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ON A CRITERION FOR THE WEAKNESS OF AN

IDEAL BOUNDARY COMPONENT

KόTARO OlKAWA

1. Exhaustion, Let F be an open Riemann surface. An exhaustion
{Fn} of F is an increasing (i.e., Fn c Fn+1) sequence of subregions with
compact closures such that \Jn=iFn = F. We assume that dFn consists
of a finite number of closed analytic curves and that each component
of F — Fn is noncompact. This is the most common definition used in
the theory of open Riemann surfaces. Sometimes, however, we shall
add the restriction that each component of dFn is a dividing cycle if
this is the case we shall call the exhaustion canonical.

2. Weak boundary component. Let 7 be an ideal boundary com-

ponent of F, and let {Fn} be a canonical exhaustion of F. Then there

exists a component yn of dFn which separates γ from Fn. Let n0 be a

fixed number and consider the component Gnoί Fn—FnQ (n>n0) such that

yn c 8Gn. There exists a harmonic function sn(p) on Gn which satisfies

the following conditions :

( i ) sn = 0 on ynQ and f *dsn = 2τr, (γWo = dFnQ n dGn)

(ii) sn = \ogrn = const, on γw,
(iii) sw = const, on each component βnv of dGn — 7W — 7Wo and

( *dsn = 0.

The condition lim^*, rw = <χ> depends neither on nQ nor on the ex-
haustion. If it is satisfied, 7 is said to be weak.

Weak boundary components were introduced for plane regions by
Grδtzch [1] in connection with the so-called Kreisnormierungsproblem.
He called them vollkommen punktformig. They were generalized for
open Riemann surfaces by Sario [6] and discussed also by Savage [7]
and Jurchescu [2]. The above definition was given by Jurchescu [2].

A noncompact subregion N whose relative boundary dN consists of a
finite number of closed analytic curves is called a neighborhood 0/ 7 if 7 is
an ideal boundary component of N as well. Let {c} be the family of
all cycles c (i.e., unions of finite numbers of closed curves) which are in
N and separate 7 from dN. Jurchescu [2] showed that λ{c} = 0 if and
only if 7 is weak, where X{c} is the extremal length of the family {c}.
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3, Savage's criterion. Let {Fn} be an arbitrary exhaustion. Let
En be the smallest union of components of Fn — Fn-λ such that yn_x —
dEn Π dFn-! is a cycle which separates 7 from Fn-X (n — 2,3, •••).
Evidently yn c dEn. If {Fn} is canonical, En is connected and 7W is a
closed analytic curve.

There exists a harmonic function un(p) on 2ίn such that

(i) un = 0 on 7w-i and I *dww = 2π,
•K-i

(ii) ^w = \ogμn = const, on 0JS7Λ - 7w-i = θί?» Π dFn.
The quantity log μn is called the modulus of En (cf. Sario [4,5], who
called μn the modulus). It is expressed in terms of extremal length as
follows:

l0g/4 = i J r '
where {c}n is the family of cycles in En homologous to 7n-i

Since Σ°° 1/Mc}w ^ 1/̂ {C}> we get the following criterion :

THEOREM 1 (Savage [7]). If there exists an exhaustion such that
ΠΓ=2ft = °°, then 7 is weak.

The purpose of the present note is to discuss the converse of this
theorem.

4 Jurchescu's criterion. Suppose the exhaustion {Fn} is canonical.
There exists a harmonic function Un(p) on En such that

(i) Un = 0 on Yn-i and I *dUn = 2π,
K-i

(ii) Z7W = log Mn — const, on 7 n,
(iii) Un = const, on each component /5WV of 0 ^ — yn — 7W^X and

Jurchesch's paper [2] contains implicitly the following result:

THEOREM 2 (Jurchescu). A boundary component 7 is weak if and
only if there exists a canonical exhaustion such that Π n ^ ΐ = °°.

Proof. Sufficiency: Let {c'}n be the family of cycles in En sepa-
rating yn from 7n_1# It is not difficult to see that log Mn = 2π /λ{c'}w.
Since Σ°°l/λ{c'}w ^ l/λ{c}, we conclude that Σ~=2 log Mn = co implies
λ{c} = 0.

Necessity : Consider a canonical exhaustion {ί^}. The desired ex-
haustion {Fn} is obtained by taking its subsequence as follows :

Fτ = F?. TO define F2, consider the quantity rn introduced in No. 2
with respect to F«n - F\ (n = 2, 3, .). Take ^2 so large that rni ^ 2,
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and put F2 = F°2. Evidently M2 = rn2. Similarly, F3 = F£3 is defined

by considering F% — Fl? (n — n2 + 1, n2 + 2, •) and by taking nz > n2

so large that τ%z }> 2 where τni is the quantity rn introduced in No. 2

with respect to F% — FΪ'. We have M3 = rw . On continuing this process,

we obtain a canonical exhaustion such that Σn=2logΛfn^ Σ~=2log2=oo.

The idea of this proof was first used by Noshiro [3].

5* The converse of Savage's criterion. We shall now show that
Savage's criterion in Theorem 1 is also necessary.

THEOREM 3. If j is weak, then there exists an exhaustion such

that ΠίΓ-2/Aϊ — °° It is not necessarily canonical.

Proof. By Theorem 2 there exists a canonical exhaustion {F°} such
that Π«=2 Mn = oo. From this we construct a canonical exhaustion {F%}
as follows :

Ff = Fl To construct F*, let ΘE°2 - γ? - γj = /3n U fta U U /9Mj

be the decomposition into components, and let HI be the component of
Fl - F\ such that dH\ Π F\ = β2V (v = 1, 2, , fca). F 2* is the union of
Ft9E

0

2\JΊi9 all the other components of F°2 - F°u and \jlUHl In
this way, Ft is defined as the union of F%-lf E°nUjo

n_u every com-
ponent of F°m+1 - F°m (m ̂  w) which is adjacent to F*_ l f and \jl=iHl+1.
By construction, £7* = E°n U U ϊ ϊ i ^ + i

The desired exhaustion {Fn} is obtained by taking a refinement of
{ί1*} as follows : Consider E°n and the function C/̂  for the exhaustion
{F°n}. Let dE°n - 7°, - 7i_x = βnι U /5W2 U ••• U /3n]fcn be the decomposi-
tion into components and let U°n = αv on βnv (v — 1, 2, , few). We may
assume, without loss of generality, that the αv 's are different by pairs.
We suppose that

0 = α0 < a1 < < akn < αfc^+1 = log Af°.

Take a[ (αv_x < α' < αv v = 1, 2, , kn9 αίw + 1 Ξ log M°) and αj' (αv < a" <
α v + 1 v = 1, , fcn, α" = 0) so close to αv that

( 1 ) * Σ « - αf.0 ̂  log M: - 2~n .
V = l

Consider the sets

Di={p; a'L, < Uliv) < < } , v = 1, 2, . . . , kn + 1, (αί'w+1 = log M°w)

^ v - b ; < - i < UlivXal), y = l ,2 , ..,fen + l .

The modulus log μ'<» of D;v with respect to βv = {p ?70

n(p) = αJ'.J and
QZ)̂  — β' is equal to αί — c d , since the function Z7i(p) — α"-i plays the
role of ujjή introduced in No. 3. Let log μ ( v ) be the modulus of Ώ\
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with respect to β" and dDl - β\ Since μ^ ^ μ'^\ we obtain, by (1),

(2)

We have decomposed E°n into kn + 1 subsets Dl. E% — E°n consists
of components Hl+1 such that βnv = dHl+1 Π ΘE°n(v = 1, 2, ••-, fcj. By
decomposing Jϊ^+ 1 into &w — v + 1 slices, we obtain a decomposition of
Έ* into &w + 1 parts. It is possible to divide each of the other com-
ponents of Ft — Fn-i into kn + 1 pieces so that we get an exhaustion
{Fn} which is a refinement of {F}}. Dl plays the role of En with respect
to this exhaustion. Therefore, by (2), we get

6, Remark* On a ' ' schlichtartig" surface, every exhaustion is
canonical. If F is an arbitrary Riemann surface, the question arises
whether or not Savage's criterion is still necessary under the restriction
that {Fn} is canonical. The answer is given by

THEOREM 4. There exist a γ of an F which is weak and such that
Πw=2 μn < °° for every canonical exhaustion.

Construction oί F: In the plane | z \ < oo, consider the closed
intervals

Ik: [2*2,2fc2 + l | (fc = 2,3,...)

on the positive real axis, and the circular arcs

α v : \z\ = v, | a rgz | ^-£•

(v = 2fc2 + 2, 2&2 + 3, . . . ,2< f c + 1 > 2 - l;fc = 2,3, •••) .

Take two replicas of the slit plane (| z \ < oo) — U^= 2 /fc and connect them
crosswise across Ik (k = 2, 3, * •). From the resulting surface, delete all
the α v ' s on both sheets. This is a Riemann surface F of infinite genus.

F has an ideal boundary component γ over z — oo, which is evidently
weak.

Let {FJ be an arbitrary canonical exhaustion. Consider En corre-
sponding to γ (No. 3). The interval Ik determines a closed analytic curve
Cfc on F. Since γw_! = 92?w Π -FVi is a dividing cycle, the intersection
number γw-i x C^ vanishes and, therefore, yn^ Π Ck consists of an even
number of points whenever it is not void.* Take two consecutive points

* Added in proof. We should have mentioned the case where γn_1 tangents Cfc. The
following discussion covers this case if the number of the points of γ w _ 1 Π^ f c is counted
with the multiplicity of tangency and case p=q is not excluded.
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p and q in ηn-λ Π Ck. There are two possibilities according as the arc
pq c γw_! is homotopic to pq c Ck or not. If the latter case happens
for at least one pair of p and q, we shall say that 7 ^ intersects Ck

properly.

Since 7n_x is a closed curve separating γ from Fn-U there exists a
number fc such that γw_χ intersects Cfc properly. If there is more than
one k, we take the greatest one and denote it by k(n).

To estimate μn, let {c}n be the family of all cycles in En separating
7n_! from ΘEn — γn_ lβ We have mentioned that log μn — 2π/X{c}n. Let
Ck be a curve for which there are numbers n with k(n) = &. Evidently
these n are finite in number and consecutive. Let nk be the greatest.

I. If k(n) = fc and n < nk then 7 ^ and 7W intersect Ck properly.
Since every c e {c}n separates yn-i from γw, it has a component which
intersects Ck and is not completely contained in the doubly connected
region Δk consisting of all points that lie over {z 2fe2 — 1 < | z \ < 2*2 +
2, | a r g z | < π/2}. Therefore, every c contains a curve in {c'}(fc) which
is the family of all curves in the right half-plane connecting Ik with the
imaginary axis. Consequently

( 3 ) ΣcJo-* \{c}n

II. k(ri) — k and n ~ nk. Consider all the av (v ^ 2fc2 + 2) on the
upper sheet. Let Gn-X be the component of F — Fn-λ such that dGn~1 =
7 ^ . For a sufficiently large v9 av is an ideal boundary component of
Gn-!. Let v(k) be the least v with this property. If v(k) = 2*2 + 2,
then every c e {c}n separates 7 -̂1 from αv(fc) and, therefore, it has a
component intersects either Ck or one of four line segments over
[2fc2 - 1, 2fe2] or [2fc2 + 1, 2fc2 + 2]. When v{k) - 2ι* + 2 for some ϊ > fc, then
7re-i separates «V(Λ)-3 from αvCfc) and every c e {c}w separates 7W_! from
α v α ) , so that c has a component with the above property. If v(k) is
not of the form 2?i + 2, then, for the same reason, every c e {c]n has
a component which intersects the line segment on the upper sheet lying
over \y{k) — 1, v(k)], and is not contained in the simply connected region
on the upper sheet consisting of all points over {z v{k) — 1 < | z \ < v(k),

a r g z | < 7r/2}. In any case, every c e {c}n contains a curve in {c"}(fc)

which is the family of all curves in the right half-plane connecting
\y{k) — 3, v(k)] with the imaginary axis. Therefore,

(4) - J — < 1 .

By (3) and (4), we obtain

( 5 )
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To show the convergence of Σfc=2 l/λ{c'}(fc), we make use of the
transformation z->z\ It is immediately seen that λ{c'}(fc) is equal to
the extremal distance between [- oo, 0] and Γk = [22*2, (2*2 + I)2] with
respect to the region A— {[— °o,0]U/*} c . Since A is conformally
equivalent to Teichmϋller's extremal region {[—1, 0] (J [Pf °°]}c where

(2*' + I)3

we have (Teichmiiller [8])

(P->oo)

/b2

and, therefore, ΣΓ=2 l/λ{c;} ̂  < oo. Similarly ΣΓ=2 l/λ{c"}(fc) <
because i (ft) ^ 2fc2 + 2. We conclude that

Σ log μn < oo .
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