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1. Introduction. Let f(x) be a real valued continuous function
defined on a closed finite interval and let F'be a class of approximating
functions for f. Suppose there exists a function g, e F such that
Hf — goll =1infer Il f — g1l where || f]| = sup.eranlf(®)|. The problem
of characterizing ¢, and giving conditions that it be unique is classical
and has received attention from many authors. The well-known results
for polynomials were generalized by Bernstein [2] to ¢ Chebyshev’’
systems. Later Motzkin [10] and Tornheim [15] further extended these
theorems to not necessarily linear families of continuous functions. The
only essential requirement was that to any «-points in the plane with
distinet abscissae lying in a finite interval [a, b], there should be a uni-
que function in the class F passing through the given points. Such
a system F' is called an m-parameter family. Constructive methods for
determining the function from F of best approximation to f, due to
Remes [14] in the polynomial case, were extended to the above situation
by Novodvorskii and Pinsker [13]. In this paper and in the paper of
Motzkin two apparently additional requirements were placed on the
system F. One, a continuity condition, was shown by Tornheim to fol-
low from the axioms of F. The other, a condition on the multiplicity
of the roots of f— g,f, g€ F, also follows from the definitions as will
be shown in §2. In §3 the characterization of g, is discussed. Methods
for constructing g, are given in §4. These are based on the maximiza-
tion of a certain function of » + 1 variables. In §5 it is shown that
an n-parameter familiy has a unique function of best approximation to
an arbitrary continuous function in the L, norm if and only if F'is
the translate of a linear n-parameter family. The problem of the ex-
istence of m-parameter families on general compact spaces S is discussed
in §6. Under additional hypotheses on F' it is shown that S must be
homeomorphic to a subset of the circumference of the unit circle. If n
is even this subset must be proper.

2. n-parameter families functions. Following Tornheim we define,
for a fixed integer » > 1, an n-parameter family of functions F to be
a class of real valued continuous functions on the finite interval [a, b]
such that for any real numbers
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there exists a unique fe F such that f(x,)) =y, t=1,---,%. For con-
venience we will usually take [a, b] to be the interval [0,1]. We will
include the possibility that 0 and 1 are identified. Then of course x, + x,,
and the functions of F' are periodic of period 1. We call such a family
a periodic n-parameter family. If we wish to consider specifically the
case when 0 and 1 are not identified, we will refer to # as an ordinary
n-parameter family. If F is a linear vector space of functions then we
will call F' a linear n-parameter family (e.g., polynomials of degree <
# — 1). The following continuity theorem of Tornheim [15] is a generali-
zation of a result of Beckenbach [1] for »n = 2,

THEOREM 1. Let F be an n-parameter family on [0,1]. For
k= 17 27 *t ey let xgk)y *ty x;bk)! ?/5’“; *c*y ’!/Zk), 0 < xgk) L oo < x;k) < 1

be given sequences of real numbers and let f, be the unique function
from F such that

flc(mgk)):ygk) t=1,¢2,1.
Suppose for each

i, imat® = 2, limyl® =y, and 0 < 2, < v <2, <1 2
—o0 k—o0

Let f be the umique function from F suchthat f(x) =y, 1 =1, -+, n.

Then lim .. fr = f uniformly on [0, 1].

Proof. If 0 and 1 are not identified the proof is given in [15].
Therefore, let 0 and 1 be identified and the functions of F' be periodic.
Suppose f;, does not tend uniformly to f. For some ¢ > 0, there exists
a sequence {u,} C [0, 1] such that for each k, | f(u,) — fi(ue)| > ¢. Since
a subsequence of {u,} converges, we may assume {u,} does and let
# = lim,_,.u,. By a suitable rotation of [0, 1] we may assume u, ©,,*++,%,
all lie in the interior of an interval [a, b],0 < a < b < 1. But F forms
an ordinary n-parameter family on [a, b] and hence f, — f uniformly on
[a, b] which is a contradiction. This completes the proof.

We now verify that n-parameter families are unisolvent in the sense
of Motzkin [10]. Let f,ge F and let x be an interior point of [0, 1].
If # is a zero of f — g and if f — g does not change sign in a suitably
small neighborhood about x then we will say the zero x has multiplicity
2, otherwise we say x has multiplicity 1. If 0 and 1 are not identified
and either is a zero of f — g, then the multiplicity is taken to be 1.
We shall denote the sum of the multiplicities of the zeros of f— g
within an interval [a, b] by m,.(f, 9). The following generalized con-

1 If 0,1 are identified we assume z(*> <1 and z, <1,
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vexity notion is also useful. A continuous function % will be said to be
convex to F' if h intersects no function of F at more than = points.
The following result extends Theorems 2 and 3 of [15].

THEOREM 2. Let F be an n-parameter family on [0,1] and let h
be convex to F. Then for any f, g€ F,m, (f, h) <n and m, (f, 9) <n—1.

Proof. We assume first that 0 and 1 are not identified and that F'
is an ordinary mn-parameter family. We verify the first statement by
induction on n. For n = 1 the result follows by [15] Theorem 2. Hence,
let & be a continuous function convex to a &k + 1 parameter family F
and assume the conclusion holds for all k-parameter families. For fe F
let ,,7=1, ---,m, be the zeros of f— I ordered from left to right
and assume m,(f, h) >k + 1. Choose a point % such that x, < u < ..
If F,= {ge Flg(x,) = h(x,)}, then F| is a k-parameter family on [u, 1].
feF, and h is convex to F|. By our inductive assumption m, (f, h) <
k. Therefore x, must be a zero of f — &, and m,, (f, h) =k + 2. By
the same reasoning we may assume zx,, is a double zero of f — k.

We now construct a set E of &k points from [0, 1] in the following
manner. First choose an ¢ > 0 such that =, + 2: < %,., — 26,2 =1, «-»,
m — 1. If x is a single zero of f — h then let x belong to E. If z is
a double zero of f — h,x = x, %, let x+4+¢ and x —¢c belong to E.
We add the points x, + ¢, %, —e. Since Myren —o(fi h) =k —2 it
is clear that K contains exactly &k points. Choose a point ', 2, + & <
2’ < x,—¢. Let f, be the unique function in F' such that

fa(®) = f(x), xe &

Fi@') = f(&) + Ssgn @) = hia)]
Now f, —f has k zeros which must all be simple by [15] Theorem 3,
Within the interval [z, z,]f, — & has exactly k simple zeros since
fn» was chosen so that at the points @, + 2¢,¢ =2, +--, m — 1, x;, + Z¢,
2, — 2¢, f lies between f, and h. Hence for 0 <z <, and z, <2 <1, f,
and % are on the same side of f (i.e., sgn[f.(®) — f(x)] = sgn [h(x) — f(z)].
But by Theorem 1, f, tends uniformly to f as n— . Hence for =
sufficiently large f, — h must have at least &k + 2 zeros which is a con-
tradiction.

The case when 0 and 1 are identified and F is periodic causes no

difficulty. For if «, ---,x, are the zeros of f — h, using a suitable
rotation we may assume that there is an interval [a,b], such that

0<a<mw <o <2, <b<1l F is an ordinary n-parameter family on
[a, b] and m, . (f, h) = Mo, (S, h) < n.
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The verification of the second assertion is very similar to the above,
and we leave the details to the reader.

COROLLARY. There are no periodic n-parameter families when n is
an even integer.

Proof. Suppose false. Let F be a periodic n-parameter family and
n an even integer. Let fe F and choose x; ¢ = 1, .-+, n such that 0 <
T, < Xy < 0o <2, <1, Choose ge T such that g(x,) = f(x,) 1 =1, ---,
n —1, g(x,) = f(z,) +1. By Theorem 2, f — g changes sign at each of
the points %, ¢+ =1,---n — 1; and since f — g can have no other zeros
within [0, 1], g(1) > f(1). On the other hand ¢(0) < f(0) which is a
contradiction, since f, g are periodic of period 1.

3. Best approximation in the L. norm. If g is continuous on
[0,1], g€ F, then {g — f} forms a new mn-parameter family. Hence
without loss of generality we may consider the characterization and con-
struction of the function j” € F such that

NA 1l = inferllfll =8

We first adopt the following notation. If S c [0, 1]
8s = inf ¢, SUDes | f(E) 1.

Let T denote the class of vectors u = (uy, ««+, ,.,) satisfying the con-
dition that 0 <wu, < u, < +++ Uy+; < 1. The statements and proofs of the
results of this section are valid when F consists of continuous periodic
functions on [0,1]. We shall assume, however, that F' is an ordinary
n-parameter family and leave the details in the periodic case to the
reader.

The following two lemmas are appropriate generalizations of results
of de la Vallee Poussin [6] for polynomials. Where possible we refer
the reader to [13] for proofs.

LEMMA 1. Forany u = (U, »-+, Ups) € T there exists a unique fe F
and unique real number A such that f(u,) = (— 1)n-1=1,---,n+ 1.
Moreover |\ =8, and f is the only function in F with the property
that max,., ... pe1l f (W)l = 8.. In addition suppose for k=1,2, -+« that

u® = WP, -+, u)e T and f, @F)=(— 1)r®

Then if u® —>u and ue T, it follows that f, — f uniformly on [0, 1]
and A® — .
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LEMMA 2. Let ueT and a sequence of mnon-negative numbers \,
1=1,+++,n 4+ 1 be given. If there exists an fe F such that

Su)=(—Dni=1,-v-,n+1o0r flu)=(—1)*Ni=1+-,n+1
then either min )\, < 8, < maxi, or A, =8,7 =1, -, n + 1.

Proof. Lemma 2 is a restatement of Lemma 1 of [13]. Everything
in Lemma 1 except the facts that |A| = 8, and the function f satisfying
maX,.... .+ f(4;)| = 8, is unique is proved explicitly in [13]. To prove
the latter statements observe that if there is a g e F satisfying |g(u,)|<
Ix] then f(u;) — g(u) =(— 1N, 2 =1,---,n+ 1 where either »; >0,
1=1,2,---,m+1lor \;<0¢=1,2,---,n-+ 1. In either case by [12],
Lemma 1, f — ¢ must have at least n zeros between %, and u,., counting
multiplicity which is a contradiction.

For ue T we will usually denote the function f of Lemma 1 by f,.
Next we define a function &(u,, ---, %,.;) of » + 1 variables.

B(u) = 3(%1, M) un+1) =96, if u= (ulv *t un+l)e T
= ( otherwise .

If we restrict the points u, to lie in some subset S [0, 1], then
8(Uyy +» -, Uyyy) Will be denoted Ss(uy, » -+, Uysr).

LEMMA 3. 8(uy, * -+, Upsy) 18 continuous on R*+*

Proof. Assume that 8(u,, +--, #,+,) is not continuous at some point
w= (U, *=*, Ups;). We may assume 0 <u, <u, < -+ < U,yy, <1, and by
Lemma 1 we may assume that m(< n) of the points wu; are distinct.
Consequently &(#,, ++-, #,.;) = 0. Suppose there exists an ¢ >0 and
a sequence {u,} C T such that u, — u and Ou, = €. Let u$ be the 4th
coordinate of u,. Choose n points ), 0 < u, < --- < u, <1 such that
m of the points u; coincide with the m distinct points u,. Let f, be
the unique function in F such that f(u]) = 0. Choose » such that for
any ¢ |u; — u;| <7 implies |f(u,)]| < ¢/2. Choose k so large that all co-
ordinates of u, are within » neighborhoods of some coordinate of u’.
Then fuk(ui"’) — fo(u{®) = (= 1)\, where sgn A" =sgni{®, i =1, n.
As in the proof of Lemma 1 it follows that fuk — fo must have at least
n zeros within [0, 1] which is a contradiction.

Using the function &(u,, ---, #,.,) one can give a simple proof of the
Theorem of Motzkin and Tornheim characterizing the function f which
has minimum deviation from zero.

THEOREM 3. There exists a unique f € F such that || f | =inf el FH.
f 18 uniquely characterized by the fact that for some u = (U, +++, Ups1) €T
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Il_fll = 98,. u will have this property if and only if 6(uy, <+, Uys,) 18 AN
absolute maximum, and then f = f..

Proof. Since 8(u,, +--, %,.,) is a continuous function on a compact
set, its maximum is attained for some u = (u,, +-+, U,,) € T. Assert
| full = 8.. If || full > 8., then there is a point x' in [0,1] for which
| fu@) = |l full. We form a new vector w' €T by replacing one co-
ordinate u, of u by «' in the following way. If uw, < ' < Uy, 2 =1,+-+, 0
and sgn f,(u;) = sgnf,(x) then let w;=wu, 7+ and u;=2o". If
sgn f(u;) = (— 1) sgnfu () let w,=u, 7 #4+1 and uj,, =2'. If ' <
(T > Uyyr) a0d SEN fo(t,) = 8N fiu(#') (SN fulUnsr) = 58N fu(2")) let uf=wu,
J#1(#n+1) and = &' (Up., = @'). If sgnf(u) = (— 1) sgn fu(e')
(sgn fu(Ups:) = (— 1) sgn fo(2')) then let ) = o', u} = u;., j =2, -+, n+1
)= Uy, 7 =1, «+-, n, u,,, = x'). Now either f,(u}) = (— 1) N1 =1, -,
n+1or fu(u) =(—1)*"Nt=1,+++,n+ 1 where ), = 8§, or \; =|[ full.
Therefore by Lemma 2, 8, < 8, < || f.ll which contradicts the maximali-
ty of §,.

It now follows immediately that || f,|| = inf,c-llf]l and that f, is
the only such function with this property. For if f,e F and || £, || < || full
then || f,ll < 8, which contradicts Lemma 1. Moreover the same argu-
ment shows that if there exists an f,€ F' and a ve T such that || fill =&,
then || foll = inf e, || fIl. It is clear that é(v,, ---, v,.,) must be an ab-
solute maximum.

In the above theorem if ||f|| is replaced by || flls = sup.es|f(t)|
where S is any closed set of [0, 1] containing at least n + 1 points, then
the same conclusions hold. Here of course, the function 8(u,, «++, Uys+1)
is replaced by 8s(uy, *++, U,+,) and the points u, are assumed to be in S.
The following generalization of [11] Theorem 7.1 is therefore relevant.

THEOREM 4. Let S;, S be closed sets of [0,1] such that for each
k, S;, contains at least m + 1 points; S contains infinitely many points,
and S, CS. Let fy, f, be functions from F which minimize || f |5, 11 |ls
respectively. If for each ¢ > 0 there exists an integer k, such that for
k >k, each point ue S is at a distance less than € from some point of
S, than f,,—«)fo uniformly on [0, 1].

Proof. We assume 8; > 0. S, c S implies ds, < 8s. Choose u =
(Uyy =+, Upsy) € T, u; €S such that 8s(u,, «--, u,.,) is an absolute maximum.
Let u, = (¥, ««+,u))e T, u” e S, be chosen such that u, —u. By
Lemma 1, §,, — &, and since Ou, <85, 85, — 8,=0s. Let v,=(v{", «-+, v,
eT,v®eS, be chosen so that for each FZ, SSk(vi’“), «eo, 20 is an ab-

solute maximum. Extract any convergent subsequence Uy, with limit v.
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If v=(w, -+, v,4,), thenv,eS and 5, = 8s. Also fk, :kaj tends uni-
formly to f,, the function from F with minimum deviation on v. But
by the uniqueness of f,, f, =f,. The above argument shows that any
subsequence of { f,c} contains a refinement which converges to f},. Hence
lim,c_,c,(,f,C :f'o uniformly on [0, 1].

4. The estimation of f. In [13] Novodovorskii and Pinsker con-
sider a direct method, due to Remes [14] in the polynomial case, for the
estimation of f. However the following Lemma shows that f is con-
tinuously dependent on estimates of the best approximation. Hence if
u is a vector in T for which d(u) is an estimate of inf,c||f|], then the
solution of the equation f(u,) = (— 1)1 =1, ---, n+ 1 is the appropriate
estimate of f

LEMMA 4. Let {8,} be a sequence of nmon-negative numbers converg-
ing to 8 = inf,c, || fIl from below. If u, are wvectors in T for which
8(u,) = 8, then lim,.. f. = f uniformly on [0,1].

Proof. 1f the conclusion is false there exists a subsequence {u,c}
and a number ¢ > 0 such that || f fu,c || >e. But {ukj} may be further
refined to obtain a convergent subsequence of vectors. Calling this
{u,c } and letting u,= lim .., u,, we have by Lemma 1 &(u,) = lim ;... 6(x; ).
By Theorem 3 fu, = f which 1s a contradiction.

We shall consider two algorithms for estimating 8 and prove con-
vergence of both.

Each of these algorithms can be used efficiently for actual numerical
calculations. A detailed description of method 2 for polynomials on a finite
point set can be found in [5]. Also for polynomials on an interval
a maximization procedure has been announced by Bratton [3].

For both methods the following notation is convenient. For u =
(Uy, *++, Ups,) €T define for 5 =1, «--,n + 1.

89)(90) = O(ty, ==~ WUja1y Xy Ujrry = *, U 1) if Ujmg LT < Ujyg
= 0 otherwise

where we take u, = 0, u,,, = 1. We now form 7,(2) = max ., ... ,+; 64(¥).
From the continuity of &(u,, «--, u,.,) it follows that for each j, §’(x) is
continuous, and hence 7,(x) is continuous. Therefore there exists a point
2,0 <2a"<1 and integer 1 < m <% + 1 such that

ou(e) = max |18l = Izl

yeee,

For a given vector u we define u’' = (ul, +- -, u,,,) by setting w)=u,, 7 # m,
u, = &',
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THEOREM 5. If vectors u, are defined inductively in the above fashion
with w, € T chosen arbitrarily, then lim,.. 8(u,) exists and there exists
u,e T such that o(u) = lim,_. 8(w,). Furthermore &(u,) is an absolute
maximum of the function &(u).

Proof. {6(u;)} is a monotonically increasing, bounded sequence hence
convergent. If & = lim,_. d(u,), then a suitable subsequence {uk }, con-

verges to u, and 6(u,)=38. We now assert 7, (¥) converges uniformly to
J
Nu(®). It suffices to assume u; < # < u;.;. Then
17 () — %,cj(x)l = [max (& (%), &;'(),)) — maX(Sikj(x), 8:;;11(90))1
< 8L (®) — &, (@)| + 1857 (2) — & ()] .
J J

Since 8(u) is a uniformly continuous function the latter expression tends
to zero uniformly in z.

Hence
12, Il = Hm [} ] -
Joroo
But
e 1| = (a1 ) < B(at,,) < 7,
Therefore ||7,,| :limij(u,cJ)=8(uO). It now follows by the same

argument as in the proof of Theorem 3 that || f, || = 8(x) and by Theorem
3, &(u,) is a maximum.

For the second method of estimation of f we alter slightly our
definition of &,(x) and &."(x). We now define

On(®) = 8(x, Uy, oo=, Upyy) If 0 <0 <y
= 8(“2! Usy ***y Upt1y x) if Up 1 <zr<L 1

M x) = Uy, == o, Uy, ) if w, < <1
:S(x’uu“‘,un) if o<z < U .

The algorithm proceeds as follows. First let ¢ >0 be chosen. Select an
arbitrary vector we T. Maximize 8.(x) over its domain of definition. Let
2’ be a point for which &%(x) is a maximum. If 8i(x’) > (1 + ¢)d(u), replace
u, by z' forming a new vector «’. If not, let &’ = u. We now maximize
8%,(x) and continue inductively. Special attention is necessary for &2+'(x)
and &i(x). If ' is a point for which &7*}(x) is a maximum and &.*'(x) >
(1 + ¢)8(u), then ' is formed in the following way. If &’ > u, then
U=y, T = 1,00+, m, u,,,=2"; if 2’<u, then w'=u"u, = u;_, 1=2, <+, n+1.
In the latter case, the next function maximized is &,(x). If the first
case occurs then &L (x) is maximized. Let 2" be a point for which &,.(x).
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is a maximum and &L.(x") > (1 + ¢)8(u’). If x” < u, then u) = z" and
w' =u; 1 =2,8,-+,n+ 1. If " >u,,, thenu =u;,,2=1, -+, n and
U, = 2. For the first case the next function maximized is 82..(x); the
second case, 80)(x). If

o () < (1 + €)d(u) (Bu(x”) < (1 + €)d(u))

then we take u’ = u (v’ = w’). When there have been n 4 1 consecutive
maximizations with no change in the vector u, ¢ is now replaced by ¢/2
and the process is repeated. We now continue inductively and pass to
the limit as ¢/2* — 0.

THEOREM 6. The conclusions of Theorem 5 hold if the sequence {u}
18 chosen inductively in accordance with the above algorithm.

Proof. As before, lim,.,.0(u;) = 8 exists. We choose a particular
convergent subsequence {u,} of {u,}. For each j let u, be a vector
of {u,} such that for each 4, i =1,---,24+ 1 and all appropriate
x, B,i,kj(.x) <1+ 8/21)8(u,cj). The algorithm guarantees that for each integer
7 such a vector u, exists in the sequence {u,}. Since a refinement of
this sequence is convergent, we assume {u, j} converges. Then if u,, —>
u,, 8(u,) = 8. Suppose 8(u,) is not a maximum of &(u), then || f, || > 3(u,).
Choose 2" so that | fu.(x)| = || £|l, and form «’ by replacing one point,
the 4th say, of u, by 2’ in the manner of the proof of Theorem 3. Form
u;, , by replacing the ith coordinate of u, by 2’ Then u@j—»u’ and
8(u;cj) — &(u'). Therefore for j sufficiently large, since é(u’) > 9,

S') + &

oa;) > 200

On the other hand for each j there is a point x and an integef m such
that

(k) = 8, (@) < (1 + —;-) Su,,) < (1 n %)5 .

For j sufficiently large this is a contradiction, therefore || f, || = 8(u,)
and 8(u,) is an absolute maximum.

5. Approximation in L, y norm. For N>=u let x, «--, 2y be N
distinet points of [0,1]. In place of the sup norm let || £ || = {3, ] f(w,)| ?}V»
and assume p > 1. The fundamental problem to be considered here is
to give necessary and sufficient conditions that the function f e F for
which || f || = inf,epl| f || is unique. Now the image of F under the
mapping f — (f(x,), «+-, f(xy)) is a closed set in N dimensional Euclidean
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space. By a theorem of Motzkin [9] as generalized by Busemann [4],
to each point x e E, there will exist a unique nearest point in a given
set S ¢ E, with respect to a strictly convex metric if and only if S is
closed and convex. Hence f will be unique if and only if F is convex,
but for n-parameter families we can say more.?

THEOREM 7. An n-parameter family F is convex if and only if F
is the translate of o linear n-parameter family.

Proof. If F is the translate of a linear =n-parameter family, i.e.,
there exists a continuous g on [0, 1] and a linear w-parameter family Fj
such that each fe F can be written uniquely as f =g + f/, fe F,, then
F' is obviously convex. Conversely suppose F'is convex. Choose 7 dis-
tinct points x,, «+-, 2, in [0, 1]. Let f,, fi, +--, f» be the unique functions
of I' such that fi(z;,) =0,7 =1, --,n; fi(x;) =0, fork, j=1,---,n
where §,, is the Kronecker delta. We assert that each fe F has a rep-
resentation as

S=rf+ é‘lxk(fk — fo) where X\, = f(xs) .

If such a representation exists it is obviously unique. Also the vector
space spanned by f, — fo, * -, fn — fo, is obviously an n-parameter family
and the theorem is proved. To prove the assertion let

Fy = {feFif(mkH):f(xkn): :f(xn):()}
Fi={feF\f(z)) =0 j=+k}.

From the convexity of F, F is a convex one parameter family on a suitably
small interval containing z,. We assert fe Fy implies f = f, + M(fx — fo)
where )\, = f(x,). By convexity this is obviously true for 0 <), < 1.
For ), > 1 if fe F}, f(x,) = », then by convexity

fo= ;kf+<l— ;)f

or f = fo+ N(fi — So) If % <0,

or f = f,+ \(fs — fo). To finish the proof we apply an induction. As-
sume fe F, implies that f = f, + Sk, \,(x;, — «,) where f(x;) =\, and

2 For a discussion of related results see the article by Motzkin in the Symposium on
Numerical Approximation, University of Wisconsin Press, 1959.
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suppose ge F., and g(x,)=p,j=1,---,k+ 1. Then if g, =f +
lec=12#1(fj - fo)’ g, = fo + 2#k+1(flc+1 - fo) lt fOHOWS that

_ 0+
el
4 2

k+1

and ¢'(x,) = p,,7 =1, +++,k + 1. Therefore

kE+1

9=49 + (5 — fo) -

Jj=1

6. The existence of #%-parameter families on compact space. Let
fi, *++, [ benlinearly independent real valued continuous functions defin-
ed on a compact set S in finite dimensional Euclidean space. Let V be
the span of the functions f,, ---, f,. In 1918 Haar [7] showed that to
each continuous real valued function g defined on S, there is a unique
feV satisfying || f — gll = infer || f — gll where [[f|l = sup,es|f(s)] if
and only if no non-zero function in V vanished at more than n» — 1 points
of S. Haar noted that the existence of such a set of functions V placed
a severe restriction on the set S. In 1956 Mairhuber [8] proved that if
V satisfied the above condition of Haar then S is a homeomorphic image
of a subset of the circumference of the unit circle. If n is even this
subset must be proper. It is clear that V satisfies the condition of Haar
if and only if V is a linear w-parameter family. The characterization
of those compact Hausdorff spaces on which there exist n-parameter
families F’ for n > 1 seems to be quite difficult. One can give a cha-
racterization if one imposes a rather strong local condition on F. The
result presented here includes the one of Mairhuber, and is proved by
somewhat different means. The following fundamental lemma is per-
haps of independent interest.

LEMMA 5. Let S be a compact connected Hausdorff space with the
property that for each point x € S there exists a mneighborhood U, and
continuous real valued functions fi, f, defined on U, such that for
y,2e U,,y # 2

(1) 5H1(y) fi(2) -0
Fiy) fi(2)

Then S may be embedded homeomorphically into the circumgference C of
the unit circle.

Proof. Without loss of generality we assume U, is a closed, there-
fore compact neighborhood of x. f,, f, never vanish simultaneously on
U, and therefore f,/f, defines a continuous mapping of U, into the
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compactified real line. (1) guarantees that the mapping is one to one
and ¢,(u) = Arctan (fi/f.)(u) gives a homeomorphism of U, into C.

We next verify that S is locally connected. To do this it suffices
to show that for each x e S there exists a connected neighborhood which
can be mapped homeomorphically into C. In fact if ¢, is the homeomor-
phism for a point xeS constructed above, and if C, = ¢, (U,), it is
enough to show that there exists a connected neighborhood V, in C, of
A, = ¢,(%). For then ¢;%(V,) is a connected neighborhood of % contained
in U,. But C, is a compact subset of C. Therefore let I, be the com-
ponent of A, in C,. I, is a compact connected subset of C. I, is then
either an interval or all of C. If I, is the latter we are through. Also
if I, is an interval and )\, an interior point (relative to C) then ¢;%(I,)
is the required neighborhood. Hence assume that ), is an end point of
I,. This will include that degenerate case when I, is just one point.
We may also assume that there does not exist a suitably small connected
neighborhood N of ), in C such that NNC, < I,. For then ¢;'(NNN,)
is an appropriate neighborhood of @. Therefore it now must follow that
for any connected neighborhood N of A, in C there exists A, )\, in the
interior of N such that x, N, & C, and O\, \) N C, = ¢. If we let F'=
&3 [, N) N C,] and G = ¢ [C, ~ (M, \y)] then FU(S~U,) and G
separate S which is a contradiction.

We note that S is certainly a separable metric since a finite num-
ber of homeomorphic images of subsets of C cover S. Hence by [16]
Theorem 5.1, S is arc wise connected.

We now assert S is homeomorphic to a subset of C. Let U, ---, U,
be a finite collection of connected neighborhoods covering S each of which
is homeomorphic to a subset of C. By a suitable rearrangement we
may assume that U,N U, + ¢ and U, ¢ U,. Let x,e U~ U, x,e U,~ U,
xe U NU, Let 4 bethe maximal subset of U,U U, connecting z,, x, 2.
This must be all of U, U U, for if ye U,UU, and y ¢ A4, then y may be
connected to any point in A by an are in U,UU,. If ¥ is connected to
A at an end point of A, this is an enlargement of A which contradicts
maximality. If ¥ is connected to A at a point other than an end point,
then no neighborhood of this point is homeomorphic to a subset of C.
This also is a econtradiction. If U,U U, is not all of S then U,U U, is
homeomorphic to an are, and by induction the homeomorphism may be
extended to all of S.

THEOREM 8. For n > 1 let F be an n-parameter family of func-
tions defined on a compact Hausdorff space S. Suppose in addition that
to each point x € S there exists a neighborhood N, and functions f,, f,€ F
such that
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f1(y) fi(2)
FAYy) f?)
for y,ze N,,y #+ z. Then there exists a homeomorphism of S into the

circumference of the unit circle. If n is even the image of S must be
a proper subset of C.

+ 0

Proof. First we note that S cannot have a proper subset W homeo-
morphic to C. If n is even this follows directly from the Corollary to
Theorem 2. If » is odd, choose x€ S ~ W and let F’ = {fe F|f(x) = 0};
then F’ is an n — 1 parameter family defined on W. Since n — 1
is even this is a contradiction. We may therefore assume that if = is
even S is not homeomorphic to C.

If I is a component of S then by Lemma 5 there exists a homeo-
morphism ¢ of I onto the closed interval [0, 1] considered as a subset of
C. We assert that if I is not all of S, then ¢ can be extended to an
open and closed set UD I. U and its complement then separate S. If
I is itself open in S then we take U= 1. If not, let x = ¢~(0),y =
¢~ '(1). Let N,, N, be compact neighborhoods of 2 and y respectively
and let ¢,, ¢, be homeomorphisms of N, and N, respectively into C.
We may assume ¢,(x) =0, ¢,(y) =1 and

¢, (N, N I)c[0,1] and [N, N I]C [0,1].
If we define ¢’ by

¢d'(z) = Hz) if zel
= ¢,(2) if ze N~ 1T
=¢,(2) if ze Ny~ 1

then ¢’ is a homeomorphism of N,UN,UI= N into C. Also int. NDI.
Now [0, 1] = ¢'(I) is the maximal connected subset of ¢'(N) containing
¢'(I). Therefore there exist sequences {\,}, {¢.} of real numbers tend-
ing monotonically to 0 from below, and monotonically to 1 from above,
respectively such that {»,} N ¢'(N) =¢ and {¢,} N$'(N) =¢. Choose
n large enough that ¢'~'[\,, 0] C interior of N, and ¢'~'[1, ] C interior of
N,. Clearly J, = ¢'"[\s, t,] is a closed set containing I. J, is open in
the interior of N. Hence J, is open in S.

Let T be the class of open sets O of S which can be mapped homeo-
morphically into C. We partially order 7T in the following way. If
0,,0,eT then O, <0, if 0,c0O, and if there exist homeomorphisms
¢, by of O,, O, respectively into C such that ¢, agrees with ¢, on O,.
By Zorn’s lemma there exists a maximal element O of T. We assert
O =3S. If not, let e S~ O. Then there exists an open and closed set
Us« and mapping ¢ such that ¢ maps U homeomorphically into C.
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ONU and O~ U are separated open sets of S. Hence if ¢’ is any
homeomorphism of O into C such ¢'(O)NHU) =¢. ¢ defined by
¢'(x) = ¢(x), e ONU, ¢"(x) = ¢'(x), t€ O ~ U is also a homeomorphism
of O into C. ¢"” has an obvious extension to UUO which contradicts
the maximality of O.

COROLLARY. If F is a linear n-parameter faomily (n > 1) defined
on the compact Hausdorff space S, then S is homeomorphic to a subset
of C. If n is even the subset must be proper.

Proof. We assume S contains more than n points. For a given
x €S choose n — 2 distinet points @, -+, z,-, of S outside a suitably
small compact neighborhood N, of . If F, = {fe F|f(x,) =0,v1=1,---,
n — 2} then F, is a linear 2-parameter family defined on N,. Therefore,
for any two linearly independent functions f, f, in F5,

f1®) fi(2)

Fily) fil)| O for yze Ny # 2.

We now apply the theorem.
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