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SPECTRAL THEORY FOR LINEAR SYSTEMS
OF DIFFERENTIAL EQUATIONS

FRED BRAUER

Introduction, The study of boundary value problems for systems of
first order differential equations was begun by Bliss in 1926 [1], Such
problems are of interest not only because they include boundary value
problems for single equations of arbitrary order, but also because they
arise in the calculus of variations and relativistic quantum mechanics.
Until now, attention has been concentrated on boundary value problems
on a finite interval [1, 2, 8], but an application to a particular boundary
value problem on an infinite interval has also been considered [6]. It
seems reasonable to expect that the theory of boundary value problems
and eigenfunction expansions on an infinite interval for a single differ-
ential equation of arbitrary order can be extended to first order systems.
In this paper, the extension will be carried out along lines similar to
those used by the author in [3]. It will be shown that all the results
obtained in [3] can be formulated so as to be valid for systems. Vector
and matrix notation will be used extensively, and as a result, formulae
will take a simpler and more natural form than in [3].

The elements of a matrix A will be denoted by Atj, and the com-
ponents of a row or column vector / will be denoted by ft in the usual
manner. The adjoint of a matrix A, written A*, will be the matrix
with An in the ith row, jth column, the bar indicating the complex con-
jugate. The adjoint / * of a row or column vector / will be the column
or row vector respectively with components fim It is easily seen that
(AB)* = 5* A*, whether A and B are vectors or matrices such that AB
is defined. If A is a matrix and a is a scalar, then (<xA)* = άA*.
Also, if A is a Hermitian matrix (A = A*), and / and g are column
vectors, then it is easy to see that (f*Ag)* = g*Af = (f*Ag). The
matrix dAldt, or Ar, will be the matrix with elements Af

ijy and the
vector dfldt, or / ' , will be the vector with components f[. Any an-
alytic properties, such as continuity or differentiability, postulated for a
vector or matrix will be understood to be assumed for each element
separately.

l The expansion theorem* Let AQ, A, B be n x n continuous com-
plex-valued matrix functions of t defined on an interval / — (α, 6), not
necessarily a bounded interval, with not all elements of B vanishing
identically on I and with AQ non-singular at every point of /. We are
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18 FRED BRAUER

interested in boundary value problems for the linear system of differ-
ential equations

(1) Aox' + Ax = XBx ,

where x is an ^-dimensional column vector. The adjoint system is de-
fined to be

( 2 ) - (A*yY + A*y = XB*y .

The system (1) is called symmetric if there exists a transformation y —
C(t)x, with C a non-singular continuously differentiable matrix on /,
which transforms (1) into (2) for all values of λ. It can easily be shown
(cf. [8]) that (1) is symmetric if and only if

( 3) (A*CY - AtCA^A - A*C = 0, £*C + AfCA^B = 0 .

If (3) is satisfied, it may easily be verified that

(4) - (A*CxY + A*Cx - XB*Cx = - A*CA;\AQx' + Ax - XBx) .

It may be shown by integration by parts that if / and g are two dif-
ferentiable vector functions vanishing at the ends of the interval /,
then

Af- XBf)dt = j ^ [ - (A*CgY + A*Cg - XB*Cg]*fdt .

If the system (1) is symmetric, (4) yields

Af- XBf)dt

ff' + Ag - ΪLBg)*A*-*C*A,fdt .

Let C\{I) denote the set of continuously differentiable vector func-
tions which vanish identically outside some compact subinterval of /.
A symmetric linear system (1) is called definite if

(i) the matrix S = C*B is Hermitian, so that C*J3 = B¥C,

(ii) [f*Sfdt ^ 0 for any / e CJ(1), and

(iii) Aou' + An = 0, Bu = 0 on any subinterval J of / implies that
u vanishes identically on J.
In view of these conditions,

(6) [f,g]

may be regarded as an inner product on CJ(I). Let H be the Hubert
space completion of CJ(7) in the inner product (6). Then H is the set
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of equivalence classes of vector functions / such that \ f*Sfdt < co.

The norm in H will be denoted by | | / | | .
Let D denote the set of functions / in C\{I) such that

(7) AJ» + Af=Bp

for some p in H. Although p may not be uniquely determined as a
function by (7), the function Bp is uniquely determined. If px and p2

are elements of H with Bpx =Ξ Bp2, then

llPi - P*\\2 = J/Pi - pJ*C*B(Pl - p2)dt = 0 ,

and px and p2 define the same element of H. Thus the equation (7)
determines a unique element p of H. We define an operator L in H
with domain D, by defining Lf = p for f e D, with p determined by (7).

LEMMA 1. If £&β system (1) is symmetric and definite, then the
operator L is symmetric on D.

Proof. Let f,geD, with p as in (7) and

(8) 4ΰ' + Ag = Bq.

Then,

[Lf, g] -

-[g*A*Cf]*

using (3), (7), and integration by parts. Also,

[/, Lg] - ^q*Sfdt - ^q*B*Cfdt - J ^ ' + Ag)*Cfdt

= \(g*'A*Cf+g*A*Cf)dt,

using (8). Thus

[Lf, g] - [/,
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The integral vanishes because of (3), and the first term on the right
side vanishes because / and g vanish outside a compact subinterval of
I. Therefore [Lf,g] = [/, Lg], and L is symmetric on D.

Throughout this paper, we shall assume that (1) is symmetric and
definite, and that the symmetric operator L has a self-adjoint extension
T, considered as an operator in H. If Ao, A, and B have real coeffici-
ents, then L is a real operator and always has at least one self-adjoint
extension ([9], p. 329).

LEMMA 2. There exists a matrix k(t, s, λ) with the following
properties:

( i ) k is continuous on I x I for fixed X except on t = s, and an-
alytc in X for fixed t, s,

(ii) k(s + 0, s, λ) — k(s — 0, s, λ) is the identity matrix E for sel
and any λ,

(iii) the columns of k satisfy (1) as functions of t for t Φ s,
(iv) if J is any compact subinterval of I and f is any function

in CJ(J), then

( 9 ) /(«) = \k(t, s, X)[A0(s)f'(s) + A(s)f(s) - XB(s)f(s)]ds ,

for t e J.

Proof. Let Φ(t, X) be a fundamental matrix solution of (1), that
is, a matrix whose columns are linearly independent solutions of (1).
This matrix is non-singular for all t e /, and can be chosen so that all
its elements are analytic in X for each fixed t. For t < s, define
k(t, s, X) = 0, and for t ^ s, define k(t, s, λ) = Φ(t, X)Φ~\sf λ). The proper-
ties (i)-(iii) are immediate consequences of this definition, and the proper-
ty (iv) follows from the variation of constants formula ([5], p. 74).

The function k(t, s, 0) will be denoted by k(t,s). In this section,
we will use only k{t, s), but the more general k(t, s, λ) will be required
later. An expression such as k{t, ) will stand for k(t, s), considered as
a function of s for any fixed t. Let J be any compact subinterval of
/ and let θj be a real continuously differentiate scalar functions which
is 1 on J and which vanishes identically outside some compact subinterval
of /. Let z(t, s) = C~ι(s)k*(t, s)θj(s), an n x n matrix. It is clear that
the columns z^t, ) of z(t, ) are continuously differentiate vectors which
vanish outside a compact subinterval of J, and that each Zι{t, ) is an
element of H. If / belongs to D and vanishes identically outside J,
then we can write

f(t) = [θj(s)k(t, s)B(s)p(s)ds = f s*(ί, s)C*(s)B(s)p(s)ds
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= f z*(t, s)S(s)p(s)ds ,

using (7), (9), and S = C*B. This means that each component ft of /
(i = 1, . . fn) can be written

(10) / f(ί) - j^f(ί, s)S(s)p(s)<te - [p, *4(t, )] - [L/, s,(ί, )] .

We will make use of the theory of direct integrals and the spectral
theorem as given in [7]. The notation will be similar, but not identical,
to that used in [3] The elements of the direct integral L2(σ, v) are
v(λ)-dimensional vectors F(X)9 and the inner product

S V(λ> _

Σ F,(X)Gk(X)dσ(X)
of two elements F, G of L\σ9y) will be denoted by ί G*(X)F(X)dσ(X),

in analogy to our other notation. R will always mean the real line.
We can now state the result of this section.

THEOREM 1. Let T be a self-ad joint extension with domain Dτ of
the operator L defined for a symmetric definite system (1). The spectral
theorem furnishes a direct integral L\σ, v) and a unitary transfor-
mation U from H to L\σ, v) which diagonalizes T. This transfor-
mation is given by

(11) (Uf)(X) = j S*(ί, X)S(t)f(t)dt ,

and its inverse by

(12) (U~Ψ)(t) - ( E(t, X)F(X)dσ(X) ,
-B

with the integrals converging to the functions in the norms of the
Hilbert spaces L\σ, v) and H respectively. Here, E{t, X) is a matrix
function with n rows and v(X) columns, whose elements have locally
square-integrable derivatives with respect to t. The columns of E(t, X)
are improper eigenfunctions (not necessarily belonging to H) of the
differential equation (1) for almost all λ. If XQ is an eigenvalue of
T, then the columns of E{t, λ0) are proper eigenfunctions.

Proof. Let L2(σ, v) be a suitable direct integral and let U be the
unitary mapping of H to L\σ, v) which diagonalizes the self-adjoint
extension T of L. The fact that U is unitary is expressed by the
Parseval formula

(13) [/, g] = (Uf, Ug) = ( (Ug)*(X)(Uf)(X)dσ(X) .
JR
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Let / belong to Dτ, the domain of T, and let g be any function in H
such that Sg vanishes identically outside some compact subinterval J
of /. Let F=Uf,G = Ug, Z% = Uzt, E\t, λ) = XZ*(t, λ), where zt is as
in (10). Then

fi(t) = [Tf,zt(t, )] = (UTf, Zt(t, )) = (\Uf, Zt(t,

- (F, #'*(«, )) = \ E\t, X)F(X)dσ(X) ,

using (10), (13), and the spectral theorem. In addition,

[/, g] = \ g*s/dt = f Σ lg*S]Jidt

= ( Σto^Sίt)],}! Eί(tfX)F(X)dσ(X)\dt

= \\\ tWWSmE'Q, X)dt\F(X)dσ(X) ,

the interchange in the order of integration being justified by the absolute
convergence of the integral. We define the n x v(X) matrix E(t,X)
with rows E*(t, λ). Then we can write

t,X)dt\-F(X)dσ(X) .

On the other hand,

LΛ g] = ( G*(X)F(X)dσ(X) ,

and thus

G*(λ) - \g*(t)S(t)E(t, X)dt ,

or,

G(λ) = f E*(t, X)S(t)g(t)dt

for almost all λ.
For g e D, g vanishing identically outside J, we have seen that

(Ug)(X) - j ^ * ( i , X)S(t)g(t)dt. If Λ^' + ^ = Bp, then 5p = BTg = 0

outside J, SΓ# = 0 outside J, and we can apply the above relation to
Tg, obtaining

(UTg)(X) - ^JS?*(t, X)S(t)Tg(t)dt .

Since
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(UTg)(X) - X(Ug)(X) = J^7*(ί, X)S(t)g(t)dt ,

we obtain

(14)

when λ does not belong to a set Ng of measure zero, with Ng depend-
ent on g. The same is true for a sequence g3 of functions when λ does
not belong to the null set N = UΠ=i Ng . We choose the sequence g5

dense in Df] Cl(J), and then (14) holds*for all g e Dpi CJ(J) if λ 0 N.
We let E(t, X) = 0 for λ e JV, and then (14) holds for all λ. Since S =
C*£, (14) yields

?*(ί, λ)C*(t)[J5(t)Γfir(t) - XB(t)g(t)]dt = 0 ,

or

ί JS7*(ί, λ)C*(ί)[Λ(t)flfr(ί) + A(ί)flr(ί) - XB(t)g(t)]dt = 0 .

Thus the columns of C(t)E(t, X) are weak solutions of (1) on J. It fol-
lows from a well-known theorem on weak solutions of partial differential
equations that the columns of C(t)E(t, X) have locally square-integrable
derivatives with respect to t which are continuous after correction on a
null set for each λ, and that each column is a solution of (1). This
theorem is easily proved using the properties of k(t, s, λ). Since C(t)
is non-singular, the columns of E(t, X) are improper eigenfunctions of (1).

The matrix E depends on the compact subinterval /. Let Ef be
another matrix with the same properties, corresponding to an interval
J ' 3 J. Then

ί [E*(t, X) ~ E'*(t, X)]S(t)g(t)dt - 0

for almost all λ, independent of g e C\{J). It follows that S(t)E(t, X) —
S(t)Ef(t, X) = 0 for λ outside some null set. For λ in this null set we
redefine E(t, X) = E'(t, X) = 0. The columns of E(t, X) - J5"(ί, λ) satisfy
Bu = 0. At the same time, since E and E' are eigenfunctions of (1),
they satisfy Aou

r + An = XBu = 0. By hypothesis (iii) in the definiteness
of (1), E(t,X) = Er(t, X) on J for all λ. By taking a sequence of com-
pact subintervals / tending to /, we can extend E uniquely to a matrix
function defined for t e I and all λ.

If λ0 is an eigenvalue of T, then σ has a jump, which we may
assume to be a jump of 1, at λ0. We choose F = 0 except at λ0, and

= δjk for any fixed index k <£ v(λ0), Then ΐ 7 e L2(σ, v) and
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{U-'F){t) = \ E(t, \)F(\)dσ(\) = E*(t, λ0) ,

the kth. column of E(t, λ0), an element of H. Thus the columns of
E(t,XQ) are proper eigenfunctions of T if λ0 is an eigenvalue of T.

The inversion formulae (11), (12), obtained for functions / in Dτ

which vanish identically outside a compact subinterval J, can be ex-
tended to all functions in Dτ by a standard density argument. They
are valid with the integrals converging to the functions in the norms
of the appropriate Hubert spaces. These formulae give the expansion
of an arbitrary function / 6 Dτ in eigenfunctions of the system of dif-
ferential equations (1). The proof of Theorem 1 is now complete.

To prepare for the next section, we write the expansion formulae
in a different form. Let Φ(t, λ) be a fundamental matrix solution of
(1), with each element analytic in λ for fixed t. The matrix E(t,X)
can be expressed in terms of Φ(t, X) by

(15) E(t, λ) = Φ(t, X)R(X) ,

where R(X) is a matrix with n rows and v(X) columns whose elements
are functions of λ only. With the use of (15), the Parseval equality
(13) takes the form

Il/H2 - f F*(X)F(X)dσ(X)
JR

= \l\f*(t)S(t)Φ(t, \)R(\)dtl[R*(\)Φ*(s, X)S(s)f(s)dsΊdσ(X)

- ( (Vfr(X)R(X)R*(X)(Vf)(X)dσ(X) ,

where

(16) (Vf)(X) = j^*(ί, X)S(t)f(t)dt .

The formula

(17) dρ(X) = R(X)R*(X)dσ(X)

defines a Hermitian positive semi-definite n x n matrix, called a spectral
matrix. Let JEJΓ* be the Hubert space of all complex-valued ^-dimen-
sional vector functions F(X) such that

λ) = ( F*(\)dp(\)F(\)

with inner product
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(F, G) - ( G*(x)dp(x)F(X) .
JR

Then (16) defines a unitary mapping of H onto H* which diagonalizes
T. A straightforward computation gives

(18) (V-ιF)(t) = [ Φ(t, X)dp(X)F(X) .

2 Green's function and the spectral matrix. Let T be a self-adjoint
extension of L as in §1, and let Rλ = (T — X)'\ for ImX φ 0, be the
resolvent of T, a bounded operator in H.

THEOREM 2. There exists an n x n matrix G(t, s, X) defined for
t, s e I, ImX Φ 0, such that

(19) S(t)RJ(t) = J G(ί, s, \)S(8)f(8)ds ,

where J is a compact subinterval of J, ί 6 J, and / e CJ(J). This
matrix G, called the Green's matrix of the operator T, has the follow-
ing properties:

( i ) G is analytic in λ for fixed ί, s and /mλ =£ 0, is continuous in
(t, s) on / x I for fixed λ except on the diagonal t — s

(ii) G(s + 0, s, X) - G(s - 0, s, λ) = £7 for s e /, /mλ =£ 0
(iii) G(ί, 8, λ)S(s) = S(ί)G*(8, ί, λ)
(iv) considered as functions of ί, the columns of G satisfy (1) if

t Φ s
(v) G is uniquely determined by T

(vi) if / € CftI), then S(ί)/(ί) = \G(t, s, X)S(s)(T -

Proof, (cf. [7], p. 14). If / 6 Cl(J), g e C&I), then

(20) [/, fir] = \g*(t)S(t)f(t)dt = [i?λ/, (Γ - λ)flf]

- x)g(t)]*S(t)Rλf(t)dt,

by (6) and the definition of the resolvent. We make use of a matrix
k(t, s, X) as in Lemma 2. Let s0 be any point of J, V a neighbourhood
of s0 whose closure is contained in J, and #F a real scalar function in
C\{J) which is equal to 1 on V. For t e J, s e V, define

(21) p(ί, β) - (Γt - λ)[fc(ί, 8

the subscript ί indicating that the operator is applied to k(t, s, λ)(l — θv(t))
considered as a function of t for fixed s. The result of application of
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an operator to a matrix will be understood as the matrix whose columns
are obtained by applying the operator to the columns of the original
matrix. For fixed s e V, p( , s) vanishes except on a "r ing" contained
in J — V, and the matrix function p(t, s) is continuous on / x V. Con-
sider v(t) = ( P*(s, t)S(s)Rλf(s)ds. If g e Cl(V), then

(22) \g*(t)v(t)dt = 5/*^Q/*( s ' t)S(s)Rλf(s)dsdt

(t)p*(8, t)d

However, if u(s, g) = I k(s, t, X)g(t)dt, then
Jj

( P(s, ί)ff(ί)dί = ( (Γβ - λ)fc(s, t, \)g(t)dt

- [ (Ts - λ)fe(s, ί, X)θv(s)g(t)dt

- ff(8) - (Γ, - X)θv(s)u(s, g) ,

using the properties of k and (21). Substituting in (22),

\y9*(t)v(t)dt - \g*(8)S(8)Rλf(8)d8 - j[(Γβ - λ)^F(s)^(s, gψS(s)Rλf(s)ds

8, g)S(s)f(s)ds

;*(8 > t ,

using (20) and the definition of u(s, g). Since this holds for all g e C\(V)t

we obtain S{t)RJ{t) = ι (ί) + ί θv(s)k*(s, t, X)S(s)f(s)ds for almost all

teV. If ^(s, t, λ) = Λ?p(8, ί), then

= [/, U , ί, λ)] = j^fίβ, ί,

using the definition of the adjoint operator i2*. It is clear that kλ{s, t, X)
is continuous on V x / for fixed λ, /mλ Φ 0, since i2* is the inverse of
a differential operator. Now

S(t)Rλf(t) = ^[fc*(8, t, λ) + ^F(s)fc*(s, t, λ)]S(8)/(s)d8 .

and the definition

(23) G(ί, β, λ) = fc*(β, ί, λ) + 6>F(s)/b*(s, t, λ)
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yields (19). As this can be done for any s0 e J, (19) holds for all t, seJ.
The analogue of this result in [3] is proved incorrectly, as has been
pointed out to the author by Professor M. H. Stone. A correct proof
can be given essentially following the argument used here. The matrix
G depends on the interval J, but is uniquely determined by / . If Jf is
another compact subinterval of J which contains /, and G' is the cor-
responding matrix, it is easy to see that G(t, s, X) = G'{t, s, X) for t,
s e J, ImX Φ 0. Thus, by taking a sequence of compact subintervals J
tending to I, we can extend G uniquely to a matrix function defined
for t, s e I.

The remainder of the proof consists of the verification of the proper-
ties of the Green's matrix. The property (vi) follows immediately from
the definition of the resolvent and (19). Since ϋ?* = i?χ, [Rλf, g] =
[/, Rxg] for any f,ge C\(I). Then

\f{t)S{t)Rλf{t)dt ^

and, using (19), this yields

ί f flr*(ί)[G(ί, β, X)S(s) - S(t)G*(8, t,X)]f(s)dsdt - 0 .

Since this holds for all f,ge CJ(I), we obtain

(24) G(ί, 8, λ)S(s) = S(t)G*(s, t, λ) ,

which is property (iii), for almost all s,t e I. As /cx(s, ί, λ) is continuous,
(23) shows that G(t, s, λ) has the same analytic behaviour as k*(s, t, λ),
in particular the same discontinuity at s = t, and the properties (i) and
(ii) follow from Lemma 2 of §1. In view of the continuity of the
matrices involved, (24) must actually be true for all s,t e I. To prove
(iv), we begin with (vi), written as

S(t)f(t) = ^G(t, 8, λ)C*(s)[Λ(s)-|~ + A(s) -

Cr*(£, 8, λ)l* A>(s) + ^L(S) ~

L e£s

using the definition S = C*5. Application of (5) yields

(25) S(t)f(t) - - J ^ ( A O ( S ) A + A(8)

x G*(ί, s, -

Since (25) is true for all / e CJ(/), the columns of G*(ί, s, λ), considered as
functions of s, satisfy (1) for tΦs. This, together with (24), proves (iv).
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If there were two Green's matrices for ImX Φ 0, their difference would
be continuous everywhere and would be an eigenf unction of the operator
T. As the spectrum of the self-adjoint operator T is real, this is im-
possible, and the Green's matrix is therefore unique. This completes
the proof of Theorem 2.

Now we express the Green's matrix in terms of the fundamental
matrix solution Φ(t,X) of (1) introduced at the end of §1. From the
properties of the Green's matrix, it is easy to deduce that G may be
written

(26) G(t, β, λ) = S(t)Φ(t, λ)P+(λ)0*(s, λ) (s ^ ί)

G(ί, 8, λ) = S(t)Φ(t, \)P-(X)Φ*(8, X) (s ^ t) .

The matrices P + and P~ are analytic in X except possibly on the real
axis, and P~* = P + . We define the matrix P = | ( P + + P"), and then
P is analytic for ImX Φ 0 and Hermitian.

THEOREM 3 (Titchmarsh-Kodaira formula). The Green's matrix G of
T is related to the spectral matrix p associated with the fundamental
matrix solution Φ of (1) by the formula

(27) P(μ) = jJ^(λ)/(λ - μ) ,

where P is as defined above, and (27) is to be taken in the sense that

Pit*) ~ \ dp(X)l(X — μ) is analytic across the real axis on the interval
i-N

(- N, N).

Proof. Let / e Dτ, F = Vf. Then, by (18),

f(t) - ( Φ(t, X)dp(X)F(X) .

Let

u(t) = [ Φ(t, X)dρ(X)F(X)l(X - μ) .

Then

Aou' + Au - μBu = 1 XB(t)Φ(tf X)dρ(X)F(X)l(X - μ)

- \ μB(t)Φ(t, X)dp(X)F(X)l(X - μ) = B(t)f(t) ,
JR

or u = Rμf. Thus

μ(Vu)(X) = μ[φ*(t, X)S(t)u(t)dt = f Φ*(ί, X)C*(t)μB(t)u(t)dt
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= [ Φ*(t, X)C*{t)[AQ{t)u'{t) + A(t)u(t) - μB(t)f(t)]dt

*(ί, λ)C*(ί)[Λ(ίM«) + A(t)u(t)]dt -

- V(Tu)(X)

using (16), u == J?μ/, and the fact that F diagonalizes Γ. Thus
(λ — μ)(Vu)(X) = (F/*)(λ). Applying the Parseval equality to u and /,

fa, /] = ( (F/)*(λ)d/>(λ)(F^)(λ) - ( F*(X)dp(X)F(X)l(X - μ), which is
JR JR

F*(μ)\ I dp(X)l(X — μ) \F(μ) plus a matrix which is analytic unless μ

is real and \μ\ ^ N. On the other hand, S(t)u(t) = ί G(ί, s, μ)S(s)f(s)ds,

and [w,/] = ί f f*(t)G(t, s, μ)S(s)f(s)dsdt, which, using (26), is equal to
F*(μ)P(μ)F(μ) plus an analytic function. Letting / run through a dense
subset of H, which means, that F runs through a dense subset of ZP,

dρ(X)l(X — μ) is analytic unless μ is real
-N

and I μ | ^ JV.
Another form of the Titchmarsh-Kodaira formula is

p(X) = lim lim -i-^l [P(μ + is) — P(μ — iε)]dμ ,
δ-*o+ ε->o+ 2TCI J δ

with /> normalized to be continuous from the right and ρ(0) = 0, and
with the formula interpreted in the same way as (27). The proof is
exactly the same as the corresponding proof in [3], a straightforward
inversion.

3. Boundary conditions. Let DQ be the set of functions f in H
such that Aof

f + Af exists almost everywhere on / and such that (7)
is satisfied for some p in H. Let TQ be the operator in H with domain
Do defined by Tof = p for f e Do, p as in (7). We assume that To has
at least one self-adjoint restriction. Let Rk be the resolvent of some
self-ad joint restriction of To, so that

S(t)RJ(t) = f G(ί, β, X)S(s)f(s)ds ,

for f e H, ImX Φ 0. Then Rκ is a bounded operator for ImX Φ 0, mapp-
ing H into Do, whose adjoint is i?χ. Let ε(λ) be the eigenspace of To

corresponding to the value λ, the set of all solutions in Do of the dif-
ferential system (1).

LEMMA 3. To is a closed operator whose domain consists of all
f e H of the form f = Rλh + w, where h e H,w e ε(λ), for any X with
ImX Φ 0.
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Proof. Since Rλ maps H into A and ε(λ) is containined in Do, it
is clear that every / of this form belongs to A Conversely, suppose
/ e A is given. Let h = Tof - Xf, w = f - Rkh. Then

Tow = TJ - T0Rλh = TJ - XRλh - h = TJ - h - X(h - w) = λw ,

and thus w e ε(λ), while / = Rλh + w. If / is written in this way,
TJ — Xf = Λ. If /fc is a sequence in A such that / = lim/fc and / * =
lim TJh exist, we can write fk = Rλ(TQfk — Xfk) + wk9 and deduce that
w = lim wk exists and belongs to ε(λ). Letting k—> oo, we obtain / =
^λ(/* ~ λ/) + w, which implies / € A and TJ = / * . This proves that
Γo is closed.

Since To is closed and its domain Do is dense in H, TQ has a closed
adjoint Tf whose domain Dt is dense in iϊ . Also, To = Γo** = (Γo*)*.
For any subspace M of H, we let H — M denote the orthogonal com-
plement of M in H.

LEMMA 4. D* consists of all g e Do of the form g = Rλz, where
z e H — ε(λ). T%β operator Γo* is α restriction of To and is closed and
symmetric.

Proof, g* = Γ*gr means

(28) [Γo/, flf] = [/, flr*]

for every / e A By Lemma 3, any f e Do may be written / = Rφ + w,

with h e H,w e ε(λ), and then TJ = Xf + h. Substitution in (28) gives

[Rφ + w, g*] = [Xf + h,g] = [XRφ + Xw + h, g] ,

or

[h, xR*λg + g - #*</*] + [w, λg - g*] = 0

for all h e H,w e ε(λ). Then gf* — λ# = « is orthogonal to ε(λ), or
z e H ~ ε(λ), and βr = i?^(g* — Xg) = i2λa;. Since i?λ maps J ϊ into A, Q
belongs to Do. Thus Df ξΞ= Do. As it is assumed that there exists a
self-ad joint restriction T of To with domain DTf Do^ DT^ Df, and since
T is symmetric, its restriction Tf is also symmetric.

As we have seen in Lemma 1,

of, 9] ~ [/, Tog] = flf*(α)Λ*(α)C(α)/(α) - g*Φ)AΪ(b)C(b)f(b)

for /, fir e A- Here, g*{t)A*{t)C{t)f(t) is a bilinear form in /, g which
is non-degenerate for all t e I and skew-Hermitian. We define

<fg> - g*(a)A*(a)C(a)f(a) - g*{b)A*{b)C{b)f{b) .
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A homogeneous boundary condition is a condition on / e Do of the form
</α> = 0, where a is a fixed function in Do The conditions

(29) </«,> = 0, (i = l, . . . f p )

are said to be linearly independent if the only set of complex numbers
7j, , 7P for which Σ?-i7X/^> == 0 identically in / e A is γx =
- 7 , - 0 . Since [To/, fir] - [/, T*g] - </#> for f e Do, g e Z>0*, it is
easily seen that these boundary conditions are linearly independent if
and only if the functions a19 •• 9a9 are linearly independent (mod D<f).
A set of p linearly independent boundary conditions (29) is said to be
self-ad joint if ζasa^ = 0 for j , k = 1, , p. Two sets of boundary
conditions are said to be equivalent if the sets of functions satisfying
the two sets of conditions are identical.

The assumption that Γo* has a self-adjoint extension is equivalent
to the assumption that the linear spaces ε(i) and ε(— ί) have the same
dimension τ, the defect index of Tf. By exactly the same proof as
that used in [3], originally used in [4], we can obtain the following re-
lation between self-adjoint extensions of T* and boundary conditions.

THEOREM 4. If T is a self-adjoint extension of Tf (or, equival-
ently, restriction of TQ) with domain Dτ, then there exists a self-adjoint
set of T linearly independent boundary conditions such that Dτ is the
set of all f e Do satisfying these conditions. Conversely, corresponding
to a self-ad joint set of τ linearly independent boundary conditions,
there exists a self-adjoint extension T of ϊ7* whose domain Dτ is the
set of all f e Do satisfying these boundary conditions.

4. Examples* The results of this paper include as a special case
the corresponding results for a single differential equation of arbitrary
order as obtained in [3], For simplicity, we consider only equations of
even order with real coefficients. Let L and M be formally self-ad joint
linear differential operators of orders 2r and 2s respectively (r > s).
Then L and M can be written

where pr-i,qs~i are real functions having continuous derivatives up to
order i on J. We assume p0 Φ 0 on /. It is not difficult to verify, as
suggested in ([5], p. 206, problem 19), that the differential equation Lu =
XMu is equivalent to a system (1). If we let x be the vector with
components (x19 , x2r), with
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understanding zero for any expression q-k, k > 0, we obtain the system

— x'r+s — ( — vu- i = ( — l)sXqoxs

(30)

χ[ — χ2 — 0

^ 2 — ^ 3 = 0

,_x = o

Xγ-l Xγ U

*; - i-iyxjPo = o ,

which is of the form (1), where

T>

- Pr-i

R =

/0 0

\0

D

Q\

" = & >

,Q =

J

Ό -
1

0

.. 0 s

• 0

• 10

• i,

0,

Er denoting the r-dimensional unit matrix, 0r the r-dimensional zero
matrix, and all elements not shown being zero. It is an immediate
consequence of (31) that the system (30) is its own adjoint. The set of
functions D may be regarded as the set of scalar functions with 2r
continuous derivatives on / which vanish identically outside some com-
pact subinterval of J, the condition (7) being no restriction. The norm
is given by
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and to make the problem definite in the sense of §1, we must assume
(—l)*?«-i(ί) S 0(i = 0,1, •••, s). With this restriction, we obtain the
eigenfunction expansion theorem, the existence of the Green's function,
the Titchmarsh-Kodaira formula, and the nature of the boundary con-
ditions as in [3] from the results of this paper.

A problem which has arisen in relativistic quantum mechanics (cf.
[6]) involves the pair of differential equations

(32) x[ = qx{t)x2 + λa?a, x[ = — q%(t)x1 — \x± ,

where qx and q2 are real and continuous o n O ^ K ^ . This is of the

form (1) with Λ - (J J), A - (^ ~q^, B = (_J J). The adjoint sys-

tem is

(33) y[ = q2(t)y2 + Xy2f y[ =

and (32) may be transformed into (33) by y

so that S = (J J). Then | |/ | | a = j^lΛI1 + I

It can be determined that p(X) — ( Q A)

tion of (32), the expansion formulae are

x with C =

, where / = (Λ,/2)

> λ)> ι;(a?, λ)) is a solu

with JP2 not appearing because jO has rank 1. Possibly this approach
can be used to prove the existence of eigenfunction expansions in more
general applications, but its usefulness will be limited by the difficulty
in computing the spectral matrix.
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