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The Frattini subgroup Φ(G) of a group G is defined as the inter-
section of all maximal subgroups of G. It is well known that some
groups cannot be the Frattini subgroup of any group. Gaschϋtz [3, Satz
11] has given a necessary condition for a group H to be the Frattini
subgroup of a group G in terms of the automorphism group of H. We
shall show that two theorems of Burnside [2] limiting the groups which
can be the derived group of a p-group have analogues that limit the
groups which can be Frattini subgroups of p-groups.

We first state the two theorems of Burnside.

THEOREM A. A non-abelian group whose center is cyclic cannot be
the derived group of a p-group.

THEOREM B. A non-abelian group, the index of whose derived group
is p2, cannot be the derived group of a p-group.

We shall prove the following analogues of the theorems of Burnside.

THEOREM 1. If H is a non-abelian group whose center is cyclic,
then H cannot be the Frattini subgroup Φ(G) of any p-group G.

THEOREM 2. A non-abelian group H, the index of whose derived
group is p2, cannot be the Frattini subgroup Φ(G) of any p-group G.

We shall require four lemmas, the first two of which are due to
Blackburn and Gaschϋtz, respectively.

LEMMA 1. [1, Lemma 1] IfNisa normal subgroup of the p-group
G such that the order of N is p2, then the centralizer of N in G has
index at most p in G.

LEMMA 2. [3, Satz 2] If H = Φ(G) for a p-group G and N is a sub-
group of H that is normal in G, then Φ{GjN) = Φ{G)jN.

LEMMA 3. IfN= {a} x {b} is a subgroup of order p3 normal in
the p-group G such that N is contained in Φ(G), and if {a} is a group
of order p2 in the center of Φ(G), then N is in the center of Φ(G).

Proof. N normal in G implies that N contains a group C of order
p which is in the center of G. If C is not contained in {a} the proof

Received March 18, 1959.

209



210 CHARLES HOBBY

is trivial, hence we may assume C = {ap}. Since an element of order
p in a p-group cannot be conjugate to a power of itself the possible
conjugates of 6 under G are

b,bap, ---,ba(p-υp .

The index of the centralizer of b in G is equal to the number of con-
jugates of b under G, hence is at most p. Thus b is in the center of
Φ(G), and the lemma follows.

LEMMA 4. If H is a non-abelian group of order p3 then there is
no p-group G such that Φ(G) = H.

Proof. If H = Φ(G) for a p-group G, then i ϊ is normal in G and
must contain a group JV of index p which is also normal in G. Then N
is a group of order p2, hence (Lemma 1) the centralizer C of JV in G has
index at most p in G. Therefore C contains H, and ΛΓ is in the center
of H. Since the center of H has order p this is a contradiction, and
the lemma follows.

We can now prove Theorems 1 and 2.

Proof of Theorem 1. We proceed by induction on the order of H.
The theorem is true if H has order p3 (Lemma 4). Suppose H is group
of minimal order for which the theorem is false, and let C of a subgroup
of H of order p which is contained in the center of G. Then (Lemma 2)

Φ(G/C) = Φ{G)IC = H/C .

Thus the induction hypothesis implies that H/C cannot be a non-abelian
group with cyclic center. We consider two cases: H/C is abelian; or,
the center of H/C is non-cyclic.

Case 1. Suppose H/C is abelian. Since H is not abelian, and C has
order p, we conclude that C is the derived group of H. Thus JT/C,
which coincides with its center, is not cyclic, and we are in Case 2.

Case 2. Suppose that the center Z of H/C is non-cyclic. The ele-
ments of order p in Z form a characteristic subgroup P of Z. Since Z
is not cyclic, P is also not cyclic and hence has order at least p\ Thus
we can find subgroups M and N of P which are normal in G/C and have
orders p and p2, respectively, where M is contained in N. Let M and JV
be the subgroups of G which map on M and N. Then M and ΛΓ are
subgroups of H which contain C and are normal in G; M and N have
orders p2 and p3, respectively, and M is contained in iV.

We see from Lemma 1 that the centralizer of M in G has index at
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most p in G, hence M is in the center of H, which is cyclic. Also, N
is abelian since N is contained in H and the index of M in JV is p.
Now N is contained in P, hence is not cyclic. Therefore JV is a non-
cyclic group which (Lemma 3) is in the center of H. Since the center
of H is cyclic this is a contradiction, and the proof is complete.

Proof of Theorem 2. We denote the derived group of a group K
by Kr. Suppose G is a p-group such that Φ(G) = H where Hr Φ {1}
and (H: H') = p2. Let JV be a normal subgroup of G which has index
p in Hf. Then G/N is a p-group such that (Lemma 2)

But (HINY = fΓ'/JV* {1}, and the order of H/N is

(H: N) = ( # : # ' ) ( # ' : N) = p3 .

Thus H/N is a non-abelian group of order p3 which is the Frattini sub-
group of the p-group G/N. This is impossible (Lemma 4) and the theorem
follows.

REMARK 1. The only properties of the Frattini subgroup used in
the proof of Theorems 1 and 2 are the following: Φ(G) is a characteristic
subgroup of G which is contained in every subgroup of index p in G;
and, Φ(G/N) — Φ(G)jN whenever N is normal in G and contained in Φ(G).
Thus if we have a rule ψ which assigns a unique subgroup ψ(G) to
every p-group G, then Theorems 1 and 2 will hold after replacing "the
Frattini subgroup Φ(G)" by "the subgroup ψ(G)" if ψ(G) satisfies the
following conditions.

(1) ψ(G) is a characteristic subgroup of G.
(2) ψ(G) is contained in Φ(G).
(3) ψ(G/N) = ψ(G)IN if iV is normal in G and iV is contained in

ψ(G).
In particular, if ψ(G) — G', the derived group of G, we have the theorems
of Burnside. The proofs are unchanged.

REMARK 2. Blackburn [1] has used Theorem A to characterize the
groups having two generators which are the derived group of a p-group.
Using Theorem 1 it is easy to see that Blackburn's proof establishes the
following

THEOREM 3. IfH= Φ(G) for a p-group G and if H has at most
two generators, then H contains a cyclic normal subgroup N such that
HjN is cyclic.
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