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Introduction, Lucas, Carmichael [1] and others have given tests for
primality of the Fermat and Mersenne numbers which utilize divisibility
properties of the Lucas sequences (U) and (V); in this paper we are
concerned only with the first sequence;

(U): UQ, U19 U2, . . . , Un = ^
a — β

Here a and β are the roots of a suitably chosen quadratic polynomial
x2 — Px + Q, with P and Q coprime integers. (For an account of these
tests, generalizations and references to the early literature, see Lehmer's
Thesis [2]).

I develop here a test for primality of a less restrictive nature which
utilizes a divisibility property of the Sylvester cyclotomic sequence [3]:

(Q):Qo = O, Q1 = l, Q3f •• ,Q»= Π iμ - β^/3), . . .
l<r<n
(r,n) = l

Here a and β have the same meaning as before. (U) and (Q) are
closely connected [4]; in fact

(l l) Un = nQd.
d\n

The divisibility property is expressed by the following theorem
proved in § 3 of this paper.

THEOREM. If m is an odd number dividing some cyclotomic number
Qn whose index n is prime to m, then every divisor of m greater than
one has the same rank of apparition n in the Lucas sequence (U)
connected with (Q).

Here the rank of apparition or rank, of any number d in (U) means
as usual the least positive index x such that Ux = 0 (mod d).

The following primality test is an immediate corollary.

Primality test. If m is odd, greater than two, and divides some
cyclotomic number Qn whose index n is both prime to m and greater
than the square root of m, then m is a prime number except in two
trivial cases: m — (n — I)2, n — 1 a prime greater than 3, or m = n2 — 1
with n — 1 and n + 1 both primes.
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The primality tests of Lucas and Carmichael are the special case
when n — m ± 1 is a power of two (which allows Qn to be expressed
in terms of Vn) with X2 — Px + Q suitably specialized.

2. Notations. We denote the rational field by R, and the ring of
rational integers by /. The polynomial

(2.1) f(x) = x2 - Px + Q , P, Q, in I and co-prime

is assumed to have distinct roots a and β.
We denote the root field of f(x) by S/ and the ring of its integers

by ^ . Thus S/ is either R itself, or a simple quadratic extension
of R.

Let p be an odd prime of /, and p a prime ideal factor of p in
^ . Every element p of szf may be put in the form p = a/a with a
in ^ and α in /. The totality of such p with (a, p) — 1 forms a sub-
ring J^Ώ of jy\ Evidently J ^ Z ^ ^ I D ^ ^ / . If we extend p into ^
in the obvious way, we obtain a prime ideal s$. The homomorphic image
of iJ^p modulo S43 is a field, J^~p. We denote the mapping of <J^V onto
^ by CP).

Let JPW(^) denote the cyclotomic polynomial of degree φ(ri). Fn(z)
has coefficients in 7, and if ^ is greater than one, then (Lehmer [2],
Carmichael [1])

(2.2) <?„ = β ^

Furthermore

(2.3) z» - 1 = Π ̂ .(«)

3 Proof of theorem. Let m be an odd number greater than one
which divides some term of (Q) whose index n is prime torn, so that

(3.1) Qn = 0 (mod m) , (n, m) = 1.

Throughout the next three lemmas, p stands for a fixed prime factor
of m.

LEMMA 1. If p is any ideal factor of p in j?, then

(3.2) (Q, p) - (α, ί) - (/3, p) = (1) .

Proof. It suffices to prove that (Q, p) = (1). Assume the contrary.
Then (p, P) - 1. Since Ux = l and Ux+2 - P[7X+1 - QUX = Pί7 x + 1 (mod p),
it follows by induction that Un&0 (mod p). Then by (1.1), Qn ^ 0
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(mod p). But p divides m so that by (3.1) Qn = 0 (mod p) a contradic-
tion.

LEMMA 2. The rank of apparition of p in (U) is n.

Proof. Since Un ΞΞ 0 (mod p), p has a positive rank of apparition
in (U), r say. Then r divides n. But by (1.1), Ur — Y[a\nQa Hence
Q(l = 0 (mod p) for some d dividing both r and n. Clearly, if d = n,
then r = n and we are finished. Assume that d is less than n.

The number a/β = a2IQ is in ^ , by Lemma 1. Let τ be its image
in άfv under the mapping (ψ). Then by (2.2) and Lemma 1 i^(τ) =
Fd(τ) = 0 in j ^ , . Consequently the resultant of the polynomials Fn(z)
and .F^z) i s z e r o i n -^> Therefore its inverse image under the mapp-
ing is in ψ. But this resultant is evidently in /. Therefore it must
be divisible by p. But by formula (2.3), since d < n the resultant of
Fn(z) and Fd(z) must divide the discriminant ±nn~1 of zn — 1. Thus
n ΞΞΞ 0 (mod p) so that {n, m) ~ 0 mod p which contradicts (3.1) and
completes the proof.

LEMMA 3. The rank of apparition in (U) of any positive power
of p which divides m is n.

Proof. Let pk divide m, k > 1 and let the rank of pk in (U) be r.
Now Un = Π^i^ Qd ΞΞΞ 0 (mod pfc). But by Lemma 2, each Qrt with d<n
is prime to p. Hence r must equal w.

The theorem proper now follows easily. For let mf be any divisor
of m other than one. By Lemma 3, every prime power dividng m' has
rank of apparition n in (U). But the rank of apparition of m' in (U)
is the least common multiple of the ranks of the prime powers of maximal
order diving m'. (Carmichael [1]). Hence m' also has rank of appari-
tion n in (U).

4. Proof of pritnality test* Assume that (3.1) holds for some n

greater than Vm. If m is not a prime, it has a prime factor <Vm.

Let p be the smallest such factor, and let

(4.1) m = pq , q > 3 .

Then p has rank n in (U) by Lemma 3. But by a classical result
of Lucas, Up±ι = 0 (mod p). Hence n divides p ± 1. If n is less than
p + 1, Vm < p < \/m, a contradiction. Hence n = p + 1. If p — Vm,
then m = (n — I)2 and w — 1 is a prime. Since m is odd, n > 4. This
is the first trivial case.

If p < Vm, then q > p + 2 and m > p(p + 2). But if m > p(p + 2),
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then n2 > m > (p + I)2 — n2, a contradiction. Hence m = p(p + 2) where
p + 2 has no prime factor smaller than p. Hence p + 2 is a prime and
m — n2 — 1 with both w — 1 and n + 1 primes. This is the second
trivial case. In every other case then, m must be a prime.

5 Conclusion* The two trivial cases can actually occur. For if
P = 22 and Q = 3, then Q6 = α2 - aβ + β2 = P 2 - 3Q = 475. Hence
Q6 = 0 (mod 25) and 25 = (6 - I)2. Again, if P = 17 and Q = 3, then
Q6 = 280. Hence Q6 - 0 (mod 35) and 35 = 62 - 1 = 5 x 7. It is worth
noting that these trivial cases cannot occur if a and β are rational
integers. (See [1], Theorem XII and remark.)

To illustrate the theorem, note that if P — 2 and Q = 1, Qg ~ 73.
Since τ/73 < 9 and (9, 73) = 1, 73 is a prime. But for P = 3 and Q = 1,
Q9 = 91. But 9 < τ/9Ϊ so the test is inapplicable. As a matter of fact,
91 is the product of two primes. Evidently the test may be extended
to cover such a case. That is, if Qn = 0 (mod m), (n, m) = 1 and
w > i^m, m will usually be either a prime, or the product of two primes.
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