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In 1945 Michal [2] obtained several results which he asserted were
useful for approximating the solution to the Volterra integral equation.
These results were concerned with certain equations in Frechet differenti-
als having as their unique solutions the resolvent kernel and the exact
solution to the Volterra integral equation of the second kind. Michal
treated the resolvent kernel S[K\x,t] and the solution y[K\x] as func-
tions1 of the given kernel K(x, t), the setting being the Banach spaces

T — {G(x, t) I G(x, t) is real and continuous on a < t < x < 6}

and

I = {g(x) I g(x) is real and continuous on a < x < b}

with the norms

• jx ||G(α, t) || = max I G(a?,t) I (α < t < x <b) ,

I) g(x) || Ξ= max | g(x) | (a < x b)

respectively. In another work [3, pp. 16-17] Michal showed that the
solution y[K\x] can be expressed by a Taylor-type expansion in Frechet
differentials of y[K\ x] about an arbitrary K0(x, t) from T. In this paper
we shall use MichaΓs results to obtain approximations to the solution of
the Volterra integral equation with error bounds.

I wish to thank Professor A. T. Lonseth for suggesting this course
of investgation and the Referee for recommendations which have im-
proved this paper.

Consider the integral equation

(2) y(x)+ \XK(x,t)y(t)dt=f(x)

where K(x> t) is in T and f(x) is in /. It is known that the exact solu-
tion to (2) is given by

(3) y(χ)=f(χ)+\xS(x,t)f(t)dt
Ja

Received January 15, 1959, and in revised form March 30, 1959. This work was par-
tially supported by the Office"of Ordnance Research, U.S. Army, under contract with Oregon
State College.

1 The symbols S[K \ x, t] and y[K \ x] were used to indicate the functional dependence
of S(x, t) and y(x) on K(x, t).
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where the resolvent kernel S(x, t) is in T. Let KQ(x, t) from T be ano-
ther kernel such that SQ(x, ί), the resolvent of K0(x, ί), is known and
that ||&(&, ί ) | | = \\K(x,t) - K0(x,t)\\ is small in the sense of (1). Then
by (3) the solution to (2) with kernel K0(x91) is

( 4 ) yo(x) = f{x) + [X Six, t)f{t)dt .
Jα

Now treat y(x) as a function of the kernel K{x, t). The first Frechet
differential dy(x) of y(x) with increment h(x, t) (applied to K{x, t)) is

dy(x) = - ( T * ( α , t) + Γ s ( # , z)ft(z, t)dz\y(t)dt

[2, p. 253], In particular, the Frechet differential of y(x) evaluated at
K0(x, t) with increment h(x, t) — K(x, t) — K0(x, t) will be

( 5 ) dyo(x) = - Γ Wx> *)

Furthermore, by Theorem 2 of [2] the differential system

idyo(x) - -

[Vo(x) = f(x) (K0(x, t) = 0)

has a unique solution which is given by (4). Thus a first order approxi-
mation to the solution y(x) of (2) will be

yo(x) + dyo(x) .

The exact solution to (2) is given by the Taylor expansion [3; 1.
p. 112]

( 6 )

where, in terms of composition powers2,

( 7 ) d%(x) = ( - i y j ! [h + SQh]j * Vo .

Thus knowledge of the higher order differentials will allow closer approxi-
mations to y(x).

We now take up the problem of establishing error bounds for any
order of approximation to y(x) from (6). If Aj(j = 1,2, •••,%) is in T
and g is in /, and

(x, z)W(z, t)dz, W* = Γ W(x, z)W(z, t)dzy W
n = I W(x, z)Wn'\zt t)dz, and

Wn * g = I Wn{x, t)g{t)dt
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A = A±A2 An = ] j ] 1 J^~2 Λ(α, ^i)A(^ z*)

4,(3,,-!, ίjrf^.x dzλ,

it is seen that

I h — n \n-1 n

( 8 ) H A H < '* α ' n i l 4 i i

(w — 1)! j-i

and

(9) l l A » g | | £ l l g " ' 6 - g Γ π | | Λ J | l .

Let P«-<.i[λ(Sofe)] denote the sum of terms obtained from the com-
position h^iSJi)1 by a permutation on the n places occupied by

hh h{SQh)(Soh) (Spfe) - hn^(SQhY .
re-ί i

For example, by setting

and

P.AHSM = ft(S0/t)2 + (Soh)h(SJι)

we can write with brevity

[Λ + SM = h + PMSJi)] + P

Now let

e = \ \ h { x , t ) \ l m = \\yjix)\\, B = \\S^x,t)\\, a n d M = | 6 - α | .

Then from (7), (8), (9), and the mechanics of composition we obtain

|| (n l)-Wyo(x) || = || (-1) [Λ + S.Λ]" * y01|
*y0 + (Soh)n*v,\

\\h«*y91| + | |P^ 1 Λ [h(SM *y, \\ + + || (S0/ι)M *y 0 1 |
mc"un , (n\ mcnuni7lB ^ (n \ mcnu2n

(2»)!

(n
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Thus transposing the desired nth order approximation to y{x) from
the right side of (6) to the left side and applying (10) we get

\\y(x) - yo(x) - Σ 4 τ d%(x)\\ = 11 Σ 4r

(11) < Σ m(jl)-ψ

where θ = cu[l + uB], For small values of θ we readily discern the
asymptotic relation

(12) \\y(x) - yo(x) - Σ^d^oWll = 0(0*) .
II J = I ^ ! II

A simple numerical example will be given next.
Consider the Volterra equation

(13) y(x) + — xt[3 + x3 - t3]y(t)dt = x exp
3 Jo

where K{x, t) = l/3a?ί[3 + x3 - t3] is in T, f(x) = x exp [l/3#3] is in I and
a = 0, b = 1. Take ϋΓ0(α, ί) = α?ί exp [l/3(α;3 - ί3)]. The resolvent kernel
for K0(x, t) is S0(x, t) — —xt. By (4) the solution to (13) with kernel
KQ(x, t) is

(14) yQ(x) = a? exp [l/3#3] + \ — α?ί2 exp [l/3ί3]dί = x .
Jo

By virtue of (5), the Frechet difFerential of y(x) evaluated at K0(x, t)
with increment

h(x, t) = K(x, t) - K0(x, t) = — a;ί[3 + OJ3 - ί3] - a ί exp
3

is

dyo(x) = — I i — xt(3 + xd — £3 — 3) exp [l/3(α;3 — t3)]
Jo I 3

(15) + \X - xz(~zt(3 + z% - tz - 3) exp [l/3(z3 - ts)l W«Udί
J t \ 3

162

Thus a first order approximation to y(x) will be
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(16) y(χ)^X + j£L

It is easily established that

|| h(x, t) || < 0.04, || S0(x, t) || = 1, || yQ(x) || = 1 .

Hence, with θ = 0.08, it follows from (11) that

(17) || y(x) - yo(x) - dyo(x) \\ < 0.0033 .
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