are bounded; hence compact. Therefore there
exists a subsequence {n,} of the indices such that f, ({,) —a; j=1,
eee, 7. So

v =S aB({Ehe.

The vectors E({¢}x, j=1, ---, r, are independent of y, and thus span

[x].

4. Applications to unitary operators. To render the results of §3
conveniently applicable, one should know beforehand of an operator that
if it is spectral, it is of scaler type and satisfies Condition 8.1.6. We
shall show that this is the case for a class of operators which includes
the unitary operators in reflexive spaces. We lean heavily on [5]; and
although some familiarity with this paper is assumed in the present
section, it will be convenient to cite the pertinent definitions.

4.1. DEFINITION. Let the spectrum o(T') of an operator T e B(X)
lie in a closed rectifiable Jordan curve I”,. Suppose that I, is embedable
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in a family I, —8, <8<, (0<8, <3), of closed rectifiable Jordan
curves which satisfies the following conditions: I7; is interior to 77,
for —8, <8, < 8,< 8, The curve Iy is defined by a function &(), d),
—1 <N <1, with ¢(—1,8) =¢(1,8). As ) increases from —1 to 1, the
point ¢(\, 8) traces I’y in a counterclockwise direction. For different
values of \, the arcs ¢(\, ), —8, < 8 < §, do not intersect. They are
rectifiable, and | 8| is the length of the subarc with endpoints &(, 0)
and ¢(\,8). Under these assumptions a nonnegative integer-valued
function v(\) satisfying the condition

[&OTEN, )I<1, 0<[8]<8, —1<r<1,

is called an index function for T.

4.2. THEOREM. If U is a unitary spectral operator, it is of scalar
type.

Proof. This is essentially proved in [5]: It is easy to show that
the spectrum of U lies in the unit circle and that if we embed the
unit circle in the family of circles "5, —% <& < 24, defined by
t\, 8) =1 + 8)e™, —x < A< 1, then y(\) =1 is an index function for
U. Since ¢(\, 8) has continuous second partial derivatives, and the as-
sumptions of [5, Lemma 3.16] hold, it follows from [5, Lemma 3.18] that

[, = 0B@) =0 o U=cE@.

4.3. LEMMA. Let S € B(X) be spectral with index function v(\) = 1
with respect to £(\, 8) which has continuous second partial derivatives.
Let X be reflexive. Then E({¢{})x € [x], x € X, £ e I,.

Proof. Let ¢, e I'h, Then ¢, is of the form &, = &(N\, 0). It is
shown in the proof of [5, Th. 3.12 (III)] that there is a y € ¥ and a
sequence 8, — 0 such that for ¢, = ¢(\,, 5,) we have

(4.3.1) (&n — EDSEa)2(—)y .
Further, (4.3.2) (¢, — S)y =0,
(4.3.3) x—ye @ —S)%.

y € [x] since, by (4.3.1), it is a weak limit of vectors in [x], hence a
strong limit of their linear combinations [2, p. 134. Th. 2]. (4.3.2) im-
plies, by [6, Lemma 1], E({¢,})y =vy. By (4.3.3), there exist 2z, such
that (¢, — S)2,—y — 2, and by [5, Lemma 3.17] E({¢})¢&, — S) =0;
therefore E({¢,})(y — x) = 0. It follows that E({¢,})x = v € [«x].

4.4, LeMMA. Under the hypotheses of 4.3, if ¢, E € Iy, & + & and



1042 URI FIXMAN

x € X, then there exist z, € [x] such that E({'})E({€})x = lim,(S — &)* -
(S - E)zzlc'

Proof. Let ¢, & eIy, & + &. Then, by 1.5.1, 1.5.3 and 4.3,
u = E({&}")E({&}")x € [#]. Therefore by 1.5.3 it is sufficient to establish
the representation for u with 2, € [u]. The argument follows closely
part of the proof of [5, Lemmas 2.6, 2.10]. As in the proof of 4.3, there
exist ¢, — &, such that

&n — E)SERu(—=)E({})u =0 .
Thus
(& — S)S(ECu = (&0 — £)S(Ea)u + w(—)u .

Since S(¢,)u € [u] and since weak convergence to u implies strong
convergence of linear combinations, it follows that there exist u, € [u]
such that

(4.4.1) & — S)u,—>u .
Operating on u, with the identity
(& — SYS(€a) = (6o — £aVS(€n) + (€6 — &) + (& — S)
and letting » tend to infinity, we get
(4.4.2) (o — Shu, = lim (& — S)S(Ca)us -

But S(¢.)u: € [ux] S [«], hence (4.4.1), (4.4.2) show that there are
v, € [u] such that

(4.4.3) &, — S)v, — u .
Operating on (4.4.8) with E({&}’), we get
(4.4.4) & — SYE({E} e - u .

But by 4.3 E({&}')v, € [v:] & [u]; therefore, by what has been proved
thus far, E({&}')v, is of the form

(4.4.5) E({&} o, = lm (& — S)vka »  vin € [u].

From (4.4.4), (4.4.5) our lemma follows.
4.5. THEOREM. If S is a spectral operator which satisfies the as-
sumptions of 4.3, wn particular if S is a spectral unitary operator in

a reflexive space, then it satisfies Condition 3.1.6.

Proof (After [5, Th. 2.11]). Since E(o) =E(@@ N l,), o € B, and
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since E is o-additive in the strong operator topology, it suffices to show
that E(o)x € [#] for ¢ the closed proper subarcs of 7', Let £ =¢(,0),
E=1¢(1,0), M # o, be the ends of the arc

[6,E]l={E@0) | x<a<pif M<p; ag () if <} .

We show that E([¢, £])x € [x] (the case A = p cared for by 4.3). Since
I=E{¢}) + E({&) + E({})E({§}), we have

E((¢, &)z = E({ehe + E({E)» + E(¢, ENE{H)E{E ) -

By 4.3 we have to show that E(¢, £]))u € [x], where w = E({¢}")E({£}')x.
But by 4.4 there exists a sequence z, € [«] such that

E([g, EDu = lim E ([, ENS — £(S — &)z .
Thus we have only to show that z e [#] implies

E([g, ENS — £)(S — &)z e [a] .

Let ¢, =¢(\, 0), &, = (Un, 0), where the sequences \, — )\, tt, —
are so chosen that if A < g then N\, <\ < ¢t < #,, while if ¢ <\ then
p< ty <Ay <M. It is shown during the proof of [5, Th. 2.4] that,
since S has 1 as an index function, (S — £)X(S — &)* is of the form

(4.5.1) (S — OP(S — &) = lim (I(x, 1) + I(ttn M)

where I(a, 8), —1 < a,B <1, a # B, are certain operators, the manner
of definition of which is explained in [5, Lemma 2.4], which enjoy the
properties :

(4.5.2) I(a, B)x] < [#] (I(a, B) being a line integral of S(¢)).
(4.5.3) o(l(a, B)y) < [5(a, 0),£(8, 0)], ¥ € X [5, Lemma 2.4].

Let z € [x]. Then, by (4.5.1),

(4.5.4) E([¢, EN(S — %S — &)z
= lm (E (g, O 2 + E(E, EDI(t4) M)e) -

But by (4.5.3) a(I(\, t)2) S [, €], 0(I(tha Ma)?) S [€n, €a] and hence by
1.2 E([g, EDION )z = I(\, 1)z and

E([g, EDI(ttay M)z = E([, EDE([Er) §aD)I(tns Na)2
= Bt M)z = 0.
Thus (4.5.4) takes the form
E([g, ED(S — ¢)(S — &z = I(N, )z,
and we may conclude E([&, EIN(S — £)X(S — &% € [«x] from (4.5.2).
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Generalizing the Hilbert space terminology, a two sided sequence of
vectors {x,}y-_. is called stationary if and only if the norm of any
finite linear combination >¥.,a,x,., is independent of h. If U is a
unitary operator in X and # € ¥, then the sequence {U"x};._.. is station-
ary. Conversely, if {x,};.... is stationary and 9 is the subspace spanned
by this sequence, there exists a unique operator U € B(¥)) which satisfies
Ux, = 2,,,, an integer. U is unitary in ¥ and is termed the shift
operator of {x,}. We call a stationary sequence spectral in case its
shift operator is spectral.

The final statement of the following theorem replaces the problem
of characterization of reflexive spaces every unitary operator of which
is spectral by that of characterizing spectral stationary sequences. This
““local’’ form of the problem seems more appropriate since the spectrality
of every unitary operator in a space X¥ may depend not on ‘‘regular’’
properties of ¥ but on an irregularity which renders the class of unitary
operators very sparse.

4.6. THEOREM. Let U be a unitary operator in X. Then conditions
3.1.1, 3.1.2 and 3.1.8 are necessary in order that U be spectral. If %
18 reflexive, then each of the conditions 3.1.1 to 8.1.5 is mecessary and
sufficient; and it s sufficient to let f in these conditions range over
polynomials. For a reflexive X, U 1is spectral if and only if every
stationary sequence it generates is spectral.

Proof. The first statement follows from 4.2. and 3.1. It follows
from 4.5 and from the fact that ¢(U), being a subset of the unit circle,
s an R-set that if X is reflexive, all the parts of Theorem 3.1 are ap-
plicable. Let g € R(o(U)). Using Cauchy’s integral formula, it may
be proved that there exists an admissible domain 7 (in the sense of

[4, Def. 2.2]) which contains ¢(U), such that ¢ is uniformly approximable
on 7 by functions of the form

LI |
k() = ;‘Z’__—M » A€ p(U)
(r may depend on g, but not on the approximants. Cf. [1, p. 398]).
Since o(U) is contained in the unit circle, we may assume, diminishing
T if necessary, that the complement of 7 is either connected or consists
of two components at most, one of which contains the point £ = 0. In
either case it follows from [13, p. 47, Th. 15] that the functions %, and
hence ¢, are uniformly approximable on 7 by polynomials f in ¢ and
¢~'. Thus these polynomials form a dense subalgebra of R(o(U)), and
by the continuity of the functional calculus, the corresponding f(U)’s
are dense in {g(U)|g € R(¢(U))} in the uniform operator topology. From
the proof of 3.1 it is seen that we may replace R(a(U) and R(a(U | [x]))
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by any subalgebra of R(c(U)) with these properties. Since U is unitary,
the conditions of 8.1 remain invariant if the involved functions are
multiplied by ¢*, k an integer. Therefore polynomials in ¢ will do.
Finally it follows from what has been shown above that the subspace
spanned by a stationary sequence {U"x}y._.. is [x]. Thus the final
statement follows from the fact that 3.1.4 is the same as 3.1.1 for the
shift operator.

5. Examples of non spectral unitary operators. Let 2 be a com-
pact Hausdorff space. The unitary operators in C(Q) are the operators
of the form (Uzx)(w) = (w)x(h(w)), w € 2, where h is a homeomorphism
of 2 on itself, ¢ e C(2) and |Mw)|=1. This is proved in [12, pp.
469-472] for the real case, but the proof can be modified to apply to
the complex case too by the use of an argument of Arens in a similar
situation (v. [9, p. 88]). The following theorem treats only the case that
h is non-periodic; for the case that % is the identity mapping Cf. Example
2.2 above.

5.1. THEOREM. Let Q2 be a compact Hausdorf space, and let U of
the form (Ux)(w) = (w)x(M(w)) (h, £ as above) be a unitary operator in
C(Q). If h is mon-periodic, then U is not spectral.

Proof. By 4.2, 3.1 and the fact that ¢(U) is contained in the unit
circle (actually, coincides with it), it is sufficient to show that there
exists no finite constants H such that

(6.1.1) [[lFAO)Il < Hrfglifflf(é)l, f a polynomial in ¢.
Let us calculate || f(U)||. If f(&) = Sro&”®, then

(5.1.2) (f(U)r)(w) = :go ai(w) u(h () ,

where 1% denotes the kth iterate by substitution of A(h™(w) = w). By
hypothesis there exists an w, € 2 such that the points r%(w,), £ =0, 1,
..., n are distinct. Since Q is Hausdorff, there exist pairwise disjoint
open sets w,, k=0,1, ---, n such that 2%(w,) € 7,. Since a compact
Hausdorff space is normal, it follows by Urysohn’s lemma that there
exist functions y, € C(2) such that y.(h"(w,) = 1, y(w) = 0 for w € =,
and 0 < y(w) <1 on 2. We define z, € C(2) by

z() = 3% 580 @A)
Substitution in (5.1.2) gives
(FO)m)) = 3 |aw@) | = 3 |a] .
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Since [|2[| = 1, || F(U) || > Si-o| | (actually || f(U)]| = Sioo| @ ]). The
necessary condition (5.1.1) now takes the form: there exists an H <
such that for every polynomial f(¢) = Sir_ ",

Silen| < Hmax | £©)] -

To contradict this statement we use the following example of Hardy
[8, § 14]. The series

converges uniformly for |¢| = 1, while the sum of the absolute values
of its coefficients diverges. Therefore the polynomials which form its
partial sums furnish us with the required counter example.

5.2. THEOREM. In each of the sequence spaces l, 1< p< oo,
D #+ 2, there exists a non spectral unitary operator.

Proof. If U is a unitary spectral operator in ¥, then necessarily
[5, Assumption 1.14]:

(6.21) MU)=sup {llz||lz,yek |lz+yll=10@@ N0y =¢} <.

This follows from the boundness of F by 1.2. Even if U is not spectral,
the conclusion of 1.1 holds because g(U) is nowhere dense; and thus
o(x) and M(U) are definable. We show that in each of the considered
spaces there exists a unitary operator U with M(U) = oo.

Let p, 1<p< o, p+2 be given. We denote by ¥, a space of
the type 1, , or [, (the last possibility is needed only for the remarks
made after the theorem). If {¥,}7, is a sequence of such spaces, we
denote by >\5., 6P X, the Banach space of all sequences {x,} with z, € %,
and

el = (S lelP)” <o @ p=co, || {2} ] = suplla,l| < ).

If for each j, T, € B(X,), we denote by 52, @ T, the transformation T
defined on (part of) 3., DX, by T{x,} = {T,x,}

5.3. LEMMA. If X =337, PX, and for each j U, is a unitary
operator wn X;, then U= 3,7, @ U, is a unitary operator in X and
M(U) = sup,M(U,).

Proof. That U is unitary is obvious. If z, € X, for a definite 7,
we denote by «} the vector {y,} e X defined by ¥, = z,, y, = 0 for k # j.
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Since the operation * is linear and norm preserving, (¢ — U,)x,(¢) = =,
for ¢ e pU,(x,) implies (¢ — U)x,(¢)* = T where x,(¢)* is analytic on
pgj(x,). Therefore g,(x7) < Oy (7). It is obvious how to complete the
proof,

Since 1, is linearly isometric to >5., P, , where n, are arbitrary
natural numbers, 5.3 shows that we have only to find indices =, and
unitary operators U, in ly.n, such that sup, M(U)) = . Let ¢, j=1,
«++,m, be the natural basis of [,,. Henceforth U, will denote the
unitary operator in [, , determined by the requirements U,p, = ¢;+1(moun-
The following lemmas will show that sup, M(U,) = o, which will finish
the proof.

We now use tensorial products as in [10]. If x = (%}, ++-, 2,) € L,
Y= Yn) € lpm we define €y to be the vector (2,4, .y, «--,
LYy LY TYay == %y Ty =+ * ) TaY1y Loay ==+ oY) Of 1y o This is a Kro-
necker product [7, p. 208], and the norm is a cross norm with respect
to it, that is |2 @y || =|l«]|||y|l. The tensorial product of linear
operators, T'in [, , and Sin [, ,,, is uniquely defined by the requirements

TRS)x®y) =Tr® Sy.

5.4. LEMMA. If T, S are linear operators in l,.,, 1, respectively,
then 0r95(x @ y) = {190 |7 € 0,(x), 0 € o4(y)}.

Proof. If T is an operator in a finite dimensional space and f is
the minimum polynomial of x with respect to 7', then o,(x) is the set of
zeros of f (cf. [5, p. 589]). We may assume that neither o,(x) nor o4(y)
is empty since this case is trivial. In case o.(x) = {1}, os(y) = {6} the
minimum polynomials are of the respective forms (¢ — %), (& — 0)°
(t, s > 1). By induction on ¢ and s and use of the identity

(T®S—n)e®@y) =T -7 Sy +72& (S -0y,

one shows that the minimum polynomial of z &) y with respect to T'®) S,
is of the form (¢ — 70)", » > 1, and therefore o,qs(x Q y) = {70} (actually
we need only the case ¢ = s = 1). In the general case g,(x) = {1, **+, Y},
os(y) = {0,, ++-,0,} we have by the finite dimensional case of the spectral
theorem ([4, § 1] or [7, p. 132]) the resolutions x = >\.x;, ¥ = D595
where o,(x;) = {7}, os(y) = {0;}. Let {n0|n e g,(x), 8 € gs(y)} =
{ty, »++,k;} and let z, be the sum of the vectors z; ® y, such that
0.0, = k. Since the x;’s are linearly independent and the y,’s are dif-
ferent from zero (by our assumption x # 0, ¥ + 0), it follows that z, == 0.
Therefore, by the case of one point spectra, o6,¢s(2;) = {£:}. Since
Q@Y = D2, and since the minimum polynomial of a sum of vectors
with minimum polynomials relatively prime in pairs is their product
[7, p. 68], the statement of the lemma follows.
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5.5. LEMMA. If (m,n) =1, then M(U,,) = M(U,)M(U,).

Proof. U,® U, is determined by requirements of the form
(U, ® U,)p; = @;., where ¢;, 1 < j < mm, is the natural basis of I,,,
and 7 is a permutation of the indices. Since (m,n) = 1, 7 is eyelice, and
it is easily verified that there exists a unitary operator V in [, ,, such
that U,, = V(U,® U,)V-!, which implies that M(U,,) = M(U, R U,).
Since [, , is of finite dimension, there exist vectors 2™, y® satisfying:
05, (50) N 05, D) = &, ||a® +y@ || =1 and ||o® || = M(U,). Let a,
y® play a similar role with respect to U,. Consider the vectors
=20 R, y=2z0RY® + y® R 2@ + y® Qy®. Since a(U,) is
the set of roots of unity of order =, oy, () and oy, (y©) are sets of
roots of unity of order n. Similarly for o, (¢®) and g, (¥®). Since
(m, n) = 1, the representation of a root of unity order mn as a product
of a root of unity of order n by one of order m is unique. Therefore
it follows from 5.4 that 0y,c0, (%) N 0y gy, (y) = ¢. By the cross property
of the norm |[&+y| =[|@® +y®)@ @® +y®)||=1 and [z | =
[e® @ z® || = M(U,)M(U,). Thus M(U,,) = M(U,® U,) > M(U,)M(U,).

5.6. LEMMA. For every given p, 1 < p < o, p + 2, there exist an
7 > 1 and positive integers k and m, such that M(Uyy.,) > 1) for m > m,.

Proof. By calculating the eigenvectors of U,, one shows that the
vectors x = (@, -++, %,) with oy (2) disjoint from gy (y), where y = (1,
1, ..., 1), are those which satisfy >, x, =0. Thus

M(U,) = sup {——M——lz =0, a arbitrary} .
|2+ ay||

For 2<p< o we chose x=(1, +--,1, —m/(n — m), -+, —m/(n — M),
where 1 is repeated m times, and

( m )(p-wcp-n 1
_ \m—m

- _ 1/(p-1)
()
m

Then if n =km + 1, £ > 2 and

IE2]S
e+ ay?

—

tends to
(L + /o014 %)
(-0 4 g--DIG-DYr 4 t<t "t*‘ 1)"
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where t = k — 1. Although the last expression tend to 1 as t — oo, it
is not difficult to verify that it is greater than 1 for all sufficiently large
values of ¢; hence a suitable integer k =t + 1 can be found. The case
1 < p <2 follows by duality: If 1/p + 1/¢q =1 then M (U,), where the
subscript indicates that U, is to be considered as an operator in [,,, is
the maximum of the norms of the values of the resolution of the identity
E of U,. The resolution of the identity of U} = U,' is E. Therefore
M (U = M(U,). But U, is unitarily equivalent in [, , to U,;*. There-
fore M, (U,) = M(U,); and since 2 < q¢ < o the lemma is true in this
case too. If »p =1, we may takex = (1, --+,1, —n + 1), « = —1; while
if p = o, we take the same x and a = n/2.

Finally to see that 5.5 and 5.6 imply sup, M(U,) = o, we have only
to use the fact that each sequence a, =km +1, m =1, 2, .-+, contains
an infinite subsequence of pairwise prime integers. As pointed out by
Dr. Dov Jarden such a subsequence is obtained by defining inductively
My =1, Mys1 = Qp Gy + e

REMARKS. For p =1,  the proof of 5.2 yields unitary operators
which are not even prespectral. It applies also to subspaces which
contain all finite sequences. It also follows from 5.2 that if Q is a
measure space which is not a finite union of atoms, then there exist
non spectral unitary operators in the space L,(2), 1 <p < o, p+ 2
An operator U in l,, 1 < p < o, p# 2, is unitary only if determined
by Up, = \ypyey 5 =1,2, -+, where {p,} is the natural basis, = a
permutation and |\,| =1 ([2, p. 178]. The proof goes easily over to
the complex case). We decompose 7 into disjoint cycles (including the
possibility of infinite ‘cycles’’) and consider the unitary operators induced
by U in the subspaces spanned by the ¢,’s with 7 belonging to a definite
cycle. One shows that M(U) = sup M(V), where V runs over the
induced operators. Moreover, if we change the \,’s into 1 and the cycle
of V into a standard one, we obtain an operator W with M(W) = M(V).
Hence Condition (5.2.1) depends only on the length of the cycles deter-
mined by #. From Theorem 5.7 it will follow that if in particular at
least one of these cycles is infinite, (5.2.1) does not hold. On the other
hand, it follows from [5, Th. 3.11, Th. 3.12 (III)] that this condition is
sufficient for spectrality of U if 1 < p < oo.

5.7. THEOREM. Let I, 1< p< o, p+2, be the space of two-
stded sequences {a,}5._.. with the obvious norm. Let ¢, —oo < j < oo,

be the matural basis of l_p and U the wunitary operator defined by
Up; = @y Then U s not spectral.

Proof. To facilitate the writing we assume p < «. From the proof
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of 4.6 through [6, Th. 18 (IV)] (cf. 8.1), it follows that if H(U,) is the
infimum of possible constants in Condition 3.1.1 for polynomials, then
MU, < H(U,). Let K be a positive number. Then by the proof of
5.2 there exists an » such that M(U,) > 2K, and therefore there exists
a polynomial g such that ||g(U,| > 2K max~_,|g(&)|. If f is a poly-
nomial, £(U,) depends only on the values f assumes at the nth roots of
unity, and in a continuous manner. Therefore, by the approximation
theorem of Weierstrass, there exists a polynomial f(¢) = >i-08:¢" such
that || f(U,) |l > 2K maxen, | f(¢)| and 2maxen | f(5)]| > maxy .| f(E)];
hence || f(U,)|| > K max;.,|f()|. Identifying ,, with the subspace of
I, spanned by ¢,, «-+, »,, we see that there exists an x = S\%,a,p, such
that

(5.7.1) W > Kmax | f(£)] .

@ |2 =1
It will simplify the notation if we assume, as we may, that the formal
degree s of f is of the form s = rn, » > 1. Let t be a positive integer

n

and consider the vector o' = >t S @Pum_1m.; - Then

<
+
o~

Mo

(5.7.2) F()x = jZEl Br3Pim+1n+i+x

1

]y
o
~ o
3
il

M;s

ro

= (O Bka1)¢’(u—l)n+v

u=1

It
ot

where the inner summation in the r.h.s. extends over the pairs j, k
satisfying (m — 1)yn +j5+k=(u — 1)n + v, where 1 <j<n, 0<k<
s=rnand 1 <m < r 4+ t. On the other hand

G713 SR =5 3 Apsan = 2 (5 A

where here the inner summation is over the pairs 7, k satisfying
j + k = v(mod n) with the same inequalities. For » +1<u < r +t,
the coefficient of @(,-1yns, in (5.7.2) equals the coefficient of ¢, in (5.7.3).
Therefore

(5.7.4) A || = || f(Unx |l
and on the other hand
(5.7.5) @' || = (r+ )] =]l .

(5.7.1), (5.7.4) and (5.7.5) imply

@) > () " Kmax| 7 @)

ig1=1

Letting ¢ tend to infinity, we get ||f(U)|| > Kmax]|f(¢)]|. Since K is
1g1=1
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arbitrary and o(U) is contained in the unit circle, this shows that U
does not satisfy Condition 3.1.1; hence it is not spectral.
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UNIFORMIZABLE SPACES WITH
A UNIQUE STRUCTURE

I. S. GAL

Here we shall study only uniformizable Hausdorff spaces. In general
if a topological space X is uniformizable then there are many uniform
structures 7/ compatible with the topology of X. If X is compact then
there is only one uniform structure for X and there are also non-compact
spaces whose structures are uniquely determined by their topology. (See
[1] and [2].) The purpose of this note is to give a necessary and
sufficient condition that % be uniquely determined by X. Let C(X) be
the algebra of bounded real valued continuous functions on X and let
C(X) be topologized by the topology of uniform convergence on the whole
space X. By A(X) we denote the subalgebra of those real valued con-
tinuous functions which are constant on the complement of some compact
set in X. We shall prove the following

THEOREM. The uniformizable Hausdorfl space X admits only one
uniform structure if and only if A(X) is dense in C(X).

Another necessary and sufficient condition for uniqueness was found
earlier by R. Doss [3]: The closed sets C, and C, are called normally
separable if there exists a continuous real valued function f on X which
takes the value 1 on C, and the value 2 on C,. Doss proved the follow-
ing:

Uniqueness takes place if and only if of any two normally sepa-
rable sets at least one is compact.

The following proof of the Theorem makes no use of this criterion
given by Doss. However at the end it will be proved that the criterion
stated in the Theorem and the criterion due to Doss are equivalent.
This gives a new, simpler proof of Doss’s theorem. Approximately at
the same time when [3] was published P. Samuel in [5] and T. Shirota
in [6] proved that

Among the unmiform structures compatible with the topology of X
there is a weakest vf and only if X ts locally compact.

The two halfs of this theorem are stated as of Lemma 8 and Lemma
6 below. Their proofs are independent of the rest of the paper and so
they furnish a simple proof for the Samuel-Shirota theorem.

A space X is said to be normally imbedded in the space Y if every
real valued continuous function on X admits a continuous extension to
Y. If this property is supposed to hold only for bounded functions one
speaks about a bounded normal tmbedding. E. Hewitt in [4] proved
that

Received December 24, 1958.
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The Hausdorff space X is normally imbedded in every uniformi-
zable space containing X as a dense subspace if and only if of any two
disjoint sets at least one 1s compact.

Among all uniform structures compatible with the topology of a
uniformizable space X there is a strongest called the Weil structure or
the universal structure of X. Its existence follows from the faect that
the union of all uniform structures compatible with X is a subbase for
a uniform structure which is compatible with X. The Weil structure
%, 1s uniquely determined by the following property: If 2" is a uniform
structure for Y and f: X — Y is continuous with respect to the topology
of X and the uniform topology associated with <#” then f is uniformly
continuous with respeet to %%, and . In general %4 is not a
precompact structure.

Let X satisfy the criterion given by Doss and let 2/ be the unique
structure compatible with its topology. The uniqueness implies that &
is identical with the Weil structure of X. Let X be a dense subspace
of the uniformizable space Y and let ¥~ be a uniform structure for Y.
The restriction of %7~ to X is the Weil structure of X and so every real
valued continuous function f on X is uniformly continuous with respect
to 7. Consequently f can be extended to a uniformly continuous func-
tion on Y and so X is normally imbedded in Y. Thus by Hewitt’s
theorem one of any two disjoint closed sets of X must be compact.
Combining the present Theorem with the theorms of Doss and Hewitt
we obtain:

Any two of the following statements are equivalent:

(i) X has a unique uniform structure.

(ii) If C, and C, are normally separable closed sets in X then at
least one of them is compact.

(iii) If C, and C, are disjoint closed sets in X then at least ome
of them 1is compact.

(iv) A(X) is demse in C(X).

(v) X is normally tmbedded in every uniformizable space contain-
wng X as a dense subspace.

We omitted the analogue of (v) concerning bounded normal imbed-
dings. For we have:

If X has a unique uniform structure then every real valued con-
tinuous function is bounded on X.

This follows from Lemma 1 below. Using (iii) one can also prove
that any two disjoint closed sets are normally separable.

The following notations will be used: Open sets will be denoted by
O, closed sets by C, neighborhoods by N, and open neighborhoods by
0,. For the closure of a set A we write A and c¢A stands for the com-
plement of A with respect to a given set containing A. Uniform struc-
tures will be denoted by </, &, ---; the completion of a uniform space
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X with respect to a structure 2 will be denoted by X and the complete

structure will be denoted by 7. As usual Uo V is the composition of
the vicinities U, Ve 2 and Ulxl=1ly: (x, y) e U]l. If Z; (t e I)
are uniform structures for X then lub %, denotes the uniform structure
generated by the subbase U %;. It is the weakest structure which is
stronger than any %/, (¢ € I). If £ is uniformly continuous on X then
F denotes its extension to X. The structure %, used in the proof of
Lemma 5 is the so-called Cech structure which was introduced by
Samuel in [5]. The fact that the definition given in [5] is equivalent
to the present simpler definition follows from Lemma 4. %/, is the
strongest precompact structure compatible with the topology of X and
its completion is the Stone-Cech compactification BX.

Levmma 1. If A(X) is dense tn C(X) then every uniform structure
% compatible with the topology of X is precompact.

Proof. This follows by a simple argument which is used also in
[3]: Suppose that X is a topological space and < is a non-precompact
structure compatible with the topology of X. Then there is a symme-
trie vieinity U € 2 and a sequence of points #,, %, +-+ in X such that
(%m, %,) € U only if m = n. We choose a symmetric V e 7~ satisfying
VoV c U and a symmetric W € o satisfying Wo W< V. Since X
is completely regular there is a real valued continuous function f, on X
with the property that |f,(x)| <1 for every x € X, the closure of
Wiz,] is a support of f, and f,(x) = + 1 according as n is even or
odd. By Wo W < V the closure of WJx,] is contained in VI[z,] and
by VoV < U the sets V[z,] and V]z,] intersect only if m = n. There-
fore the series JXf,(x) contains for each x € X at most one non-
vanishing term and it defines a bounded continuous function f on X.
Neither {x,, %, ++-} nor {x,, x, ---} is compact and so f can not be
approximated uniformly on X by elements of A(X). Hence the existence
of non-precompact structure implies that A(X) is not dense in C(X).

LEmMMA 2. If A(X) s dense in C(X) then X 1s locally compact.

Proof. Let O, be an open neighborhood of the point # € X and let
f be a real valued continuous function on X such that 0 < f(§) <1 for
every £ e X, f(x) =1 and f(§) =0 if £ ¢ O,. Since A(X) in dense in
C(X) there is a continuous function ¢ which is constant on the complement
O of a compact set C and is such that | f(§) — g(£)| < ¢ for every £ ¢ X.
It N,=1[& f(§) >1 —¢] is a subset of C then N, is a compact neigh-
borhood of x. If this is not the case then O and N, have a common
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point £. Then for every € O we have
J) =9(m) —e=9(¢) —e=>f(§) —2>1—-3>0

and so » € O0,. Since O € O, where C = ¢O is compact we see that the
complement of O, is compact. If this is the situation for every open
neighborhood O, of x then X is compact. Henece either N, is a compact
neighborhood of x for every z € X or X is a compact space.

Let f map X into Y and let ° be a uniform structure for Y.
The sets f~(V) = [(x,, %) : (f(xy), f(x,) € V](V e 7) form a base for a
uniform structure % for X, called the inverse image of &~ under f.
If f is a real valued function on X and " is the usual structure of the
reals the inverse structure will be denoted by %/,. It is a pseudo-metric
structure which is generated by the pseudo-metric d (x,, x,)= | f(2,)—f(x.)!.
If f is bounded then %/, is precompact. If {f} is a family of real
valued functions on X we call lub %/, the uniform structure generated
by the family {f}. Every fin {f} is uniformly continuous with respect
to lub %/,. Moreover if 7/ is a uniform structure for X and if every
fin {f} is uniformly continuous with respect to Z then lub %/, < Z.
If every f € {f} is bounded then lub %/, is a precompact structure for
X. These simple consequences are presented in greater detail in Chapter
IX of [1].

Some interesting uniform structures are structures generated by
families of real valued functions {f}. For example let X be locally
compact and let {f} be the family A(X). Given z € X and a compact
neighborhood C, of x there is a real valued continuous function f on X
such that f(z) =1 and C, is a support of f. Hence C, is a neighborhood
of xz in the uniform topology associated with %/. It follows that
7y = lub %/, is compatible with the topology of X. Every f e A(X)
is constant on the complement of a compact set and so it is uniformly
continuous with respeect to any uniform structure <~ which is compatible
with X. Therefore 2 < 2" and so % is the weakest structure compa-
tible with the topology given on X. Hence we proved the following
lemma, which incidentally is an’ exercise in [1]. (See Chap. IX. p. 16
Exercise 11.)

LEmMMA 3. If X is a locally compact Hausdor(f space then there is a
weakest uniform structure which is compatible with the topology of X.
It is the uniform structure generated by the family A(X).

The weakest structure if it exists is necessarily precompact. Now
we show that every precompact separated structure can be generated by
families of real valued functions. For let % be a precompact separated
structure for X and let X be the completion of X with respect to % .
The completed structure will be denoted by 2. Let %; denote the
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uniform structure generated on X by the real valued function f given
on X. It is clear that the restriction of %% to X is the same as the
structure 7/, generated on X by the restriction f of f to X. More
generally if {f} is a family of real valued functions on X then the
restriction of lub %5 to X is the structure lub %/,. If {f} is the
family of all real valued continuous functions on X then lub %5 is
compatible with the topology of X and so by the compactness of X we
have 7 = lub %/;. Therefore % = lub %/, where {f} is the family
of the restrictions of continuous functions f to X. Since f is the re-
striction of some f if and only if f is uniformly continuous with respect
to 27 we have

LEMMA 4. FEwvery precompact separated structure 7/ is generated
by the family of those real valued functions which are uniformly con-
tinuous with respect to 7.

The topology of uniform convergence on X is meaningful on the
linear space L of all real valued functions on the set X: The e-neigh-
borhood of 0 consists of those functions f on X for which supr | f(z) | < e.
Let A, CC L and let A be dense relative to C. By #Z/, and %, we
denote the uniform strutures generated by the families A and C,
respectively. Then for every ¢ € C and ¢ > 0 there is an a € A such
that |a(x) — c(x) | < ¢/4 for every x € X and so

[, v):[e(@) —c) | < el 2 [(90’ v): la@) —a@] < ;]

This implies that every vicinity of %/, contains a vicinity of %4, so
that 7, < %/,. If in addition A < C then %, < %/, and so we have

LEMMA 5. If A is dense in C then they generate the same uni-
Jorm structure.

Now it is easy to show that if A(X) is dense in C(X) then there
is only one uniform structure which is compatible with the topology of
X: By Lemma 2 the space X is locally compact and so by Lemma 3 it
has a weakest uniform structure %, which is compatible with its
topology. By the same lemma %/, is generated by A(X). It will be
sufficient to show that %/, is identical with the Weil structure %/, of
X. By Lemma 1 7/, is precompact and so by Lemma 4 it is generated
by the family of those real valued functions on X which are uniformly
continuous with respect to %,. By the precompactness and by the
definition of %/, this family is C(X). Since A(X) is dense in C(X) by
Lemma 5 they generate the same structure, that is %, = %% . This
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proves the sufficiency of the condition given in the Theorem.

Now we shall prove that the condition stated in the Theorem is
also necessary. First we suppose that X is a locally compact Hausdorft
space. Let X = X U {0} be the Alexandroff compactification of X and
let 7/, be the uniform structure obtained for X by restricting the unique
structure of X to X. We prove that a real valued function f is uniformly
continuous with respect to 7/, if and only if f belongs to the uniform
closure of A(X). For compact X this is obvious so we may assume
that X is not a compact space. Since the elements of A(X) are uniformly
continuous with respect to any structure compatible with the topology
of X the same holds for the elements of its closure A(X) and so it
will be sufficient to show that if f is uniformly continuous with respect
to 7/, then f e A(X). However if f is uniformly continuous with
respect to 7/, then it has a continuous extension f to X. By the con-
tinuity of f at oo for every ¢ > 0 there is a compact set C c X such
that | f(x) — f(e0) | < ¢ for every « ¢ C. Let O be an open neighborhood
of C which does not contain . Since X is normal there is a real
valued continuous function g on X which takes the value 1 on C, vanishes
outside of O and satisfies 0 < g(x) <1 on X. Then h = (f — f(c))g +
F(e0) belongs to A(X) and is such that | h(x) — f(x) | < ¢ for every « ¢ X.

Let us now suppose that A(X) is not dense in C(X). Then there
is an f € C(X) which is not in A(X) and so it is not uniformly con-
tinuous with respect to %/,. Since every element of C(X) is uniformly
continuous with respect to the uniform structure %/, generated by C(X)
we see that 7/, and %/, are distinct structures compatible with the
topology of X. This proves the necessity of the condition in the case
of locally compact spaces.

The proof of the Theorem will be completed by showing

LEMMA 6. If the wniformizable Hausdorff space X is not locally
compact then there is no weakest among the uniform structures which
are compatible with the topology of X.

Proof. First we notice that if X is a Hausdorff space and if
the Hausdorff space X is a compactification of X which contains only
finitely many more elements than X then X is locally compact. Now
let 2 be a uniform structure which is compatible with the topology
of the uniformizable Hausdorff space X. We assume that X is not
locally compact. Let B denote the family of those bounded real valued
funetions on X which are uniformly continuous with respect to % and
let &2 be the uniform structure generated on X by B. Then 7 is

precompact and is not stronger than Z/. Let X be the compact comple-
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tion of X with respect to %#°. By the foregoing remark X — X is an
infinite set. We consider the space Y obtained from X by identifying
a finite number of distinct points , «+-, 2, (n > 1) of X — X. The
identification space Y will be compact and separated, so it has a unique
uniform structure whose restriction to X will be denoted by 9#~. Then
Y is the completion of X with respect to 97 and X is the completion
of X with respect to #°. By Lemma 4 both <" and 27 are generated
by their families of real valued uniformly continuous functions. A real
valued function is uniformly continuous with respect to 97~ if and only
if it is uniformly continuous with respect to %" and its extension to
X assumes the same value at w,, ---, #,. Hence X being separated
there are real valued functions on X which are uniformly continuous
with respect to ¥ but not with respect to 5#~. Therefore o7 <7 <%/
and so X has no weakest structure compatible with its topology. Lemma
6 and the Theorem are proved.

We finish by proving that the condition given in the Theorem is
equivalent to the condition of Doss. First suppose that A(X) is dense
in C(X). Let C, and C, be normally separated by f. We may assume
that 0 < f(x) <1 for every x € X, f is 0 on C, and 1 on C,. We choose
a g € A(X) satisfying | f(») — g(%)| <& < % everywhere on X. Let g
be constant on the complement of the compact set C. If this constant
value is neither 0 nor 1 then both C, and C, are compact. Otherwise
we may restrict ourselves to the case when C is a compact support of
g. If x ¢ C then g(x) =0 so f(x) < e and x € C,. = [2: f(x) < €]. Therefore
¢C < Cyp. € cCpe =[x : f(x) <1 — €]. This shows that C,=[z: f(x) =1]c C
and so C, is compact.

Next we suppose that X satisfies Doss’s condition. Let f e C(X)
and & > 0 be given. We consider the closed sets C, = [z : | f(x) — ke | < £]
where 1 =0, +1, + 2, ---. Their union is X. Any two of the sets
Cp k=0, £1, + 2,.-.) are normally separable so at most one of them
is not compact. Similarly at most one of the sets C,,.. (k =0, =1, +£2,--.)
can be non-compact. Moreover if C,, and C,,, are not compact they
must have common points and so

Coo U Coper = I:w : s(m - —é—) < fle) < e(m + %)]

for some m. We define

f(x) if x e Cyand k< m
g(ac): e(m——%—) 'fo € Czk U sz+1
flxy—¢ ifxeC,oand k>m+1.

Then | f(x) — g(x)| < ¢ for every x € X and g € A(X) because f being
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bounded there are only finitely many non-void sets among the sets C..
If only C,, or only C,,, is non-compact the construction is similar.
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HIGHER DIMENSIONAL CYCLIC ELEMENTS

JOHN GARY

Introduction. Whyburn, in 1934, introduced the higher dimensional
cyclic elements [5]. He gave an analysis of the structure of the homology
groups of a space in terms of its cyclic elements. His results were for
finite dimensional spaces, and he used the integers modulo two as the
coefficient group. Puckett generalized some of Whyburn’s results to
compact metric spaces [3]. Simon has shown that if & is a closed sub-
set of a compact space M, which contains all the (» — 1)-dimensional
cyclic elements of M, then H"(E)~ H"(M)[4]. He also obtained a direct
sum decomposition of H"(M) using the cyclic elements of M. We will
extend some of these results.

The properties of zero-dimensional cyeclic elements in locally con-
nected spaces, and the relation of these cyclic elements to monotone
mappings, is basic in the applications of zero-dimensional cyclic element
theory. We shall give some counter-examples concerning the generaliza-
tion of these properties to higher dimensional cyclic elements.

1. Preliminaries. Throughout this paper M will always denote a
compact Hausdorff space. We shall use the augmented Cech homology
and cohomology with a field as coefficient group. Results stated in
terms of cohomology may be given a dual expression in terms of ho-
mology by means of the dot product duality for the Cech theory.

DEFINITION 1.1. A T, set in M is a closed subset T of M such
that H"(K) = 0, for all closed subsets K of T.

DEFINITION 1.2. An E, set in M is a non-degenerate subset of M
which is maximal with respect to the property that it can not be dis-
connected by a T, set of M.

The proofs of Lemmas 1.3 through 1.9 can be found in the papers
by Whyburn [5] and Simon [4]. The proofs given by Whyburn are for
subsets of Euclidean space, but they can be carried over to our case
without difficulty.

LEMMA 1.3. Let K be a subset of M which can not be disconnected
by a T, set. If M= M,UM,, T,-separated (by this we mean M, and
M, are proper closed subsets and M,N\M, is a T, set), then K M, (or,
Kc M,).

Received December 24, 1958. The results of this paper are contained in the authors
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R. L. Wilder for his advice and encouragement.
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LEMMA 14. If K is an E, set, then K is closed and comnected.

LEmMMA 1.5. If K, and K, are both E, sets and K, # K,, then
KNK,iw a T, set. Any T, set is also a T,., set.

LEMMA 1.6. If K is a mon-degenerate subset of M, which can not

be disconnected by a T, set, then K 1is contained in a unique E. set
wm M.

DEFINITION 1.7. If v"e H'(M) and D is a minimal, closed subset
of M such that *(v") + 0 (where 7*: H'(M)— H"(D) is the inclusion
map), then D is called a floor for v".

LEMMA 18. If v e H'(M) and v + 0, then there exists a floor
Jor 7.

LEMMA 1.9. If D is a floor for o7, then D can not be disconnected
by a T,_, set.

LeEmMA 1.10. If {E%, ---, E"} s a finite collection of E,_, sets in
M, with M + U, E?, then there exist proper, closed subsets, M, and
M,, of M such that (1) M = M,UM,, (2) M,N M, is the union of a finite
number of T,_, sets (therefore, M,NM, is a T, set), (3) M,DU~, E".

Proof. The proof will be by induction on #. The case n =1 fol-
lows from Lemma 1.3.

Assume the lemma is true up to = — 1. Since M is not an E, _,
set, we have M= M,UM, T, ,-separated. Let FE = UL, E' If
(M — EYn(M — (M,N M,)) = ¢, then the desired T, ,-separation of M
could be obtained by using the boundary of an open set in M, N M,.
Therefore, we can assume (M — E)N(M — M,) + ¢. By Lemma 1.3,
we can assume Ui, E'C M, and Ur,,, B'C M, where 1 <s<n. We
must have Eic(M — M), for 1 < i <s. Otherwise, we could separate
E' by the T,_, set (M — M) N (M,NM,). Since (M — E)N(M — M,) # ¢,
(M — M)+ U;i.. E*. Thus, by the induction assumption, (M — M,) =
M,U M;, where UJi., E' is contained in M, and M,N M, is the union of
a finite number of 7T,.., sets. If we let M1=M1UM4 and M2= M,
then

(1) M= M1UM7

(2) M,N M, is the union of a finite number of T,_, sets,

®) UL, Ecl,

(4) M, and I, are proper closed subsets of M.
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2. Cyclic elements and the structure of M.

DEFINITION 2.1. A closed subset A of M is called a L, set if every
E,_, set, whose intersection with 4 is not a 7, set, is contained in A.
The proofs of the following theorems are given below.

THEOREM 2.2. If A is a L, set, then i*: H'(M)— H"(A) is onto.
Thus, by duality, 1,: H(A)— H,(M) is one-to-one.

THEOREM 2.3. Let A be a closed subet with the following property:
if K is an E,._, set and H'(E)+ 0, then E 1is contained tn A. Then
the map ©*: H'(M)— H"(A) is one-to-one and, by duality, i,: H,(A)—
H. (M) s onto.

THEOREM 2.4. Suppose there are only a finite number, say
{E*, ++«, E™}, of E,., sets such that H"(E')+ 0. Let A= Ui, E".
Then the mappings 1*: H'(M)— H"(A) and i,: H(A)— H,(A) are iso-
morphisms.

REMARK. Theorem 2.4 can not be generalized to an infinite number
of E._, sets, as the following example shows. In Euclidean space let
M=DU[U C], where D= {(z,y,2)|z2=0,2*+y*<1} and C, =
{(x,y,2)|z =1/t,2* + y*=1}. We do not have H(U:.C,) ~ H(M),
under the inclusion mapping.

THEOREM 2.5. Let v"e€ H' (M) and suppose U is an open set, such
that if D is a floor for v, then D 1is contained in U (see Definition
1.7). Then there exists a v,e H'(M, M — U) such that o = j%(73),
where 3% H'(M, M — U) — H"(M).

THEOREM 2.6. Assume E is an E,_, set in M and N 1is a closed
subset of M, where NN E=¢. Then the composite mapping j,i.: H(E)—
H.(M, N) 1is omne-to-one. Here, t,: H(E)— H(M) and j,: H(M)—
H/ (M, N) are the natural mappings.

LEMMA 2.7. Let (M, A) be a compact pair with v e H'(A). If
3*(v") # 0, where &*: H'(A)— H™'(M, A), then there is a minmimal
closed set B such that BC A, and 8;(vy) #+ 0. Here, 85: H'(B)—
H™Y(M, B) and 7% = i*(v"), where 1*: H(A) — H"(B).

LEMMA 2.8. Let B be a minimal set defined wn Lemma 2.7. There
exists @ minimal closed set N such that *(v3) + 0, where 8*: H'(B) —
H™(N, B).
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Proof. The proof of these lemmas is obtained from the continuity
of the Cech theory and Zorn’s lemma.

LEMMA 2.9. The set N, in Lemma 2.8, can mot be disconnected by
a T,_, set.

Proof. Suppose N = N,UN,, where N,NN,is a T,., set. We will
show this to be impossible, unless N = N,. Let B be as defined in
Lemma 2.8, and define B, = N,NB (i =1,2). We will show that the
mapping induced by inclusion

K*:. H"*N, B) — H"*(N,, B,) ® H"*'(N,, By)

is an isomorphism. We use the relative Mayer-Vietoris sequence given
below; note that T'= N,N N, is a T,_, set [2].

H™(N,, B) @ H™(N,, B,) ~— H"*(N, B)

e

H'(N, N) — H™*\(N, N,UB) + H*(N, N,UB) —— H"*\N, BU T)

— H™*(N,N) .

The mappings ¥ and ¥ are isomorphisms by excision, the map K* by
exactness. Using the three exact sequences given below we see that
7* is an isomorphism.

H-BNT)—HBUT)— HB)PHT)>HBNT)
HBUT)— H(B)— H*BU T, B)— H*(B U T) — H**'(B)
H®BUT,B)—-H*N,BUT)— H*(N,B)— H*(BUT,B).
The first is a Mayer-Vietoris sequence, the second is a sequence for a

pair, the third is a sequence for a triple. Thus K* is an isomorphism.
In the diagram below, since 8%(v};) # 0, we may assume 8y ¢i(v3) # 0.

K*

H™YN, B) H™Y(N,, B) @ H™*'(N,, B,)
1 Fa 1
. /
Ox H™*(M, B,) 3% 3%
RO
bx @ b N\
H'(B) H'(B)® H'(B,)

We now have &f¢i(73) # 0, since if8Fpi(v3) = 85¢(vz) # 0. This im-
plies B, = B, by the definition of B. Therefore, ¢¥(¥%) =% and
Sx P (vs) = 85 (v3) # 0. Since N is minimal, we must have N,= N.
Thus, N can not be disconnected by a T,_, set.



HIGHER DIMENSIONAL CYCLIC ELEMENTS 1065

Proof of Theorem 2.2. We will show 8*(v") = 0, for all v"e H"(A),
where §*: H"(A) — H'(M, A). Suppose not; then choose N and B ac-
cording to Lemma 2.8. Then there exists an E,_, set containing N, by
Lemma 1.6. Let E denote this E,_, set. Since E contains N, we have
ENnA>B. Since H(B) # 0, B is not a T, set. Therefore EC A, be-
cause A is an L, set. This implies that N is contained in A. But this
is impossible, as the diagram below shows. By the definition of the
pair (N, B), §*¢*(y") # 0.

oy
H'(A) —— H"*(A, B)

S

S
H'(B)->— H"*\(N, B) .

Proof of Theorem 2.3. Consider the exact sequence:

H(M, A) -2 B =5 H(4)

Suppose j*(7") # 0, where v" € H’(M, A). By Lemmas 1.9 and 1.6 there
is an E,._, set which contains a floor for 7*(v"). Let E be this E,_, set.
Since E contains a floor for j%(v"), H"(¥) #+ 0. Therefore, £ C A; which
implies 7*7*(v*) # 0, since F contains a floor for j*(v"). Therefore j*
is a trivial map and 7* is one-to-one.

Proof of Theorem 2.4. By Theorem 2.3, 7*: H,(A) — H/(M) is onto.
If i.(Z,) = 0, for some Z, e H,(A); then there is a minimal set K such that

1) KDoA, and

(2) 15(Z,) =0, where 5 : H(A) — H(K) [2]. If K+ A; then, by
Lemma 1.10, we have K = K, UK,, T,-separated. The Mayer-Vietoris
sequence below implies 75:(Z,.) = 0, where 51 : H(A) — H/(K)).

Therefore, K = A and Z, =0, or 7, is one-to-one.

Proof of Theorem 2.5. Consider the exact sequence,
H/(M, M — U)—"s H (M) - H(M — U) .

We will show %(y") =0, where o is the element of H"(M) given in
the theorem. Suppose *(v") # 0; then, by Lemma 1.8, there exists a
floor for ¢*(y") contained in M — U. If D is this floor, then D is a
floor for v, since i), =1,,1*. Here, i5: H'(M)—H"(D) and i;,: H'(M —U)—
H"(D) are inclusion mappings. Therefore, by the definition of U, D is
contained in U. This is impossible, hence 7*(y") = 0.
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Proof of Theorem 2.6. Let ¢, = j.i,., and suppose ¢ (Z,) =0, for
some Z,e H(E). Then there exists a minimal closed set K in M such
that K D K and ¢%(Z,) = 0, where ¢%: H(E)— H(K, KN N) is analo-
gous to ¢, defined above. This follows from Zorn’s lemma and conti-
nuity. We will assume K = E. Since F is an FE,._, set, we can write
K=K ,UK,, T,_,-separated. Also, we can assume F C K,. Consider the
following commutative diagram:

H,_(K.NK.NN)  H,(K,NK)

H(KNN)———— H(K) " —— H(K, K N)
i 1onE /
L
ok ¢t HJ(E)
H(K.NN) H(K)— " —— H(K, K, N)
@ ® @
H(K,NN) —* H(K)

T T

H,.(Kl ﬂ -K2 ﬂ N) Hr(Kl m KZ)

The two vertical sequences are Mayer-Vietoris sequences. Algo, the
two horizontal sequences are exact. We have

Hr—l(Kl ng) = I{r—l(K1 N I{zﬂN) = HT(KI N Kz) = III(KJ NK.N N) =0,

since K,NK, is a T,_, set. Since ¢%(Z,) = j%i%5(Z,) = 0, there exists a
Ze H(K N N) such that 3.(Z?) = 14(Z,). There exists

(2}, Z7) e H(K,NN) @ H(K.NN)
such that ¢i.(Z%, Z2) = Z]. By commutativity,
VI(E(ZD), VL Z))Y 325, Z7) = W Z)) = 1i(Z,) ,
and
V(150 Z,), 0) = iK(Z,) .
By exactness, Y% is an isomorphism, hence '(Z%) = i%1(Z,). Therefore,

JEuR(Z,) = jEut(Z)) = 0. But this is impossible, since K is minimal.
Thus, K = K and ¢* is one-to-one.
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3. Cyclic elements in locally connected spaces. The zero-dimen-
sional cyclic elements in a locally connected continuum have several
useful properties. For example, if the continuum M is locally connected,
then the zero-dimensional cyclic elements of M are also locally connected
and these cyclic elements form a null sequence. Also, the simple
0-links (definition below) are identical with the F, sets in an l¢’ space [6].
The examples below show that these properties do not generalize.

DEFINITION 3.1. A non-degenerate subset K of M is called a simple
r-link of M, if K is maximal with respect to the following property:
if M= M, U M,, T,-separated, then K M, (or K< M,). In other words,
K is a maximal subset which can not be separated by a 7T, set that
also separates M.

LEmMmA 3.2. All simple r-links in M are closed. If K, and K,
are two distinct simple r-links in M, then K NK, is a T, set. If L
is a non-degenerate subset of M that is not disconnected by any T, set
which also disconnects M, then L s contained in a simple r-link of M.

Proof. The proof is similar to those for the corresponding lemmas
for cyclic elements.

ExAmMPLE. We will construct an l¢” space M in which the collection
of E, sets does not form a null sequence. This example will also show
that, in an lc¢” space, the simple r-links need not be the same as the
E, sets.

For each positive integer n, let B, be a solid, three dimensional
rod of height one and diameter 1/2". In Euclidean three-space, define
ITby I=1{«vy2|x=01y=00=<2z=<1}. Imbed R, in three-space so
that R, is tangent to R,., and the sequence of sets R, converges to [
(i.e. R, = {(x,2,2)|2*+ (y — 3/2"*' ) < 1/2"** 0 <z=<1}). Let M be
the set [U;.. R,JUI. Then M is a compact l¢' space, each R, is an E,
set in M, but the collection {R,} is not a null sequence. Also, [ is a
simple 1-link, but is not an E, set.

THEOREM 3.3. If M is s —lc and E is an E, set of M, where
s=7r, then E is s — le.

Proof. Given any ze E, and an open set U° of E containing «,
then there exists an open set U of M such that UN E = U°. Since M
is s — le, there exists an open set V, containing z, such that Vc U
and any compact s-cycle in V bounds on a compact subset of U. Let
Z, be a compact cycle on VN E =V’ Then there exists a minimal
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closed set K in M such that V°'c K c U, and Z, bounds on K. By using
the Mayer-Vietoris sequence, as it was used in the proof of Theorem
2.4, we can show Kc U°. Therefore Z, bounds in U° and E is s — lec.

ExampLE. We will construct a compact l¢” space which contains
an E, set which is not l¢”. Consider the following curve in three-space:

r=0,y=1¢,z=sin(xn/t), for 0 <t<1.

Expand this curve slightly so that it becomes a solid, three dimensional
figure, which oscillates as it approaches the origin. Let N be this space,
along with its limiting line segment on the z-axis. Let P =
{(x,¥,2) |t =0,0=y <1, —1<2<1}; then define M= P U N. Thus
N is an E| set in M and M is l¢* but N is not 0 — lc.

4. Cyclic elements and monotone mappings. A very basic property
of the zero-dimensional cyclic element theory is the following: if f: M —
N is a monotone mapping (i.e. the inverse image of any point is con-
nected), M and N are I¢°, and E, is an E, set in N; then there is an
E, set in M whose image under f contains E,. This result does not
hold in higher dimensions, as the example below demonstrates. The
best result we have obtained in this direction is Theorem 4.2.

DEFINITION 4.1. A mapping f: M— N is r-monotone, if H*(f~'(y))=0,
forall yeNand 0 s < r.

THEOREM 4.2. Let f be an (r — 1)-monotone mapping of M onto N,
where M and N are compact Hausdorff spaces. If D, is a floor for
vy € H'(N), then there exists a floor Dy for f*(v%) such that f(Dy)=Dy.

Proof. Since f is (r — 1)-monotone, f*: H"(N)— H"(M) is a one-
to-one mapping [1]. Therefore, f*(v%) # 0. Consider the commutative
diagram below. The vertical mappings are inclusion mappings; and D,
is defined below.

M—T N

la T
Si

f-l(DN) ——— Dy

e o
fi

D, — f(Dy) .

The mapping f, is the restriction of f to f-'(Dy). Therefore, f, is
(r — 1)-monotone. Since D, is a floor for %, ¢5(vy) + 0. Since
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[ H(Dy) — H'(f~(D)) is one-to-one, ¢} f*(vy) = fiii(v%) # 0. There-
fore, f~*(Dy) contains a floor for f*(v%). Denote this floor by D, and
let f, be the restriction of f to D,. By the definition of a floor,
Jatuf*(va) # 0. Since ginf™(vy) = figxin(vy), we have j¥i(vy) # 0.
This implies f(D,) = Dy, since D, is a floor for +%.

We shall omit the proofs of Lemmas 4.3 and 4.5.

LEMMA 4.3. Let N, and N, be subsets of M which can not be dis-
connected by o T, set. Suppose that N,UN, is not a T, set. Then
N,UN, can not be disconnected by a T, set.

LEMMA 4.4. Let f: M— N, and suppose TC N tsa T, set such
that f~Y(T) s also a T, set. Also, assume f is a homeomorphism of
M —fYT) onto N—T. Then, if TV tsa T, set in N, f~(T") is a
T, set vn M.

Proof. Let K be a closed subset of f-%(T*"). Denote f-%(T) by
T-*. In the commutative diagram below £ is an isomorphism, by ex-
cision. Therefore, by exactness, H"(K) = 0.

HEK, KNnNTHY-HK)-HENT™)

72 £+

H'(f(K), f(KNT)— H(f(K)) —

LEMMA 4.5. Assume f is a mapping of M onto N such that the
wnverse 1mage of any T, set in N is a T, set tn M. If KC M can
not be disconnected by a T, set in M, then f(K) can not be disconnected
a T, set in N.

ExamMPLE. If f is an r-monotone mapping of M onto N, where M
and N are lc” spaces and E¥ is an E, set in N; there may not be an
E, set, £, in M such that f(E*)DE".

We will construct the example in three space. Consider the follow-
ing solid cylinders:

M ={xy2+y=1 0<z<1}
M,={@y2x+y—2l=1 0=z=1}.

The cylinders M, and M, are tangent along I = {(x,y,z2)|x =0,
y=1,0=<2<1}. Let M, be an arc joining the endpoints of I, which does
not meet M,U M, except at these endpoints. Let M = Ui, M,. We
will define a decomposition of M, and will let f: M — N be the decom-
position mapping.
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To form N, identify all the points in M, into a single point. Then
the mapping f: M — N is r-monotone for all » and the restriction of f
to M — M, is a homeomorphism.

We will show that N is an E, set. First, neither M, nor M, can
be disconnected by a 7T, set. Lemmas 4.4 and 4.5 imply that neither
f(M,) nor f(M,) can be disconnected by a T, set. By Lemma 4.3, N =
F(M)U f(M,) can not be disconnected by a T, set, since f(M,) U f(M,)
contains an essential l-cyele. If K is a closed subset of M such that
f(K)DN, then Ko M, U M,. Then K can be disconnected by a T, set,
namely M,N M,. Therefore, there is no E, set in M whose image is N.

Note that M is obviously l¢” for all . Therefore N is also I¢",
for all r, since f is r-monotone, for all r.
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ON DIOPHANTINE APPROXIMATION AND TRIGO-
NOMETRIC POLYNOMIALS

RICHARD P. GOSSELIN

The usefulness of Diophantine approximation in achieving both posi-
tive and negative results in the subject of trigonometric interpolating
polynomials is well established (cf. e.g. [1], [4]). The trigonometric
polynomials, hereafter called simply polynomials, which we shall con-
sider mainly and designate by I,.(x;f) are those of order n taking
on the values of a given function f at the points u + 27k/(2n + 1),
k=0,1,---,2n. Thus

2__ S fu+ 2Dy — u — 2),

bdeif) = g1 24

D,(x) = sin 2n + 1)x/2 £ — 2k
" 2sin (x/2) " on+1°

It is assumed that f is periodic and defined almost everywhere so that
for almost every wu, I, . (x; f) is defined for all n. Marcinkiewicz and
Zygmund [4] have shown that each p,1 < p < 2, there is a function f
of class L? such that for almost every point of the square 0 < x < 2,
0=su<2n, I, (x; f) diverges. They made strong use of the following
classical result of Diophantine approximation: for each x there are in-
finitely many rationals p/q such that |z — p/q| < 1/¢%

Our aim in this paper is to generalize the result of Marcinkiewicz
and Zygmund. The chief tool of proof is a result proved in the next
section, concerning the approximation of reals by rationals in which the
range of the denominators is restricted. In the third section we give
our main theorem to the effect that for any increasing function
defined on (0, ) there is an f such that + (|f]|) is integrable over
0 <2 < 27 and such that I,.(x;f) diverges for almost every (z,u).
In the last section we show this result holds for Jackson polynomials.

2. We begin with a preliminary lemma. If F'is a measurable set,
|F'| will denote its measure. We shall let C, C,, and C, denote con-
stants, independent of the values of the integers N, M, and m.

LEMMA 1. Let N, M, and m be three integers such that 0 < N< M <
m|2. Let F be the subset of (0,1) such that for each x in F there is
an trreducible rational plq, 0 < p< q, N < ¢ < M satisfying |x — plq| =

Received December 10, 1958. This work was supported by the National Science Founda-
tion through Research Grant NSF G-2789.
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1/gm. Then

LM=N) _ Crog 1y |p < ZE-N) ;. C

- log (M+1).
w'm m 'm

If only 0 < N < M < m, then the second inequality above holds.

F' is the union of intervals of the form (p/q — 1/gm, p/q + 1/gm).
The number of irreducible rationals with denominator q of the above
form is ¢(q) where ¢ is the Euler function. The contribution to the
measure of F' from a given ¢ is no more that 2¢(q)/gm so that the
measure of F' does not exceed

ERE0)
m aq=N+1 q

Let 4(0) = 0, yn(n) = S.7_,¢(q). Applying Abel’s transformation to the
above sum, we obtain

2 &) 2 (M) Y(N) )
(1) IF|<Mq%+1q(q—|-1)+mlM—|—l (N—l—l)f'

By a known theorem (cf. e.g. [3, p. 120])

3¢ 3¢?
(2) - — Calog(4+1) = ¥(9) =21~ + Cglog (4 + 1) .

Substitution of (2) into (1) gives

6 & q 6M 6N* C
F S : - 2] M+1
1Fl= ™m qzv“+1q+1+nm 7'rm(N+1)+ og'(M+1).

This implies the second statement of the lemma. In case M < m/2,
there is no overlapping of the (open) intervals (p/q — 1/gm, p/q + 1/qm).
For otherwise, there are distinct rational #/s, p/q (let us say r/s > p/q)
of the required form such that

r 1

0<__£<L+—_ﬂand0<rq—p8<—q—i§1-
s g sm  qm m

This contradicts the fact that rq — ps is an integer. Thus

Fl=2 s 2@

m a=N+1 q

Now the inequality (2) implies the lemma.

THEOREM 1. (i) Let m be a sufficiently large positive integer, and
let v be a real number such that 0 < v < w*/12. Let E be the subset of
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(0, 1) such that for each x in E there exists an irreducible rational
ple, 0 < p < q,ym < q =< m for which |x — plq| < 1)ym?. Then there is
an absolute constant C such that

|E|gl—_1-22l— Cm~'log*m .
T

(ii) Let v be a real number such that 0 < v < w*/24. Let E, be
the subset of (0,1) such that for each x in K, there exists an irreduci-
ble rational plg,0 <p<q,vm<q=m, with q odd for which
| —plg| < 2/v*m*. Then there is an absolute constant C such that

|El=1— 2—422 — Cm~'log*m .
T

As in the proof of the theorem mentioned in the introduction (cf.
[6, p. 43]) we may find for each « in (0, 1) an irreducible rational p/q
such that

(3) e —plg]< L1, 0<qg=m.
qm

If x is restricted to the (open) interval I = (1/m,1 — 1/m), then 0 <
p < q. We shall say ¢ and z are associated if (3) holds with « in [
.and with p/q irreducible, 0 < p < ¢q,0 < ¢ =< m. Let F, be the subset
of I for which all ¢ associated with x do not exceed ym. Since each
2 is associated with some ¢, the set F) is a subset of the set F' of
Lemma 1 for which N = 0 and M = [ym], the greatest integer not ex-
ceeding ym. We may assume without loss of generality that ym > 1.
Let E be the complement of F, with respect to I. Since the measure
of F' does not exceed 12y/n* 4+ Cm~'log* m, part (i) follows from (3) and
the inequality q > ym.

Let F, be the subset of I for which all ¢ associated with an z in
F, are such that (1 —vyym < q¢<m. F, is a subset of the set F of
Lemma 1 for which M =m, N =[(1 — v)m]. Let E, be the comple-
ment of F| U F, with respect to I. Then |E,| = 1 — 24v/7* — Cm~"log*m.
If x belongs to E|, there is a ¢ associated with x such that ym < ¢ <
m(l —v). If q is even, we may find integers » and & such that

(4) np — Eq =1

where 7 must be odd, and automatically £/y is irreducible. Let 7, be
the least positive solution of (4) (cf. [1] for a similar argument). If
7, = ym, it follows that
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and

L 11 2

qm ,Yzmz - ,yZmZ'

5) |-t

g{x_£l+!£_é
q q 7o

If py<vym, let , =1, +q. Then ym < qg=7n < 9m+ q=<m, and (5)
holds with &7, replaced by &,/n,. We may assume that o* > 1/m so that
0 < £<n=m as required.

3. We begin this section with a lemma which is related to the
results of the preceding section, but it contains only as much informa-
tion as will be used in the proof of the next theorem.

LEMMA 2. Let m be a sufficiently large integer, A, a real satis-
fying 1 < A, < logm, and d logm an integer with 8 < d < 10. Let 4~
be the set of odd positive integers 2n + 1 mot exceeding m and such
that

(6) ﬁvﬂ —2n+ 1= z_l%i,{f for some (g, v) such that

O<p=y<d logm.

Let G be the subset of (0,1) such that for x in G, there is a 2n + 1 in
A and a k,0< k< 2n+1 for which |x — k/(2n + 1)| < 2442 /m*. Then

1G] < 36d* log® m
= m .

For a given ¢ and vy, no more than 1 4+ 8AL%y integers 2n + 1
satisfy (6). For a given v, no more than v + 8A!? integers may satis-
fy (6) for some ¢ < vy. Hence N, the number of distinct integers in
1 does not exceed d*log*m -+ 8dAY*log m. If x belongs to G, x is con-
tained in an interval of length 4A4.*/m’ centered about some point
k/2n + 1). For each 2n + 1, the total length of the intervals is no
more than 4A4Y*/m. Thus,

4NAL? < 36d* log® m

m m

|G|

IA

THEOREM 2. Let + be a monotone increasing function defined on
(0, ©). There exists a function f such that  (|f]) is integrable on
(0, 27) and such that the sequence I,.(x;f) diverges for almost all
points of the square 0 < x < 27,0 < u < 2.

Let A, be a positive number satisfying the inequality 16 < 4, <
(log m)¥*. A more exact specification of A, will be given at a later
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point. The function f will be a sum of periodic, step functions f, of
the following form. When x belongs to one of the intervals

lx — 27mj/m| < Am AV} m?, 7=0,1,«-e,m—1

let f.(x) = A,,; when x belongs to one of the complementary intervals
of (0, 27) let f,.(x) = 0. Let E, be the set of Theorem 1, part (ii), cor-
responding to m and v = A;!*, and expanded to the interval (0, 27) on
the u axis. For m sufficiently large, |E,| = 27(1 — 25/7*A%*). Let G be
the set of Lemma 2 expanded to the interval (0, 27) on the u axis. Let
E, be the difference set £, — (G U G,) where G, is the set of % such
that |u| < 27n/(log m)'>. By our above estimates

25 36d? log® m 2 ]
7 E,| =2 [1 _ _ _ '
(7) | En| d m2AL m (log m)'"?

Let E, , be the set E, translated by — 2zj/m,j=0,1,.--,m — 1:
i.e. u belongs to E,, ; if and only if w + 27j/m (modulo 27) belongs to £,,.
Let — u belong to E,; We may assume that — u + 27j/m belongs to
the interval (0, 27). Since FE, is a subset of F,, there exists, according
to Theorem 1, part (ii), an odd integer, 2n + 1, m/AY' < 2n + 1 < m,
and an integer k, 0 < k < 2n + 1, such that

2rq 2k 4T ALP
8 — < m_
(8) }u m + 2n +11 7  m?

This inequality implies that f,(uw + 27k/(2n + 1)) = A,,. Since — u -+ 27j/m
does not belong to the set G, the integer 2n + 1 cannot belong to the
set 4~ defined by (6). If f.(w + 27n(k + p)/(2n + 1)) = A,, for some
nonzero integer ¢, then there must be a nonzero integer v such that

(9) o B D) 2t py | o ATAL
m 2n -+ 1 m?

We may assume that ¢ > 0,y > 0. The inequalities (8) and (9) imply
that

(10) l L _”_] < 4A"
2n + 1 ml m

and (10) implies that ¢ < v. For if ¢ > v, then

gy -1 4Ar
on +1 m ~ 2n+1 m:

It also follows from (10) that
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s (o 1)) < 447 @2n + 1) < 447
v y

m Y

Comparison of this inequality with (6) shows that |v| > d(log m). Our
analysis shows, in fact, that if £, (u -+ 2{®) = A,, then f,.(u 4+ «{%) =0
when |v| < d(ogm) and 2n + 1 does not belong to ./ For each
j=0,1,---,m — 1, let I, be the set of the z axis defined by

T | 21
mALlt m

A

T
m

If x belongs to I;, and if — u belongs to E, ; then we find from (8)

that
v — u — _ 2nk Igtx_Zny'l+)u+ 2rk  2mj
2n +1 1 m 2n +1 m
T 47 Al? 3
g_ﬁ_l_ m? <2m

for some k and for some n for which m/AY* < 2n + 1 < m. Furthermore

v — o — 2rk 2.90——27”'1—‘%—5- 2nk  2mj
2n + 11 m 2n + 1 m
-~ T _ 4m Al T
= mAY: m? 2mAY

These inequalities imply that

(11) 1 orle > —gn—; }sin(n + %)(w — u)]
‘sin—(x — U — L)'
2 2n +1
>gin % > 1
- 441 T 2AY2
Now we are ready to estimate I, ,(x;f,) with # in I, and — u in
Emyj-
(12) Lo fr) = Sm(w + 2™) (= 1)* sin (n + 1/2)(x — »)

2n +1 sin—;-(x —u — x{)

n sin (n + 1/2)(x — u) 5 ol + i) (— 1)

2n +1 E sin%(x —u — x™)

Denote the first and second terms on the right by D, and D, respectively.
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By (8) and (11)

2|sin (n + 1/2)(x — u)|mA,, . A

13 D,| = > 1/2)(x — m
13) D= 3@n + 1) = [sin(n + 1/2)(x — )|

We may assume that for the terms of D,, |#{" — x| < & so that ex-

cept possibly for one term of the sum which can be ignored, |z — u —
x| < . Hence for the terms of D,,|sin2 Y (x—u—x®|=|c—u—a™|/x,
and

\D,| < Zlsin( +1/2)@ — W[ ¢ fulw +5”)
o 2n + 1 iz | —u —x ™|

The denominator of the terms in the sum increases with |7 — k|. Fur-
thermore if ¢ and ¢’ are distinct values of the index for which the
numerator is nonzero, then |7 — k| > dlogm, | — k| > dlogm, and
|1 —1|>dlogm. Thus we find that

2r|sin (n + 1/2)(x — u)| A, & 2n +1

|D,| =
2n + 1 =1 2mrd log m
< |sin (n + 1/2)(x — u)| A, log (M+1) M:<2n+1>
= dlog m " ’ 2d log m

We denote by <(y> the least integer = y. From this inequality and from
(11), (12), and (13), we deduce that if x belongs to I, and if — u be-
longs to E,, ;, there exists an integer, 2n 4+ 1, and a positive constant
C such that

. CA1/2
(14) IL,.(2; fn)| = Clsin(n +1/2)(x — u)| A, = 5"

The product set I, x E, , of the zu-plane has two dimensional
measure equal to 27| E,,|(1 — A;Y*)/m. There are m such mutually dis-
joint sets, and the total measure of their union, H,, is 27| E, |(1 — A,"").
Thus if (¢, — u) belongs to H,, then (14) holds for the proper n. We
note here that lim|H,| = 47* if im A,, = «.

Let

(15) £@) = 3 fu() -

We shall impose various conditions on the sequence of positive integers
m(7), all related to the rapidity of its growth. Let {B;} be a sequence
of reals going to o« so that 3,,B, < BY'. Let m(i) increase so rapid-
ly that log m(i) = B? and that

(16) (2B, )—(log”’(‘()‘)) toom
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Let A, = B, so that A, < (log m(2))"* as required. Now f,(x) is 0
except on a set of measure not exceeding 47 AY*m < 4r(log m)"*/m. Let

— <& (ogm@@)" & o
0r=2 e PWIEA S

It follows that the series in (15) converges almost everywhere and that
S fm(x) is 0 outside a set of measure 47p,. Let K, be the set of
x values for which f,,;(x) # 0, and f,,(x) =0 when 57 > ¢. The K/s
are mutually disjoint, and their union is, except for a set of measure
0, the set where f(x) + 0. Moreover, | K,| < 4n(log m(1))"/m(i). When
x is in K,

WIS@D) S+ 5 Fuoa)) = 2B -

Thus by (16)

|71 s@))ie < SwEB)IK] < o .

In the estimation of the interpolating polynomials, we shall require
certain other conditions. Thus we assume that f belongs to L? for some
» > 1 and that

2—}

K,|2B)y < —= ;> 1.
|K,|(2B,)* = (G — 1) J>
From this it follows that
2 2——7‘.
(17) S [ > fop(®)Pde = K[ (2B)) = = - .
0 J>i EY m(z)

Furthermore we note that >.'Z]f.(x) is a function of bounded
variation so that, for each u, the interpolating polynomials converge to
the function at every point of continuity, ¢.e. outside a finite set [6; p.
36]. Thus, given m(1), m(2), ---, m(t — 1), we choose m(%) so large that
for 2n + 1 = m(3)/B}"*,

i-1 i—1
(18) L3 3, fur)| = 2max (S Fuo®)) < 243

for (x, u) outside a set of two dimensional measure not exceeding 2-¢.
Finally since lim|H,,| = 4%?, the m(i) can be spread out so sparsely that

(19) 2 Haw] < o0

where H), is the complement of H,.
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To estimate I, [(x;f), we let m(2)/Bi" < 2n + 1 < m(i). Then

(20) In,u(x; f) - In,u(x; me(j)) + [n,u(x;fm('i)) >+_ In,u(x; %fm(j)) .

J<i

Let g(x, u) be the maximum of the absolute value of the last term on
the right for 2n + 1 < m(7). A result of Marcinkiewicz and Zygmund
[4] implies that

[ lo@ widedn = s |71 i 2w 7dedu

0 2n+1=m(i) JO

0

< Cm(D)]] | Sfwer(@) e

and the last term on the right does not exceed C,2°" by (17). C, is
a constant depending only on p. Thus

max 5 lI’ﬂ,u(x; j};_fm(j))l g C,In/“
i

2n+1=m(i

outside a set of measure 2-!. This, together with (18) and (20), implies
[ L@ )] 2= [ Ll @5 frw)| — 2400 — C?

outside a set of measure 2-‘*!, Combining the above with (14) implies
that for each (x, — u) outside a set of measure |H,. |+ 27'*', there
exists an » and a positive constant C such that

| L,u(z; £)| = CAGL -
From (19) this inequality is true for almost every (x, — u) with sufficient-

ly large © and appropriate #, and the theorem follows.

4. That Theorem 2 holds for Jackson polynomials is relatively easy
to prove. We have

__1___ if(u + tgn)){ sin 2—l(n - 1)(90 — Y — t(in)) 7_2 b i

’ 1

(n + 1) i sin 2-'(x — u — t™) n+1"
If f(@) = ful@) = 0,
. Sulu + t7) ( sin 2-(n 4 1)(x — u))*
(21) Jawi ) 2 L e b

Thus all of the previous proof devoted to showing that there was not
undue interference with one dominant term is now unnecessary. The
rest of the proof is very much like the previous one. With some adjust-
ments in the function, we gain additional information.
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THEOREM 3. Given +r as before, there exists f such that (| f]) is
integrable over (0, 27) and such that the sequence J, . x; f) diverges for
almost every point of the square 0 < x < 2r,0 < u < 2r. Further-
more for any p=1 and ¢,0 < e < 1, there is a function f of class L?
such that for almost every point (x, u)

T | Fasl@i )] 5 g
n n_e

Let a, B, and A,, be positive reals to be specified at a later point.
Let f, be a periodic step function of the following form. When x be-
longs to one of the intervals

]x_ﬁﬂléﬂ, F=0,1,-e,m—1
m m?

let f.(x) = A,,; when x belongs to one of the complementary intervals
of (0, 2r), let f,.(x) = 0. Let E, be the set E of Theorem 1, part (i),
corresponding to m and v, = A;% expanded to (0, 27) of the w axis.
Let E,, ; be the translation of E, by — 27j/m; and let I, be the set of
the x axis such that for some j satisfying 0 <j=<m — 1,

2% S‘x

_AT < __Ig_” .
mAE m

m
Given —u in E,, , and « in I,, there exists an n, mA4,*=n + 1 = m,
and a k such that

2w A%

<
==

iu — 271'.7 + tsﬁn)
m

For proper choice of A,, we have as before

<|w—u—tp < F

2m

T
mAE

so that from (21) J, .(x; f) exceeds AL **/10. Since || f,||5 = 47w AL**|m,
we need only have A2*® = o(m) to write f(x) = 3,52 fmw(x) with the
m(t) spread out sufficiently. If a and B are small, the result follows.

Since the sequence of Jackson polynomials corresponding to a con-
tinuous function converges uniformly to that function [6; p. 47], it is
essentially only for the class of bounded functions that the question of
the behaviour of the Jackson polynomials on the square 0 < x < 27,
0 < u < 2r is unresolved. However this is no longer true for the or-
dinary polynomials I, .(x; f) which may act in a quite irregular way
(cf.[2],[5]); and the behaviour of I,.(x;f) for f continuous still pre-
sents a problem of considerable interest.
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GENERATING SETS OF ELEMENTS IN
COMPACT GROUPS

GILBERT HELMBERG

1. Preliminaries. It is well known that compact topological groups
have many properties similar to those of finite groups, which are of
course special cases of compact topological groups under the discrete
topology. The program of this paper is to characterize sets of elements
in a compact topological group which generate a given subgroup and,
conversely, to determine properties of the subgroup generated by a given
set of elements by an investigation of the properties of this set. Tools
for our investigation are the convolution algebra of continuous complex-
valued functions on the group and the system of irreducible represen-
tations of the group. We shall also formulate the results using those
concepts. Our results are straightforward generalizations of known
theorems on generating sets of elements in finite groups'.

From now on G will denote a compact topological group which, as
a topological space, is T,. It follows that G is Hausdorff and, there-
fore, also normal. Let e denote the identity of G. A subset H of G
will be called a subgroup of G if it is an abstract subgroup of G and
closed, unless the contrary is specifically stated. Let ¢ denote the nor-
malized Haar measure on G: pu(G) = 1.

A subgroup H with positive measure f(H) > 0 is necessarily both
open and closed, as are all (left) cosets of H. Thus a compact group
G with such a subgroup is disconnected and the quotient-spaces G/H
(with respect to left cosets of H) is finite and discrete in the quotient
topology. Then 1/¢(H) is the index of H in G. The quotient space of
G with respect to left cosets of a subgroup of measure 0 contains in-
finitely many elements and is again compact, Hausdorff and normal.

Let C denote the field of complex numbers and C(G) the set of all
complex-valued continuous functions on G. Defining scalar multiplication
and addition in C(G) pointwise as usual, C(G) becomes a Banach-space
under the uniform norm: || f|| = sup.es {|f(®)|} (f € C(G)). Defining
multiplication in C(G) by convolution,

(0@ = | rerewiy,

C(G) becomes a Banach algebra. Left and right translations of f € C(G)
by s € G are defined by ,f(x) = f(sx) and f,(x) = f(xs) respectively.
Both ,f and f, are functions in C(G) and every f € C(G) is both left
1 See [2].
Received April 28, 1958. Presented at the 65th Annual Meeting of the American
Mathematical Society in Cincinnati, Ohio. January 28-30, 1958.
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and right uniformly continuous.

DEFINITION 1. The subgroup H of G is said to be generated by
a set M c G if it is the smallest subgroup of G containing M.

The subgroup generated by M will be denoted by H(M). It is
evidently the closure of the set of all finite products of positive and
negative powers of elements in M. From a theorem of Numakura®
about compact semigroups it follows that H(M) is already the closure
of the set of all finite products of positive powers of elements of M.

2. Subsets of G and corresponding ideals in C(G). With every non-
void subset M of G we shall associate the set F(M) of all functions
f € C(G) invariant under right translation by every element s € M.

FM)={f:fe CG),f,=f for all s e M} .

Obviously F(M) is non-void, since it contains the constant functions.
It is clearly a linear subspace of C(G), and it contains with every
f e F(M) the function a = f if @ € C(G) since

@+ /@) = @) @) = | alwsy)7 @y
= | atey )@y = @+ p) @)

F(M) is therefore a left ideal in C(G).
It is clear that M, c M, implies F(M,) D F(M,). If M is the closure
of M in G we have therefore F(M) D> F(M).

LEMMA 1. F(M) = F(M).

Proof. We have to show F(M)c F(M). Assume that there is
f e F(M) such that f ¢ F(M). Then there is 7 € M such that fz + f
and

(1) Il f7 — f1l > a for some a > 0.

Because of the uniform continuity of f, we can choose a neighborhood
V of e such that

!f(x)—f(y)l<% if z'ye V.

The set mV is a neighborhood of 7 and contains a point m € M. Then
2 See [6] p. 102.
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| F(xmm) — f(am)] < % for all z € G

since (xm)'am = m~'m € V. Since f(xm) = fa(x) and f(xm) = f(x) it
follows that ||f; — fIl < a/2 which contradicts our assumption (1).
Hence f; = f and f € F(M) for all f € f(M) and the Lemma follows.

Now let fe F(M) and a € M,b € M. Clearly f,=f. Since
f(xa) = f(x) for all © € G, we also have f(xa~'a) = f(xa~") for all x € G
or f,-1=f. Moreover f,(x)=f,(xa)=f(xa)=f(x) for all x e G.
If we denote by H'(M) the abstract (not necessarily closed) subgroup
of G generated by M then evidently F'(M)c F(H'(M)). On the other
hand, M c H'(M) implies F(M) D F(H'(M)) and therefore F(M) =
F(H'(M)). Now H(M) is the closure of H'(M) in G, and by Lemma
1 we obtain

LemMMA 2. F (M) = F(H(M)).

This result allows us to infer some further properties of the func-
tions of F(M). To simplify the notation, we shall in the rest of this
paragraph write H instead of H(M). Let {g.H:r € R} be the decom-
position of G into distinct left cosets of H and G/H be the corresponding
quotient space. For f € F'(H) and arbitrary h € H, we have f(g.h) =
f(g,), so that f is constant on every coset g,H. Conversely every con-
tinuous function on G constant on every left coset of H has clearly the
property f, =f for all h € H and belongs to F(H). Hence F(M) is
the set of all continuous functions on G that are constant on left cosets
of the subgroup generated by M.

Let us denote by C(G/H) the set of all continuous complex-valued
functions on G/H. If we associate with every f € F'(H) the function f’
on G/H defined by f'(9,H) = f(g,) then f’ € C(G/H) and the mapping
f—f' is a linear one-to-one mapping of F'(H) as a linear space onto
the linear space C(G/H).

To identify the dimension of C(G/H) as a linear space we have to
distinguish two cases.

(a) #(H)>0. GJ/H is finite and discrete. The ¢ = 1/¢(H) charac-
teristic functions of the points of G/H form a basis in C(G/H).
Therefore F(H) is finite-dimensional and closed in the uniform norm in
C(G).

(b) m(H)=0. G/H is a normal Hausdorff space with infinitely
many points. Therefore C(G/H) and F(H) are infinite-dimensional. Let
F(H) be the closure of F(H) in C(G) and f € F(H). Assume f, + f for
some he H, or

(2) || f» — F 1] > a for some a >0,

3 See [5] p. 110, 111.
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There is f € F(H) such that ||f — f|| < a/2 or

| f(xh) — f(xh)| < % forall x € G
lfn(x)—f(x)l<% forall x e G
= a
an*fH<§.

But then

N —=FNSUf—Ffll+IIf—Fll<a

which contradicts (2). Therefore f, = f forall h € H and F(H)c F(H)
which shows that F'(H) is again closed in C(G).
The results of our discussion are summed up in

THEOREM 1. F(M) is a closed left ideal in C(G) consisting exactly
of all continuous functions on G which are constant on each left coset
o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>