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THE NILPOTENT PART OF A SPECTRAL OPERATOR

CHARLES A. MCCARTHY

l Introduction* Throughout this paper, 36 is a Banach space, T
a bounded spectral operator on 96 with scalar part S, nilpotent part N,
and resolution of the identity E(σ) for σ a Borel set in the complex
plane. M is the bound for the norms of the E(σ); \E(σ)\ < M for all
Borel sets σ. The resolvent function for T, (λ — T)~\ is denoted by
R(X, T). The operator R(X, T)E(σ) has an unique analytic extension
from the resolvent set of T to the complement of σ, and on the sub-
space E(σ)% it is equal to the operator R(X, Tσ) where Tσ is the re-
striction of T to E{σ)H. For material on spectral operators, we refer
to the papers on N. Dunford [1], [2], χσ(ξ) is the characteristic function
of the Borel set σ: χσ{ξ) = 1 if ξ e σ, χσ(ξ) = 0 if ξ 0 σ. For p a non-
negative real number, μp is Hausdorff p-dimensional measure [3, pp. 102
#.]; μ2 is Lebesgue planar measure multiplied by π/4, and μλ restricted
to an arc is majorized by arc length.

We assume throughout that there is an integer m for which the
resolvent function for T satisfies the mth order rate of growth condition

\R(\, T)E(σ)\ <K* d(\,σ)-m,X $ σ, \X\ < \ T\ + ' 1 ,

where d(X, σ) is the distance from λ to a and K is a constant inde-
pendent of σ. If X is Hubert space, it is known that this growth
condition implies Nm = 0 [1, p. 337]. In an arbitrary Banach space,
this is no longer true; the best that can be done is Nm+2 = 0. If ϊ is
weakly complete, iVm+1 — 0; or if a is a set of μ2 measure zero, Nm+1E(σ) = 0.
If a lies in an arc and either X is weakly complete or a has μx measure
zero, then NmE(σ) = 0. Examples show that we cannot obtain lower
indices of nilpotency in general.

2 The fundamental lemma and some easy consequences. If f(ξ) is

a bounded, scalar valued Borel function, the operator \ f(ξ)E(dξ) exists

as a bounded operator with norm at most 4Af sup ε | /( | ) | [1, p. 341], so
that uniform convergence of a sequence of bounded Borel functions fn{ξ)
implies convergence in the uniform operator topology of the operators
\ fn(t)E(dξ). Thus for a given bounded Borel function f(ξ) and a given

positive number η, there exist a finite number of disjoint Borel sets σi

and points ξt e σt such that
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Similiarly if An are a finite number of bounded operators and fn(ξ) are
bounded Borel functions, for any positive number η, there exist a finite
number of disjoint Borel sets σi and points ξt e at such that

Anfn(ξ)E(dξ)-ΣiΣnAnfn(

in particular, for an integer k and a positive number η, there exist
a finite number of disjoint Borel sets σi and points ξt e σ% such that

(T - ξfE(dξ) - Σi(T - ξtY-

LEMMA 2.1. ΓΛerβ ecmί constants Mk such that | NkE(σ) \ < Mte e
 fc+1~m

/or cm?/ choice of ε, 0 < ε < 1, and Borel set σ of diameter no greater
than ε.

Proof. Pick ε, 0 < ε < 1, and let σ be any Borel set of diameter
no greater than ε. We have [1, p, 338]

For any positive number η, there is a decomposition of σ into a finite
number of disjoint Borel sets σt c σ, and points ξ% e σ4 such that

\ (T - ξfE{dξ) - Σi (Γ - &)*#(**) I < η .

Since σ is of diameter at most ε, there is a circle Γ of diameter 3ε
which encloses σ and for which |γ — ξ\ > e for all γ 6 Γ and ξ e σ.
Then

(Γ - ξtTEiσt) = - L . f (γ - f )*β(7, T)E(σt)dy ,
2πι lr

so that

Σ i (Γ - ξi)*E(<*i) = -^7- ί Λ(7, Γ)Σι(7 - ξt)
kE(σt)dy ,

which in norm in no greater than

(*) 1 . sup I Λ(7> Γ)j&(α) I sup I Σ i (7 - ξt)*E(σt) \ length of Γ .
2π yer yer

The mth order rate of growth condition gives
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sup I R(y, T)E(σ) \ < Ke~m .
yer

F o r a n y γ e Γ ,

| Σ i ( 7 - ξi)*E(σt)\ < 4 i k f . m a x | γ - ξt\
k < 4M(2ε) f c ,

i

so that (*) is no greater than

— K e ~ m 4M(2ef 6πε = Mkε
k+1~m ,

2π

where Mk = 3 2k+2KM, and is independent of η, ε, σ, and the manner
in which σ is decomposed. Thus

\NkE(σ)\ < Mke
k+1~m + 7}

for every positive η, which proves the lemma.

THEOREM 2.2. Let σ be a Borel set whose Hausdorff p-measure is
zero for a given p. Then NkE(σ) — 0 where k is an integer and
k > p + m — 1.

Proof. Since σ has p-measure zero, for every ε > 0, there is a cover-
ing of σ by disjoint sets G% of diameter et such that Σ ie? < ε By
Lemma 2.1 we have

\N*E(σ)\ < ΣilN'Eiσ^KM.Σi^1-™

Since ε may be chosen arbitrarily small, NkE(σ) = 0.

COROLLARY 2.3. Nm+2 = 0.

Proo/. Taking o to be the spectrum of T and p = 3, Nm+2E(σ(T)) = 0;
but E(σ(T)) is the identity mapping on £.

COROLLARY 2.4. //* σ λαs planar measure zero, then Nm+1E(σ) = 0.

COROLLARY 2.5. //* σ Λαs μ^measure zero, then NmE(σ) = 0.

3 The case of weakly complete X. Let σ be a Borel set in the
plane. For any ε > 0, we can cover σ with disjoint Borel sets. o% of
diameter εt9 εt < 1, such that

Σ. ε\ < μlσ) +

Thus by Lemma 2.1,
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< Mm+I(μ2(σ) + ε) .

Since ε and σ are arbitrary, we have for all Borel sets σ,

As a consequence, all the scalar measures x*Nm+1E( )x = [(N*)m+1E'¥( )x¥]x,
x e 36, x* e 36*, are absolutely continuous with respect to μ2, and have
derivative bounded by ΛfTO+1|fic*| \x\ .

Suppose that /(£) = Yjζ=x(xvχσ (ξ) is a simple Borel function; ap are
scalar constants and σp are disjoint Borel sets. We have

is

Thus if fn{ξ) are simple Borel functions converging in Lx{μ2) to f(ξ), the

operators I fn(ξ)(N*)m+1E*(dξ) converge in the uniform operator topology

to an operator which we denote by \ f(ξ)(N*)m+1E*(dξ) this limit opera-

tor has norm bounded by Mm\\

THEOREM 3.1. // X is weakly complete, then Nm+1 = 0.

Proof. Assume that Nm+1 Φ 0, so that also (iV*)m+1 Φ 0. We will
first obtain a bicontinuous map of an infinite dimensional Lx space into
36*. An analogous map into 36 would show then that 36 cannot be re-
flexive, since the image in 36 of this Lx space would be a closed non-
reflexive subspace of 36; however, the map into 36* is needed for the
slightly more general case of 36 weakly complete.

Let the Borel set σ, x0 e 36, and xt e 36* be chosen so that
m+1jB*(σ)^o*]^o Φ 0, and let the derivative of the measure
7 n + 1£ r*( )̂ o*]̂ o be denoted by g{ξ). We can then find a subset τ of

σ and a constant a > 0 such that μ2(τ) > 0 and | g(ξ) | > a on τ.
Define the map Φ of L^τ, μ2) into X* by

Φ(f) ==

Φ is a linear map with bound Λfw+1|aj*|. Now take

x =
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The norm of x is no greater than AM α~1 | # 0 | . But we have

= ι/u,
which shows that

\Φ(f)\ >\f\Lι a-(4M\x0\)-\

so that Φ is one-to-one and has a continuous inverse.
Now let Ψ be the map of L^τ, μ2) into ϊ :

?Γ is a continuous map with bound no greater than AM or11 x0 | we will
show that ?Γ is one-to-one and bicontinuous. We have

so that

sup \Φ(fW(h)\ = sup lί
l/lr <1 I/I 7- <1 J

Z l Z l

But since Φ is bounded,

sup |^(/)^(fe)| < sup \x*Ψ(h)\
\f\T < i *ei*

= \Φ\\Ψ(h)\ ,

so that

\h\Loo<\Φ\\Ψ(h)\;

thus ίP is one-to-one and bicontinuous, The range 2) of Ψ in ϊ is then
a closed non weakly complete subspace of 36. But this is impossible,
because every closed subspace of a weakly complete Banach space is
again weakly complete; the proof of this last remark is as follows.

Let ΐ be a weakly complete Banach space, 2) a closed subspace.
Let yn be a weakly Cauchy sequence in 3), so that y*yn is a Cauchy
sequence of numbers for every y* in Γ*. Since any x* in X*, when
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restricted to 2), is an element of 2)*, x*yn is a Cauchy sequence of num-
bers for every x* in X*. Since X is weakly complete, there is an x0 in
X such that lim^ββίc*^ = x*xQ for every x* in X*; and since 2) is strongly
closed in X, it is weakly closed, so that x0 must lie in 2). Finally since
every y* in 2)* is, by the Hahn-Banach theorem, the restriction of an
x* in X*, lim j/*j/n = 2/*#0 for every 2/* in 2)*, so that 2) is weakly complete.

THEOREM 3.2. If X is weakly complete, then NmE(σ) = 0 for every
set σ of finite fa-measure.

Proof. Follow exactly the same discussion above, replacing the
number m + 1 by m and the measure μ2 by μλ.

Note that Theorems 3.1 and 3.2 also hold if X is assume to be
separable instead of weakly complete, for the image of the L^ space
in X would be a nonseparable closed subspace of X; but every closed
subspace of a separable space is again separable.

4 Examples* In the following examples we will need two com-
putational lemmas.

LEMMA 4.1. For each real number p > 1 and Borel set a,

( |λ - ξ\~CP+2)μ2(dξ) < 8d(λ, σ)~*f for all λ 0 a .
J *

Proof.

7Γ J 0

< Bd(X, σ)-p .

LEMMA 4.2. For each real number p > 1 αt̂ cί Borel subset σ of
the real line,

\ \\-ξ\

where μx is Lebesgue measure along the line, and λ is any complex
number, λ 0 σ.

Proof. Let λ = a + iβ, a, β real. Then either, (i), d(a, σ) > d(X, σ)/2
or, (ii) I β I > d(X, σ)/2. In case (i) we have



THE NILPOTENT PART OF A SPECTRAL OPERATOR 1229

d(λ,σ)/2

< 2p+1p-1d(λ, σ)~p .

In case (ii) we have

f \\-ξ\-[^μi{dξ)< f" \ξ-iβ\-wdξ
J σ J -oo

< \°° ( f + /32H<p + 1 )d£

< 2ί)+1ττd(λ, σ)~* .

EXAMPLE 4.3. Let Σ be a disc in the plane with /vmeasure 1.
Let

x = L4Σ) 0 L2(Σ) φ 0 L2(£) 0 Lx(^) ,

where m copies of ^( l 1 ) are taken. Let T be the operator S + N where
S and N are defined as

) Θ Λ(f) Φ Θ βr»(f> Φ πm

= \Sf(S) θ fΛ(f) φ φ fflrw(f) θ fλtf)],

) 0 Λ(f) 0 0 gJS) 0 λ(fH

Since Σ has measure 1, any function in Lr is in Ls for all s < r, and
the Ls norm is no greater than the Lr norm; thus N is a bounded
operator with norm 1. Also JV is a nilpotent for which Nm+1 Φ 0. The
operator T is a spectral operator with resolution of the identity

E(σ)[f(ξ) 0 gx(ξ) φ 0 flfj?) 0 fc(£)]

= [/(f)χ,(l) θ gmxΛξ) 0 θ ff (f)

The resolvent function is

R(X, T)E{σ)[f(ξ) 0 Qί(ξ) φ φ Uf) 0 ft(f)]

_ Γ M)Uξ) φ / gχ(g)^(f) ,
L Λ — ζ \ Λ — ̂  \K — ζ)

(gm(ξ)x

V x -

\

)xΛξ) • . . . • g.(g)χ g(f) •
(λ ξ)m

x - ξ (λ - ξ)m (x - | )

.I, g»(f)Xσ(g) • . . . • j ^ D ^ ί l L 4 -
( λ | ) (λ | ) m + 1X-ξ (λ-|) (λ - | ) m + 1 (λ - £)m

All the terms are clearly of mth order rate of growth except possibly
for
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(a)
(λ - ξ)m+1 , (b)

(λ ~
, and (c)

(X -

For (a) we have

<j/k{J/-
l/2

for (b) we have

J Jλ -

and for (c) we have
1/2

Jλ -

Thus each term of the resolvent, and hence the resolvent itself satis-
fies the mth order rate of growth condition; this shows that Corollary
2.3 cannot be improved.

EXAMPLE 4.4. Let Σ be as in the previous example and let

X = Lr(Σ) e θ Lr(Σ) 0 LS(Σ)

where m copies of Lr are taken, r and s are to satisfy 1 < s < r < oo
and rs < 2(r — s). Let T — S + N, where S and N are defined in
essentially the same way as in the previous example. The resolvent
function is given by

i(ί)θ Θ/-(l)θfl(l

B θ ( J

-ξf

.. + fM)xM)\
(λ - ξ)m I

f,(ξ)y (ξ) \Ί

Each of the terms is clearly of mth order rate of growth except possibly
for the Ls norm of /ι(|)(λ - g)"<ro+1)χ,r(|), and for this we have

< {j JΛ(f)l'A(cif)pr{J|λ

< I /i I I r 8 ^ d(X, <r)—O-
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Thus the resolvent satisfies the mth order rate of growth condition, and
Nm = 0. Since X is reflexive, this shows that Theorem 3.1 cannot be
improved. Note that 36 is also separable.

EXAMPLE 4.5. Let Σ be the interval [0,1] endowed with /^-measure,
and let

* = L^Σ) 0 0 L^Σ) 0 LX(Σ)

where m copies of !/«, are taken. Let T = S + N where S and N are
defined in essentially the same way as in the previous examples. The
resolvent function is given by

R(\, τ)E(σ)[m) ω θ/.(i) Θ ai
_ r

LL x -
i- / » ( g ) x . ( g ) I . . . . ,.

(X ξf — | ) m + 1 / Ji I ,
X — ξ (X — ξf (X — | )

Each of the terms is clearly of mth order rate of growth except for
the Lλ norm of /ΛlXλ - f)- ( m + 1 )χσ(£), and for this we have

<\f\Loo\ | λ -
J σ

Thus we have an example of an operator with spectrum in a rectifiable
arc which satisfies the mth order rate of growth condition, but for which
Nm φ 0.
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