Pacific Journal of Mathematics

CHARACTERISTIC SUBGROUPS OF MONOMIAL GROUPS

RALPH BOYETT CROUCH

CHARACTERISTIC SUBGROUPS OF MONOMIAL GROUPS

R. B. CROUCH

1. Introduction. Let U be a set, $o(U) = B = \lambda'_u$, $u \ge 0$, where o(U) means the number of elements of U. Let H be a fixed group. A monomial substitution y is a transformation that maps every x of U in a one-to-one fashion into an x of U multiplied on the left by an element h_x of H. Multiplication of substitutions means successive applications. The set of all monomial substitutions forms the monomial group Σ . Ore [5] has studied this group for finite U, and some of his results have been generalized to general U in [2], [3], and [4].

This paper determines the structure of the characteristic subgroups for the case when U is infinite in the cases where normal subgroups and automorphisms are known. The method used makes clear how corresponding theorems for the case where U is finite might be proved but does not list these results.

2. Definitions and preliminaries. Let d be the cardinal of the integers. Let B be an infinite cardinal; B^+ , the successor of B; U, a set such that o(U) = B; and C such that $d \le C \le B^+$. Let H be a fixed group and e the identity of H. Denote by $\Sigma = \Sigma(H; B, d, C)$ the monomial group of U over H whose elements are of the form

$$y = \begin{pmatrix} \cdots, & x_{\varepsilon}, & \cdots \\ \cdots, h_{\varepsilon} x_{i_{\varepsilon}}, & \cdots \end{pmatrix}$$

where only a finite number of the h_{ε} are not e and the number of x not mapped into themselves is less than C. Any element of Σ may be written in the form

$$y = \begin{pmatrix} \cdots, & x_{\varepsilon}, & \cdots \\ \cdots, & h_{\varepsilon}x_{\varepsilon}, & \cdots \end{pmatrix} \begin{pmatrix} \cdots, & x_{\varepsilon}, & \cdots \\ \cdots, & ex_{t_{\varepsilon}}, & \cdots \end{pmatrix}$$

or y = vs where v sends every x into itself and every h of s is e. Elements of the form of

$$v = \left(egin{array}{ccc} \cdots, & x_{arepsilon}, & \cdots \ \cdots, & h_{arepsilon}x_{arepsilon}, & \cdots \end{array}
ight) = \left[\cdots, h_{arepsilon}, & \cdots
ight]$$

are multiplications and all such elements form a normal subgroup, the basis groups V(B, d) = V of Σ . The h_{ε} of y are called the factors of y. Elements of the form of s are permutations and all such elements form a subgroup, the permutation group, S(B, C) = S of $\Sigma(H; B, d, C)$. Cycles

Received March 6, 1959.

of s will also be written as (x_1, \dots, x_n) and $(\dots, x_{-1}, x_0, x_1, \dots)$. Baer [1] has shown that the normal subgroups of S(B, C) are the alternating group, A=A(B, d), and S(B, D) where $d \leq D \leq C$. Let E be the identity of Σ , I the identity of S.

3. Characteristic subgroups of $\Sigma(H; B, d, C)$, $d \leq C < B^+$. The normal subgroups of $\Sigma(H; B, d, C)$ are known [2], [3]. They are classified first as to whether or not they are contained in the basis group V.

If N is normal in Σ and $N \subset V$ its elements are multiplications with only a finite number of non-identity factors which are contained in a normal subgroup G of H. The set of all possible products of factors of all elements of N form a normal subgroup G_1 of H. The group G/G_1 is Abelian and G/G_1 is in the center of H/G_1 .

If M is normal in Σ and $M \not\subset V$ then $M \cap S = P \neq E$ is a normal subgroup of S. The group $N = M \cap V$ is as above except that G = H. It becomes necessary to consider the cases where P = S(B, D) with $d \leq D \leq C$ and P = A(B, d). When P = S(B, D) then $M = N \cup P$.

If M is normal in Σ , $M \not\subset V$, P = A(B, d), $M \cap V = N$, $M/N \cong A(B, d)$ then $M = N \cup A(B, d)$.

If M is normal in Σ , $M \not\subset V$, P = A(B, d), $M \cap V = N$, $M/N \not\cong A(B, d)$ then $M = N \cup A(B, d) \cup L$ where L is the cyclic group generated by [e, a](1, 2) with $a^2 \in G_1$, $a \notin G_2$.

The converses of these theorems are true. That is, if one starts with the proper subgroups of H and constructs N or M as above the resulting group is normal in Σ .

The automorphisms of $\Sigma(H; B, d, C)$ are known [4]. A mapping θ is an automorphism of $\Sigma(H; B, d, C)$ if and only if $\theta = T^+I_{(s^+)}I_{(v^+)}$ where T^+ , $I_{(s^+)}$, $I_{(v^+)}$ are automorphisms of Σ defined as follows. Let T be any automorphism of H. Then

$$yT^+ = vst^+ = [h_1, \cdots, h_s, \cdots]sT^+ = [h_1^T, \cdots, h_s^T, \cdots]s$$
.

Let $s^+ \in S(B, B^+)$. Then $I_{(s^+)}$ is defined by $yI_{(s^+)} = s^+y(s^+)^{-1}$. Let $v^+ \in V(B, B^+)$ if C = d, $v^+ \in V(B, d)$ if d < C then $I_{(v^+)}$ is defined by $yI_{(v^+)} = v^+y(v^+)^{-1}$.

THEOREM 1. If N is a subgroup of $\Sigma(H; B, d, C)$ contained in the basis group then N is characteristic in Σ if and only if N is normal in Σ , (hence is as described above) and G, G_1 are characteristic in H.

Proof. Assume N is characteristic in Σ . Then N is normal in Σ and its structure is known. Choose $\theta = T^+$ with T arbitrary in the automorphism group of H and v arbitrary in N. Then

$$egin{aligned} v heta &= [e,\,\cdots,\,e,\,e,\,g_{i_1},\,e,\,\cdots,\,e,\,g_{i_n},\,e,\,\cdots]\,T^+ \ &= [e,\,\cdots,\,g_{i_1}^{\scriptscriptstyle T},\,e,\,\cdots,\,e,\,g_{i_n}^{\scriptscriptstyle T},\,e,\,\cdots] \;. \end{aligned}$$

The elements $g_{i_1}^T$ must be in G. This shows G is characteristic in H. Furthermore $g_{i_1}^T g_{i_2}^T \cdots g_{i_n}^T = (g_{i_1} \cdots g_{i_n})^T$ must be in G_1 and since $g_{i_1} \cdots g_{i_n}$ is arbitrary in G_1 , G_1 is characteristic in H.

Conversely, if $N \subset V(B,d)$, N is normal in Σ , G, G_1 are characteristic in H then N is characteristic in Σ . To see this let v_1 be arbitrary in N. Then $v_1\theta = v_1TI_{(s^+)}I_{(v^+)} = v_2I_{(s^+)}I_{(v^+)}$. The non-identity factors of v_2 are in G and their product in G_1 by G, G_1 characteristic in H. Now $v_2I_{(s^+)}I_{(v^+)} = (v^+)(s^+)v_2(s^+)^{-1}(v^+)^{-1}$. The effect of $I_{(s^+)}$ on v_2 is to permute the non-identity factors so $(v^+)(v_3)(v^+)^{-1}$ is now to be considered with v_3 in N. Since G is normal in H in G/G_1 is in the center of H/G_1 , $(v^+)v_3(v^+)^{-1}$ will be in N.

THEOREM 2. Let $M = N \cup P$ be a normal subgroup of $\Sigma(H; B, d, C)$, $d \leq C < B^+$, where N is as described above, P = S(B, D). Then M is characteristic in Σ if and only if G_1 is characteristic in H.

Proof. By an argument similar to that used in Theorem 1, G_1 is characteristic in H.

Conversely, if $y = v_1 s_1$ is arbitrary in M then

$$v_{\scriptscriptstyle 1} s_{\scriptscriptstyle 1} \theta = v_{\scriptscriptstyle 1} s_{\scriptscriptstyle 1} T^{\,\scriptscriptstyle +} I_{(s^{\,\scriptscriptstyle +})} I_{(v^{\,\scriptscriptstyle +})} = v_{\scriptscriptstyle 2} s_{\scriptscriptstyle 1} I_{(s^{\,\scriptscriptstyle +})} I_{(v^{\,\scriptscriptstyle +})} \;.$$

Since G_1 is characteristic in H, v_2 belongs to N. Now consider

$$(v^+)(s^+)v_2s_1(s^+)^{-1}(v^+)^{-1} = (v^+)v_3(s^+)s_1(s^+)^{-1}(v^+)^{-1} = (v^+)v_3s_2(v^+)^{-1}.$$

The multiplication v_3 is in N since the factors are still in H, and the product of the factors is still in G_1 since H/G_1 is Abelian. The permutation s_2 is in P since P is normal in $S(B, B^+)$. It is now convenient to consider two cases. If C=d the permutation s_2 is finite and $(v^+)v_3s_2(v^+)^{-1}=(v^+)v_3v_4s_2$ where the factors of v_4 differ from the inverse of those $\operatorname{in}(v^+)$ in only a finite number of places. Therefore $(v^+)v_3v_4$ will have a finite number of factors of the form $k_2h_ck_1^{-1}$. If $k_2 \neq k_{i_2}$ then $k_{i_2}h_{i_2}k_{\alpha}$, $k_{i_2}\neq k_{\alpha}$, will be a factor of $(v)v_3v_4$. Since H/G_1 is Abelian the product of the factors is in G_1 . Therefore, $(v^+)v_3v_4s_2=v_5s_2$ belongs to M. If C>d then (v^+) , v_4 have only a finite number of non-identity factors and the same argument holds. Therefore $(v^+)v_3v_4s_2$ belongs to M.

THEOREM 3. Let $M = N \cup A(B, d)$ be a normal subgroup of $\Sigma(H; B, d, C)$, $d \leq C < B^+$. Then M is characteristic in Σ if and only if G_1 is characteristic in H.

Proof. The argument used in the proof of Theorem 1 may be used to show that G_1 is characteristic in H if M is characteristic in Σ .

Conversely, if $y = v_1 s_1$ is arbitrary in M then

$$y\theta = v_1 s_1 \theta = v_1 s_1 T^+ I_{(s^+)} I_{(v^+)} = v_2 s_1 I_{(s^+)} I_{(v^+)} = (v^+) (s^+) v_2 s_1 (s^+)^{-1} (v^+)^{-1}$$

$$= (v^+) v_3 (s^+) s_1 (s^+)^{-1} (v^+)^{-1} = (v^+) v_3 s_2 (v^+)^{-1} = (v^+) v_3 v_4 s_2.$$

Now $v_2 \in N$ by G_1 characteristic in H and v_3 will be in N by H/G_1 Abelian. Since A(B,d) is normal in $S(B,B^+)$, s_2 belongs to A(B,d). The factors of v_4 differ from the inverse of those in v in only a finite number of places since s_2 moves only a finite number of x. Therefore, $(v^+)v_3v_4 \in N$, $s_2 \in A(B,d)$ and M is characteristic in Σ .

THEOREM 4. Let $M_1 = N \cup A \cup L$ be a normal subgroup of $\Sigma(H; B, d, C)$, $d \leq C < B^+$. Let L be generated by y = [e, a](1, 2) with $a^2 \in G_1$, $a \notin G_1$. Then M_1 is characteristic in Σ if and only if G_1 is characteristic in H, and A^T belongs to the coset A_1 for all automorphisms A_2 of A_3 .

Proof. By considering $v \in N$ and $\theta = T^+$ we see that G_1 is characteristic in H. By considering y = [e, a] (1, 2) of M_1 and $\theta = T^+$ we see that $[e, a^T]$ (1, 2) must belong to M_1 . This means a^T belongs to aG.

Conversely, if $v_1s_1 \in M_1$ then

$$v_1 s_1 \theta = v_1 s_1 T^+ I_{(s^+)} I_{(v^+)} = v_2 s_1 I_{(s^+)} I_{(v^+)} = (v^+) (s^+) v_2 s_1 (s^+)^{-1} (v^+)^{-1}$$
$$= (v^+) v_3 (s^+) s_1 (s^+)^{-1} (v^+)^{-1} = (v^+) v_3 s_2 (v^+)^{-1} = (v^+) v_3 v_4 s_2 .$$

Now v_2s_1 is in M_1 by G_1 characteristic if the product of the factors of v_1 is in G_1 and by a^T in aG_1 if the product of the factors is in aG_1 . The multiplication v_3 has only a finite number of non-identity factors because v_2 has only a finite number of non-identity factors. Since s_1 is finite, s_2 is a finite permutation and is even or odd as s_1 is even or odd. Therefore, v_4 has only a finite number of factors different from the inverse of the factors of (v^+) . The factors of $(v^+)v_3v_4$ have their product in G_1 or aG_1 according as v_3 has its product in G_1 or aG_1 . Therefore, if s_1 was even s_2 is even, v_1 had the product of its factors in G_1 and so does $(v^+)v_3v_4$. If s_1 was odd so is s_2 and v_1 had the product of its factors in aG_1 and so does $(v^+)v_3v_4$. That is, M_1 is characteristic.

4. Characteristic subgroups of $\Sigma_A(H; B, d, d)$. The normal subgroups of $\Sigma_A(H; B, d, d)$ are precisely those of $\Sigma(H; B, d, d)$ that are contained in $\Sigma_A(H; B, d, d)$ [2, p. 210]. The automorphism of $\Sigma_A(H; B, d, d)$ are those of $\Sigma(H; B, d, d)$ restricted to $\Sigma(H; B, d, d)$ [4, p. 84].

THEOREM 5. Let N be a subgroup of $\Sigma_A(H; B, d, d)$ contained in the basis group. Then N is characteristic in Σ_A if and only if N is normal in Σ_A and G, G_1 are characteristic in H.

THEOREM 6. Let M be a subgroup of $\Sigma_A(H; B, d, d)$, $M \not\subset V(B, d)$. Then M is characteristic in Σ_A if and only if M is normal, i.e. $M = N \cup A$, and G_1 is characteristic in H.

BIBLIOGRAPHY

- 1. R. Baer, Die Kompositionsreihe der Gruppe aller einendeutigen Abbildungen einer unendlichen Menge auf sich, Studia Mathematica, **5** (1934), 15-17.
- 2. R. B. Crouch, Monomial Groups, Trans. Amer. Math. Soc., 80 (1955), 187-215.
- 3. R. B. Crouch and W. R. Scott, Normal subgroups of monomial groups, Proc. Amer. Math. Soc., 8, No. 5 (1957), 931-936.
- 4. C. V. Holmes, *Contributions to the Theory of Groups*, Research Grant NSF-G 1126, Report No. 5, Feb., (1956), 23-93.
- 5. O. Ore, Theory of monomial groups, Trans. Amer. Math. Soc., 51 (1942), 15-64.

NEW MEXICO STATE UNIVERSITY UNIVERSITY PARK, NEW MEXICO

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. Brownell

Jniversity of Washington Seattle 5, Washington

A. L. WHITEMAN

University of Southern California Los Angeles 7. California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACHE. HEWITTM. OHTSUKAE. SPANIERF. M. CHERRYA. HORNH. L. ROYDENE. G. STRAUSD. DERRYL. NACHBINM. M. SCHIFFERF. WOLF

SUPPORTING INSTITUTIONS

JNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
JNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
JNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
DREGON STATE COLLEGE
JNIVERSITY OF OREGON
DSAKA UNIVERSITY
JNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Printed in Japan by Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), Tokyo, Japan

Pacific Journal of Mathematics

Vol. 10, No. 1 September, 1960

Richard Arens, Extensions of Banach algebras	1
Fred Guenther Brauer, Spectral theory for linear systems of differential	
equations	17
Herbert Busemann and Ernst Gabor Straus, Area and normality	35
J. H. Case and Richard Eliot Chamberlin, <i>Characterizations of tree-like</i>	
continua	73
Ralph Boyett Crouch, <i>Characteristic subgroups of monomial groups</i>	85
Richard J. Driscoll, Existence theorems for certain classes of two-point	
boundary problems by variational methods	91
A. M. Duguid, A class of hyper-FC-groups	117
Adriano Mario Garsia, The calculation of conformal parameters for some	
imbedded Riemann surfaces	121
Irving Leonard Glicksberg, Homomorphisms of certain algebras of	
measures	167
Branko Grünbaum, Some applications of expansion constants	193
John Hilzman, Error bounds for an approximate solution to the Volterra	
integral equation	203
Charles Ray Hobby, <i>The Frattini subgroup of a p-group</i>	209
Milton Lees, von Newmann difference approximation to hyperbolic	
equations	213
Azriel Lévy, Axiom schemata of strong infinity in axiomatic set theory	223
Benjamin Muckenhoupt, On certain singular integrals	239
Kotaro Oikawa, On the stability of boundary components	263
J. Marshall Osborn, <i>Loops with the weak inverse property</i>	295
Paulo Ribenboim, <i>Un théorème de réalisation de groupes</i> réticulés	305
Daniel Saltz, An inversion theorem for Laplace-Stieltjes transforms	309
Berthold Schweizer and Abe Sklar, Statistical metric spaces	313
Morris Weisfeld, On derivations in division rings	335
Rartram Vood Faithful * representations of normed alachres	3/15