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1. Introduction. An element g of an arbitrary group G is called an
FC element if it has a finite number of conjugates in G. The set of
all FC elements of G forms a characteristic subgroup H of G (see Baer
{1]). The upper FC-series of G, introduced by Haimo [4] as the F'C-
chain, may be defined by

H, = {1},
H,./H, = HGIH,) ,

the subgroup of all FC elements of G/H;. The upper FC-series is
continued transfinitely in the usual way, by defining

Hw:UHﬁ s

B<a

when « is a limit ordinal. If H, =G, but H; + G, for all 8§ <v, we
say that the group G is hyper-FC of FC-class v, following McLain [7].
A group G in which the transfinite upper central series

M} =Z, < Z, < oo K Zy< vee

reaches the whole group is called a Z A-group (Kurosh [6]), and we may
say that G has class a if Z, = G, but Z, # G, for all 8 < a. Glushkov
[3] and MecLain [7] have given constructions for a Z A-group of any given
class. The main objeet of this note is to construct groups of given
FC-class.

2. Constructions and proofs.

DEFINITION. We say that a group G is of type @, if
1. @ has F(C-class a, with upper FC-geries
{1} :H0£H1£“’ SHw:G,

2. H,.[H, is infinite, for all v <a, and

8. H,./H, has the unit subgroup for its centre, for all vy < a.

Thus the group with only one element is of type @, and, in
constructing a group G of type Q,, we may assume the existence of a
group Gg of type Qg for each B <a. If a is a limit ordinal, we
define G to be the ordinary (restricted) direct product of the groups Gg,

for all 8 < a@. Then G has the properties 1 — 3, and thus has type Q..
For the case @« = B + 1 we shall construct G by ‘wreathing’ the regular
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representation of G, with a certain kind of infinite centreless F'C-group
of permutations of the positive integers. (For convenience, we say that
a group is centreless if its centre consists of the unit element alone.)

DEFINITION. A faithful representation of a group G by permuta-
tions of the positive integers will be called a special representation of
G if

(i) the stabiliser of each integer has finite index in G and

(ii) the intersection of the stabilisers of the elements of any set

of all but a finite number of these integers is the unit subgroup.

DEFINITION. An infinite centreless FC-group possessing a special
representation will be called a group of type F.

To construct an example of a group of type F, let D = B, X B, X +«+
be the ordinary direct product of an infinite sequence of finite centreless
groups B;, 1 =1,2, ---. Let D, = B,,; X B,., X +--, let k, be the order
of D/D, and let the elements of D/D,, in an arbitrary order, be

X?L’Lr Xg; "'!in-

For each element ge D and each » =1, 2, ..., define the permutation
7,, of the integers 1, 2, ..., k, by the rule

Q) Ty(t) = J when gX7% = X7.

Now, for each g € G, define the permutation 7, of the positive integers
by the rule

@ mi+ 2 k) = 7l + Sk,

forallv=1, 2,.--,k,, and n =1, 2, ---. The systems of transitivity
in this permutation representation of D are the sets T, of integers m
such that >72ik, <m < D% ki, for n =1, 2,---. If m e T,, then
the subgroup D, of D is contained in the stabiliser of m. Hence the
stabiliser in D of each positive integer has finite index in D. On the
other hand, suppose g is in the stabiliser in D of all but a finite number
of the positive integers. Then there is a number n, such that g is in
the stabiliser of each integer of each system 7T, with n > =, So if
1 is any integer in the range 1 <7< k,, n > mn, we know that g is
in the stabiliser of 7 + >}7-1 k,, and this means that ¢X? = X?. Thus
g € D,. But the subgroups D,, with n > n, intersect in the unit
subgroup of D. So g =1. We observe also that the permutation
representation of D defined by (1) and (2) is faithful. Thus we have
a special representation of the infinite centreless FC-group D, which
is therefore a group of type F.

LEMMA. If Gy is a group of type Qg and J is a group of type F,
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then a group G formed by wreathing the regular representation of Gg
with a special representation R of J is a group of type Q..

Proof. The wreath group G may be regarded as a semi-direct
product

G=KE, KnNnE=1,

where K = [[,2, A, is the direct product of a sequence of groups, each
isomorphic to G, and FE is isomorphic to J. The automorphisms of K
induced by elements of E permute the subgroups 4,, i=1, 2, .--,
realizing the special representation R of J ~ E. Associated with G is
a set of isomorphisms 6,,, 7, g =1, 2, --- such that 6,,(4;) = A4,, and
if ae A, ge F and g'A,g=A, then g-lag =6,(a). 6, is the
identity automorphism, for all <. (A brief general description of wreath
groups, and further references, may be found in Hall [5].)

Let C, be the set of all elements g in E such that ¢7'4,9 = A,.
Then C, is the centraliser in F of each element of A4;. Since the
representation R is special, the subgroup C,; of E has finite index in &,
for each 7, and the unit element is the only element of K common to
all the subgroups of any set of all but a finite number of the C’s.

For all v < 8, put H, = H(K), the vth term of the upper FC-
series of K. If possible, let 7 + 1 be the least such ordinal for which
H,.(G) + H,,,. Now any element k of K can be written as the product
of a finite number of elements a, € Ay, v=1, 2,-e0,m, and the
subgroup C(k) = N, C;, has finite index in E. But C(k) is contained
in the centraliser of k£ in FE, so g~'kg, with g € K, is finite valued.
Hence

H7+1(G) N K = H7+1-

Suppose kg € H,..(G), where k ¢ Kand ge E, g+ 1. Let o+ 1 be
the least ordinal in the range 74+ 1< o+ 1< A such that kt e H,.,,.
Now H, is a characteristic subgroup of K, and hence is normal in G,
and both kH, and kgH, are FC elements of G/H,. Hence gH, is FC
in G/H,.

We can choose an infinite sequence of distinct positive integers,
My sy +++, such that g—* A%_ g+ A,%, for all 2 =1, 2, ..., for otherwise
g would belong to all but a finite number of the C’s. Moreover, since
C, has finite index in E, for each ¢, we can choose the sequence y,,
My =+« s0 that distinet terms belong to distinct systems of transitivity
in the representation R of E. By relabelling the subgroups A4;, 7 =1,
2, ---, we may arrange that the sequence p, £, -++ is just the sequ-
ence of odd positive integers. So if » is any odd positive integer,
and ¢g*A, 9 =A;, then % is even. Since ¢ < B3, we can choose
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a, € A, — H(A,), for n=1, 3, ---. Let a; =¢-'a,g, and define

_ -1
Crn = g7 g% = a; ay, n=1 3, ---.
Then
aQ, a -1
€h' Cn=(9")g™ =07 ;0 Ay, .

If n+#m, the four integers =, #, m and m are all distinct and thus
(g“) " g°n ¢ H,. Thus gH, is not FC in G/H,, contrary to what we
have already proved.

It follows that the upper F'C-geries of G is

(1} =H,<H<-.-<H=K<G,

for G/K ~ E ~ J, and J is an FC-group. Moreover J is infinite and
centreless, and the factors H,.,/H, are infinite and centreless, for all
v < B, since Gg is a group of type Qg and K is a direct product of
groups isomorphic with Gz. Thus G is a group of type @Q.,, as required.

We have now shown how to construct a group of type @,, given
groups of type @ for all 8 < a, whether « is a limit ordinal or not.
So, by transfinite induction, we have:

THEOREM. There exist groups of type Q., for any ordinal a.

I should like to express my thanks to Prof. P. Hall of Kings
College, Cambridge, who suggested the topic of this paper to me while
I was studying under his direction.
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