Pacific Journal of Mathematics

THE FRATTINI SUBGROUP OF A p-GROUP

CHARLES RAY HOBBY

Vol. 10, No. 1

September 1960

THE FRATTINI SUBGROUP OF A p-GROUP

CHARLES HOBBY

The Frattini subgroup $\mathcal{P}(G)$ of a group G is defined as the intersection of all maximal subgroups of G. It is well known that some groups cannot be the Frattini subgroup of any group. Gaschütz [3, Satz 11] has given a necessary condition for a group H to be the Frattini subgroup of a group G in terms of the automorphism group of H. We shall show that two theorems of Burnside [2] limiting the groups which can be the derived group of a p-group have analogues that limit the groups which can be Frattini subgroups of p-groups.

We first state the two theorems of Burnside.

THEOREM A. A non-abelian group whose center is cyclic cannot be the derived group of a p-group.

THEOREM B. A non-abelian group, the index of whose derived group is p^2 , cannot be the derived group of a p-group.

We shall prove the following analogues of the theorems of Burnside.

THEOREM 1. If H is a non-abelian group whose center is cyclic, then H cannot be the Frattini subgroup $\Phi(G)$ of any p-group G.

THEOREM 2. A non-abelian group H, the index of whose derived group is p^2 , cannot be the Frattini subgroup $\Phi(G)$ of any p-group G.

We shall require four lemmas, the first two of which are due to Blackburn and Gaschütz, respectively.

LEMMA 1. [1, Lemma 1] If N is a normal subgroup of the p-group G such that the order of N is p^2 , then the centralizer of N in G has index at most p in G.

LEMMA 2. [3, Satz 2] If $H = \Phi(G)$ for a p-group G and N is a subgroup of H that is normal in G, then $\Phi(G/N) = \Phi(G)/N$.

LEMMA 3. If $N = \{a\} \times \{b\}$ is a subgroup of order p^3 normal in the p-group G such that N is contained in $\mathcal{P}(G)$, and if $\{a\}$ is a group of order p^2 in the center of $\mathcal{P}(G)$, then N is in the center of $\mathcal{P}(G)$.

Proof. N normal in G implies that N contains a group C of order p which is in the center of G. If C is not contained in $\{a\}$ the proof

Received March 18, 1959.

is trivial, hence we may assume $C = \{a^p\}$. Since an element of order p in a p-group cannot be conjugate to a power of itself the possible conjugates of b under G are

$$b, ba^p, \cdots, ba^{(p-1)}p$$
.

The index of the centralizer of b in G is equal to the number of conjugates of b under G, hence is at most p. Thus b is in the center of $\Phi(G)$, and the lemma follows.

LEMMA 4. If H is a non-abelian group of order p^3 then there is no p-group G such that $\Phi(G) = H$.

Proof. If $H = \varphi(G)$ for a *p*-group *G*, then *H* is normal in *G* and must contain a group *N* of index *p* which is also normal in *G*. Then *N* is a group of order p^2 , hence (Lemma 1) the centralizer *C* of *N* in *G* has index at most *p* in *G*. Therefore *C* contains *H*, and *N* is in the center of *H*. Since the center of *H* has order *p* this is a contradiction, and the lemma follows.

We can now prove Theorems 1 and 2.

Proof of Theorem 1. We proceed by induction on the order of H. The theorem is true if H has order p^3 (Lemma 4). Suppose H is group of minimal order for which the theorem is false, and let C of a subgroup of H of order p which is contained in the center of G. Then (Lemma 2)

$$\Phi(G/C) = \Phi(G)/C = H/C$$
.

Thus the induction hypothesis implies that H/C cannot be a non-abelian group with cyclic center. We consider two cases: H/C is abelian; or, the center of H/C is non-cyclic.

Case 1. Suppose H/C is abelian. Since H is not abelian, and C has order p, we conclude that C is the derived group of H. Thus H/C, which coincides with its center, is not cyclic, and we are in Case 2.

Case 2. Suppose that the center Z of H/C is non-cyclic. The elements of order p in Z form a characteristic subgroup P of Z. Since Z is not cyclic, P is also not cyclic and hence has order at least p^2 . Thus we can find subgroups \overline{M} and \overline{N} of P which are normal in G/C and have orders p and p^2 , respectively, where \overline{M} is contained in \overline{N} . Let M and N be the subgroups of G which map on \overline{M} and \overline{N} . Then M and N are subgroups of H which contain C and are normal in G; M and N have orders p^2 and p^3 , respectively, and M is contained in N.

We see from Lemma 1 that the centralizer of M in G has index at

most p in G, hence M is in the center of H, which is cyclic. Also, N is abelian since N is contained in H and the index of M in N is p. Now \overline{N} is contained in P, hence is not cyclic. Therefore N is a non-cyclic group which (Lemma 3) is in the center of H. Since the center of H is cyclic this is a contradiction, and the proof is complete.

Proof of Theorem 2. We denote the derived group of a group K by K'. Suppose G is a p-group such that $\mathcal{P}(G) = H$ where $H' \neq \{1\}$ and $(H:H') = p^2$. Let N be a normal subgroup of G which has index p in H'. Then G/N is a p-group such that (Lemma 2)

$$\Phi(G/N) = \Phi(G)/N = H/N.$$

But $(H/N)' = H'/N \neq \{1\}$, and the order of H/N is

$$(H: N) = (H: H')(H': N) = p^3$$
.

Thus H/N is a non-abelian group of order p^3 which is the Frattini subgroup of the *p*-group G/N. This is impossible (Lemma 4) and the theorem follows.

REMARK 1. The only properties of the Frattini subgroup used in the proof of Theorems 1 and 2 are the following: $\mathcal{O}(G)$ is a characteristic subgroup of G which is contained in every subgroup of index p in G; and, $\mathcal{O}(G/N) = \mathcal{O}(G)/N$ whenever N is normal in G and contained in $\mathcal{O}(G)$. Thus if we have a rule ψ which assigns a unique subgroup $\psi(G)$ to every p-group G, then Theorems 1 and 2 will hold after replacing "the Frattini subgroup $\mathcal{O}(G)$ " by "the subgroup $\psi(G)$ " if $\psi(G)$ satisfies the following conditions.

(1) $\psi(G)$ is a characteristic subgroup of G.

(2) $\psi(G)$ is contained in $\Phi(G)$.

(3) $\psi(G/N) = \psi(G)/N$ if N is normal in G and N is contained in $\psi(G)$.

In particular, if $\psi(G) = G'$, the derived group of G, we have the theorems of Burnside. The proofs are unchanged.

REMARK 2. Blackburn [1] has used Theorem A to characterize the groups having two generators which are the derived group of a p-group. Using Theorem 1 it is easy to see that Blackburn's proof establishes the following

THEOREM 3. If $H = \Phi(G)$ for a p-group G and if H has at most two generators, then H contains a cyclic normal subgroup N such that H/N is cyclic.

CHARLES HOBBY

References

1. N. Blackburn, On prime-power groups, Proc. Camb. Phil. Soc. 53 (1957), 19-27.

2. W. Burnside, On some properties of groups whose orders are powers of primes Proc. Lond. Math. Soc. (2) **11** (1912), 225-45.

3. W. Gaschütz, Über die @-Untergruppe endlicher Gruppen. Math. Z. 58 (1953) 160-170.

CALIFORNIA INSTITUTE OF TECHNOLOGY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. BROWNELL

Jniversity of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California Los Angeles 7. California

L. J. Paige

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	E. HEWITT	M. OHTSUKA	E. SPANIER
Γ. M. CHERRY	A. HORN	H. L. ROYDEN	E. G. STRAUS
D. DERRY	L. NACHBIN	M. M. SCHIFFER	F. WOLF

SUPPORTING INSTITUTIONS

JNIVERSITY OF BRITISH COLUMBIASTANFORI2ALIFORNIA INSTITUTE OF TECHNOLOGYUNIVERSITJNIVERSITY OF CALIFORNIAUNIVERSITMONTANA STATE UNIVERSITYWASHING'JNIVERSITY OF NEVADAUNIVERSITNEW MEXICO STATE UNIVERSITY*OREGON STATE COLLEGEAMERICANJNIVERSITY OF OREGONCALIFORNDSAKA UNIVERSITYHUGHES AJNIVERSITY OF SOUTHERN CALIFORNIASPACE TE

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON * * *

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Printed in Japan by Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), Tokyo, Japan

Pacific Journal of MathematicsVol. 10, No. 1September, 1960

Richard Arens, <i>Extensions of Banach algebras</i>	1
Fred Guenther Brauer, Spectral theory for linear systems of differential	
equations	17
Herbert Busemann and Ernst Gabor Straus, Area and normality	35
J. H. Case and Richard Eliot Chamberlin, <i>Characterizations of tree-like</i>	
continua	73
Ralph Boyett Crouch, <i>Characteristic subgroups of monomial groups</i>	85
Richard J. Driscoll, <i>Existence theorems for certain classes of two-point</i>	
boundary problems by variational methods	91
A. M. Duguid, A class of hyper-FC-groups	117
Adriano Mario Garsia, The calculation of conformal parameters for some	
imbedded Riemann surfaces	121
Irving Leonard Glicksberg, Homomorphisms of certain algebras of	
measures	167
Branko Grünbaum, Some applications of expansion constants	193
John Hilzman, Error bounds for an approximate solution to the Volterra	
integral equation	203
Charles Ray Hobby, <i>The Frattini subgroup of a p-group</i>	209
Milton Lees, von Newmann difference approximation to hyperbolic	
equations	213
Azriel Lévy, Axiom schemata of strong infinity in axiomatic set theory	223
Benjamin Muckenhoupt, <i>On certain singular integrals</i>	239
Kotaro Oikawa, On the stability of boundary components	263
J. Marshall Osborn, <i>Loops with the weak inverse property</i>	295
Paulo Ribenboim, Un théorème de réalisation de groupes réticulés	305
Daniel Saltz, An inversion theorem for Laplace-Stieltjes transforms	309
Berthold Schweizer and Abe Sklar, <i>Statistical metric spaces</i>	313
Morris Weisfeld, On derivations in division rings	335
Bertram Yood, <i>Faithful</i> *-representations of normed algebras	345