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TRANSFORMATIONS ON TENSOR PRODUCT SPACES

MARVIN MARCUS AND B. N. MOYLS

1. Introduction* Let U and V be m- and n-dimensional vector
spaces over an algebraically closed field F of characteristic 0. Then
U ®V, the tensor product of U and F, is the dual space of the space
of all bilinear functionals mapping the cartesian product of U and V
into F. If x e U, y e V and w is a bilinear functional, then x Cξ) y is
defined by: x®y(w) — w(x,y). If e19

 m ,em and f19 * ,/w are bases
for U and F, respectively, then the et <g)fj, i — 1, , m, j = 1, , n,
form a basis for U® V.

Let MmtΛ denote the vector space of m x n matrices over F. Then
U® V is isomorphic to Mm>n under the mapping ψ where ψiβi^fj) =
2?tj, and Etj is the matrix with 1 in the (i, i) position and 0 elsewhere.
An element z e Ϊ7® F is said to be of rank k if z = Σ L A ® i/*, where
xu *",Xjc are linearly independent and so are ylf

 m

 9yk. If i?fc =
{2; e Z7 ® FI rank (2;) = k}, then ^(i2fc) is the set of matrices of rank k,
in Mmtn. In view of the isomorphism any linear map T of U <S) V into
itself can be considered as a linear map of Mm>n into itself.

In [2] and [3], Hua and Jacob obtained the structure of any map-
ping T that preserves the rank of every matrix in Mm>n and whose
inverse exists and has this property (coherence invariance). (In [3] F
is replaced by a division ring, and T is shown to be semi-linear by
appealing to the fundamental theorem of projective geometry.) In [4]
we obtained the structure of T when m = n, T is linear and T preserves
rank 1, 2 and n. Specifically, there exist non-singular matrices M and
N such that T(A) - MAN for all A e Mnn, or T(A) = MA'N for all A,
where A! designates the transpose of A. Frobenius (cf. [1], p. 249)
obtained this result when T is a a linear map which preserves the
determinant of every A. In [5] it was shown that this result can be
obtained by requiring only that T be linear and preserve rank n. In
the present paper we show that rank 1 suffices (Theorem 1), or rank 2
with the side condition that T maps no matrix of rank 4 or less into
0 (Theorem 2). Thus our hypothesis will be that T is linear and
T(R1)

(^Rι. We remark that T may be singular and still its kernel
may have a zero intersection with Rλ\ e.g., take U = F and

2. Rank one preservers* Throughout this section T will be a linear
transformation (l.t.) of U® V into U®V such that T(R,) c Rλ. Here
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U and V are m- and ^-dimensional vector spaces over F. Let elf •••,
em aud fx •••,/„ be fixed bases for U and V, and set

( 1 ) Γ ίβ iΘΛ) = ^ 0 ^ , i = 1, « ,ra; i = 1, •••,%.

Note that no u4 J or vtJ can be zero. We shall show, in case m Φ n that
there exist vectors ut and v3 such that T(ei(g)fj) = ui(ξ§vJ, and hence
that the l.t. T is a tensor product of transformations on U and V
separately. In case m = n it will be shown that a slight modification
of T is a tensor product.

Denote by L(xlf •••, #{) the subspace spanned by the vectors ^ , •••,
xtf and let />(#!, •••, xt) be the dimension of L(x19 •••, # t).

LEMMA 1. Lei ^ , •• ,xί., wx, •• ,w s be vectors in U, and let y19

•••, yr, Zi, ••*, zs be vectors in V. Let

( 2 ) Σ ( 3 4 ® l / ι ) = Σ K ® 3 , ) .

2/ />(Xi, , xr) — r, then yt e Lfe, , z8), i = 1, , r αm£ similarly
if PiVu * ,yr) = r, then xt e L(^, , ws), i = 1, , r.

Proof. Suppose that (̂a?̂  , xr) — r. Let Θ be a linear functional
on C/ such that 0(0̂ ) = 1, ^(xj = 0, ί Φ 1, and let α be an arbitrary
linear functional on V. For x e U, y e V, define

( 3 ) g(x, y) = θ(x)a(y) .

Applying (2) to g, we get

d = Σ 0(Wj)a(Zj) = a
ί l

where each 0 ( ^ ) is a scalar. Since a is arbitrary, ^ , and similarly
2/2» •••> 2/r> a r e contained in L(^, •••, «s). The second part of the lemma
is proved in the same way.

LEMMA 2. If T(Rj) c Rlf and T satisfies (1), then for i = 1, •••,

m, either

( 4 ) P ^ , . . . , u ί n ) = n

or

( 5 ) />(wtl, , uin) = 1 αncί /)(?;,!, . , vln) = w .

Similarly, for j = 1, •••, w, either

(6 ) jθ(wu, , um ;) = m and ^(v^, , vTÔ ) = 1 ,

or
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( 7 ) (uιjy , umJ) = 1 and (vlj9 , vmj) = m .

Proof. Suppose that uicύ and uiβ are independent. Then

T(et <g) (/* + /β)) - (w4Λ <g) v<Λ) + (utβ <g) v^)

must be a tensor product w (g) v. By Lemma 1, ^ία5, vtβ e L(v). Since
all vi3 Φ 0, L(t;ίfl>) = L(viβ). For y Φ a, β, L(viy) = L(t; ίβ), since wίy must
be independent of at least one of uiΰ6, uiβ. We have shown that if
ρ(uίlf , uin) > 2, then p ^ , . . . , vin) = 1.

Suppose next that ^ ^ ^ •••, %4w) = 1, viz., uloύ — cΛuilf cα Φ 0, α =
1, •• , w. If

i, , vin) <n y let Σ α* î« = 0

be a non-trivial dependence relation. Then

= Σ (c«Un (g) - ^ - O = tt41 (8) ( Σ αΛv,β) = 0 ,
l V / \ /

which is impossible by the nature of T. Hence p(uilf •• ,uin) = 1 im-
plies ^0*!, •••, vin) = n.

It follows by a similar argument that if p(vil9 * ,vin) = 1, then
jθ(t641, •••, u t n) = n. Hence either (4) or (5) must hold. The second part
of the lemma is proved similarly.

We remark that if m < n (or n < m), then (4) (or (7)) cannot hold.

LEMMA 3. Either (4) and (7) hold for all ί,j; or (5) and (6) hold

for all i, j .

Proof. We show first that either (4) or (5) holds uniformly in i.
Suppose that for some i and k, 1 < i < k < m, p(utl, , uin) — n while
l°(w*i> •••, ̂ n) = 1- Then for some a, 1 < a < n, p{uicύy ukoc) — 2. For
β φ a consider

= c(uίa (g) vtΛ) + (ttij3 (8) ι;4β) + c(^fcα 0 vfcαJ) + (^fcβ (g) vfcj3) ,

where c is an arbitrary scalar.
By hypothesis and Lemma 2, vioύ — avkai and vιβ = 6^^ = δ^fcαί for

suitable non-zero scalars a and 6, while p(vka, vkβ) — 2. Thus η = (αc^ ίΛ +
6^ ίβ + c f̂cα5) (g) ̂ fcα> + (ukβ (g) vΛ/3), and by Lemma 1, ρ(acuia + buiβ +
CMfcαs* 'Mfcjs) = 1 for all scalars c. Since p{nk0ClJ ukβ) = 1, this implies that
P(cuίcύ + u ί β, ukβ) = 1 for all c. This is impossible, since p(uia, uίβ) — 2.
Thus either (4) is true for all i, or (5) is true for all i. A similar
argument applies to (6) and (7).
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If (4) and (6) hold for all i and j , then there exist non-zero scalars
ctJ such that vtJ — ctjvU9 i = 1, •••, m, j = 1. •••, n. For aj9 b scalars,
consider

K m \ "Ί / m w

Σ «ιβ,) <8) (/i - δ/2) = ( Σ «Ai^ii - δ Σ α
Let ^ , * ,2 m and wlf •• ,wm be the m-column vectors which are re-
spectively the representations of un, , uml and u129 , wm2 with respect
to the basis e19 * ,e m . Let C be the m-square matrix whose columns
are cnzlf , cTOi£m and let W be the m-square matrix whose columns
are cnw19 , cm2wm. Then with respect to the basis eί9 , em the vector
Σί^iα«cίi^ίi ~ δ Σί^i<χicί2/^i2 has the representation (C — bW)a where a is

the column m-tuple (a19 , αTO). Now C and W are non-singular since
fKMn> #» u^i) = i°(̂ i2> % ̂ 2) = w, so choose b to be an eigenvalue
of W~XC and choose a to be the corresponding eigenvector. Then
(C — bW)a = 0 and hence there exist scalars a19 * ,am not all 0 and 6
such that

a contradiction since T{R^) £ i2lβ

Hence (4) and (6) cannot hold for all i and j . Similarly both (5)
and (7) cannot hold for all i and j . This completes the proof of the
lemma.

In view of the remark preceding this lemma, (5) and (6) must hold
when m Φ n.

THEOREM 1. Let U and V be m- and n-dimensional vector spaces
respectively. Let T be a linear transformation on Z7(x) V which maps
elements of rank one into elements of rank one. Let Tx be the l.t. of
V®U into Z7® V which maps y 0 x onto x(g)y. If m — n9 let φ be
any non-singular l.t. of U onto V. Then if m Φ n, there exist non-
singular l.t.'s A and B on U and V, respectively, such that T —
A 0 B. If m — n, there exist non-singular A and B such that either
' T = 4 ® ΰ or T = Tx{φA 0 φ^B).

Proof. By (1) and Lemma 3, T(et 0/j) = ui3 0 vij9 i = 1, , m,
j = 1, ••-, w, where either (5) and (6) hold or (4) and (7) hold. Suppose
first that the former is the case; in particular, p(ully •• ,%<n) = 1 for
i — 1, , m and p(vυ, , vwi) = 1 for j = 1, , w. Then there exist
non-zero scalars sijf ttJ such that w4i = s^u^ and v^ = tijvυ. Thus

( 8 ) Γ(

where u% — uil9 v} = ^ , and c^ = s t/^. For i — 2, •••, n9
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must be a direct product a? (g) w. By (6) and Lemma 1, Σ?=AΛ =

^ί ΣJ=ICIJ^J f° r some constant dt. By (5), ctJ = d^. Hence

(9) T(ei®fJ) = xi®yj,

where xt — d^ and y3 — cυVj. Since the {a?J and {I/J} are each linearly
independent sets, there non-singular linear transformations A and i?
such that xt = Aet and y3 = £/,. Then Γ = A (g) JB.

When m — n, (4) and (7) may hold in particular,

P(vu, , ̂ ι») = 1 and ρ(u1Jf , u n j) = 1 for i,,/ = 1, , n.

As in the preceding case, there exist linearly independent sets x19 •••,

xw and 2/1, * ,Vn such that

(10) 7 ( ^ 0 / , ) = ^ ® ! / , .

There exist non-singular transformations A and B oί U and V, re-
spectively, such that Aet — φ'^yt and JB/̂  = φxjt ί, j = 1, •• ,n. Thus
ΓΓ'Γίe* ® Λ) - ^Ae4 (g) ^~15/,. Q.E.D.

In matrix language we have the following.

COROLLARY. Let T be a l.t. on the space Mnn of n-square matrices.
If the set of rank one matrices is invariant under T, then there exist
non-singular matrices A and B such that either T(X) = AXB for all
X e Mnn or T(X) = AX'B for all X e Mnn.

3 Rank two preservers. In this section T will be a l.t. of Z7£ξ) V
such that T(R2) c R2. We shall show that under certain conditions
T(RX) c Rlm

LEMMA 4. If W is a subspace of U(&V such that, for some integer

r, 1 < r < min (m, n),

(11) dim Ŵ  > mn — r max (m, n) + 1 ,

Proof. Suppose that m = max (m,n). The products β« (g)/,, i = 1,
•••, m, i = 1, •••, r, are linearly independent and span a space T^ of
dimension mr. Furthermore, W1 c U ϊ - A T h e n dim(W1ΠT7) =
dim TΓi + dim PF - dim (W1 U TF) > mr + (mw - rm + 1) - mn = 1. The
result follows, since WΊ n W c U?i=i^j Π W.

LEMMA 5. // Γ(Λa) c Γ(JKa) c i?2, ίfee^ Γ ^ ) c #> u
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Proof. Suppose xx^yx e Rlt and choose x2(&y2 e R1 such that
p(xlf x2) = ρ(ylf y2) = 2. Then a = s T ^ (g) j/J + ίΓ(α;2 (g) t/2) e i?2 for all
non-zero scalars s, t. Now suppose that T(xx (g) yx) = Σ J - I ^ J ® v j , where
p(ulf •••,%,,) = (̂Vi, , vp) = p, and that T(x2 (g) ?/2) = Σ?-i^ ® w,, where
pfe, , 3Q) = /o(Wi, , wq) — g. Let %p+1, , um be a completion of
î> * » ̂ p to a basis for J7. It follows that

for some

Since a e

vectors h3 e V, j

P

R2, it follows by

p{svι + thu •

= 1,...

+ Σ%

, + th}) •

Lemma

>,svp + t

, m. Then

(g) thj + Σ

1 that

ι'K) < 2 fc

The vectors s^ + tΛlf , svp + thp are linearly independent when s = 1
and ί = 0. By continuity, they remain independent for small values of
t. Hence p < 2 and T{x1^y1) e Rx U i?2.

THEOREM 2. // T(R2) c i?2 αticί 0

Proof. Suppose xx (g) yx 6 ^ and 7(0?! ® 2/0 0 Λi By Lemma 5,
T(x1 (8) ί/0 e # 2 , since 0 0 T{R,). Thus Tί^! (g) 2/0 = (u, ® ̂  + (^ (g) v2),
where jO^, u2) = io('?;1, v2) = 2. Let x1? , xm and 7/!, , yn be bases
for U and F respectively. Then for st Φ 0

(12) sT(x1 ® 2/x) + ίΓ(α?4 ® ̂ ) e R,U R2

for ΐ = 1, , m, j = 1, , n.

At this point it seems simpler to regard the images T{xt (g) y3) as ele-
ments of Mmn. It is clear that there is no loss in generality in taking

Let i and j be fixed for this discussion, and let A = T(Xi (g) ̂ ) .
Let alf •• , α n be the m-dimensional vectors which are the columns of
A, and let εft be the unit vector with 1 in the &th position. It follows
from (12) that

(13) p(sε1 + taly se2 + ta2, taZJ , tan) = 2

for si =̂  0. The Grassmann products

(14) (seι + taj Λ (se2 + ία2) Λ ta* , 3 < fc < w
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must be zero for st Φ 0. In the expansion of (14) the coefficient of
s2t is 0; that is, ε1 Λ ε2 Λ α* — 0.

Thus the matrix A has non-zero entries only in the first two rows
and columns. It follows immediately that the dimension of the range
of T < 2(m + n) — 4. Hence the dimension of the kernel of T > mn —
2(m + n) + 4 > mn — 4 max (m, n) + 1.

By Lemma 4, there exists an element of Uί=i whose image is zero.
This contradicts the hypothesis; hence T{R^) c Rlm

We see then that the form of T satisfying Theorem 2 is given in
the conclusions of Theorem 1.

REMARK. We feel that the hypothesis 0 $ T(\J*jmlR3) of Theorem
2 should not be necessary, but we have not been able to prove the
theorem without it. More generally, we conjecture that T(Rk) c Rk

for some fixed fc, 1 < k < n, should suffice to prove that T is essentially
a tensor product.
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