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ON CERTAIN SINGULAR INTEGRALS

BENJAMIN MUCKENHOUPT

1. Introduction. The purpose of this paper is to consider a modi-
fication of the Hubert transform and the singular integrals treated by
Calderon and Zygmund in [1] and [3], and to use the results to gener-
alize some standard results on fractional integration. In the one dimen-
sional case the Hubert transform of a function f(x) is essentially the

integral \
J-o

~' dt. In the one dimensional case the transform to
t 1 . . 1

be considered will be a convolution with . l l+. • instead of with —.
\t\ Ύ t

Throughout this paper γ will denote a real number not zero. As in the
Hubert transform case there is trouble with the definition; for the
Hubert transform this is solved by taking a Cauchy value at the origin.
The obvious extension of this method was used by Thorin [6] when he
considered a transform of the type

Here and subsequently ε will always be greater than 0 and the limits
in ε will be one sided. In this case, however, obtaining cancellation by
taking a Cauchy value is unnecessary; the kernel already has sufficient

ίL——Ldt will not,
ε t γ

in general, exist, but by using some suitable summation procedure, it
may be given meaning. Starting with two such methods, it is shown
that this transform has the usual singular integral properties. Specifi-
cally, for functions in a Lebesgue Lp class 1 < p < oo, it is shown
that the summation procedure converges in Lp and that the resulting
transformation is bounded in ZΛ For p = 1 substitute results are ob-
tained. Furthermore, for functions in Lp, 1 < p < ™, the summation
procedure is shown to converge point wise almost everywhere.

Carried along simultaneously with the preceding is the n dimension-
al extension of the sort considered by Calderon and Zygmund for the
Hubert transform. In Euclidean n space, En, let x = (xlf x2 xn),
x I = (χ\ + . . . χiyl and dx = dxx dxn. The transforms to be con-

sidered are of the form

B» \t\U*
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240 BENJAMIN MUCKENHOUPT

where Ω(t) = Ω(JTT) is integrable on the unit sphere, and the integral

in the neighborhood of the origin is again defined by a suitable summa-
tion method. In this case, unlike the Calderόn and Zygmund results,
the integral of Ω(t) on the unit sphere need not be zero. Again for
functions in Lp, 1 < p < oo, the summation procedure converges in Lp,
point wise almost everywhere, and the resulting transformation is bounded
in ZΛ Substitute results for L1 including pointwise convergence are
also proved although for some it must be assumed that Ω(t) satisfies a
continuity condition. The method used to obtain all these results is
first to reduce the summation definition to one more closely resembling
the Cauchy value definition of ordinary singular integrals. After this,
lemmas similar to some lemmas in [1] make the methods of [1] and [3]
applicable to these transformations.

In the last section the preceding results and an interpolation theo-
rem of Stein [4] are used to prove the following theorem.

Let p, q, and λ be positive numbers such that 1 < p < q < co and

— = h λ. Let f(x) be in Lp in En and let Ω(t) = ΩI-ΓΓJ) be in Ls,

p q V I £ I /

s = —, on the unit sphere. Then the integral

exists for almost all x and | |D λ (/) | | β < A| |/ | |p where A is independent
off.

For Ω(t) = 1 this is a well known theorem on fractional integrals.
See for example [5]. Substitute results are also obtained for p = 1 and
q =: oo using the proof for the weaker results in [8].

2, Summation. A summation method for the integral lim I f(x) dx
ε-*o Jε

of the form lim I φz{a)da\ f(x) dx is a regular method if
ε-0 Jo Jα

lim I \φz{a)\da = 0 for a > 0, lim \ φz(a) da = 1 and I \φε(a)\da < B .
ε-*o ja ε->o Jo Jo

LEMMA 1. If lim I f(x)dx exists, then any regular method of sum-
ε->0 Jε

mation will give the same limit.
This is a standard fact about these summation methods.

LEMMA 2. If I f{x, y) dy converges in Lp norm to g(x) as e —• 0
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and has a uniformly bounded Lp norm, then any regular summation
method will also converge to g(x) in Lp norm.

\φJa)\da and C a bound for I f(x,y)dy\\ .
o IJJε UP

Then given rj > 0, choose β so that

6B

f or δ < β and 7 so that

and

- 1
3C

provided that ε < 7. The existence of β and 7 follows from the hypo-
theses of the lemma.

II f1 f1 II
If ε < 7, then \\g{x) - \ φ,(a)da\ f(x, y)dy\\

II Jo jcύ UP

51 / ri \

φs(a)( g(x) — I f{xJy)dy)da
β \ ) * J

+ Γ!?>.(«)l|U*) - [f(x,y)dy\\ da
Jβ II J * UP

by use of Minkowski's inequality and Minkowski's integral inequality.

Observing that | |#O)IIP is also less than or equal to C, this last ex-

pression is clearly less than or equal to

η was arbitrary, the lemma follows.

+ j ^ + ~£j2C = r]. Since

* Definitions of the transform* To give meaning to the integral

it may be written as
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where the first integral must be obtained by using a suitable method
of summation. For this purpose logarithmic Abel summation defined by

()
J o ε-*o J o

or logarithmic Cesaro summation defined by

(S)[g(t)dt = lim ί W
Jo ε-»o Jε logε

may be used. Both are regular methods for they may be written as

lim \ φζ(a)da\ g(t)dt
3-K) Jo J Λ

where φs(a) — εa2'1 in the case of logarithmic Abel summation and

f——!— ε < a < 1

' 0 0 < a<ε

for logarithmic Cesaro summation. That these satisfy the necessary
conditions is clear from their forms.

In either case f(x) may be written as

-dtdt
t1+ty

^VfW fW [-/(* - *) dt.t1^ iy Ji t1+iy

By the first lemma the existence of this expression can be shown by
proving the existence of

Therefore, showing the convergence almost everywhere of the expression

Γ V(χ - t) d t

Ji t1 + ίy
o J t • ίj

( 3 Λ )

t1+iy ίy

will imply convergence almost everywhere for the original definition of

f(x). Furthermore, by Lemma 2 the convergence in Lp norm of (3.1)

will imply the convergence in Lp norm of the original definition of
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Convergence in L2 norπu Define

, and let

elsewhere

Λ,β(s) = Γ
J-°

Then the transform of f(x) defined before, f(x) = limlim/yt8(α0 if this
ε—o N-*o°

last limit exists. Now if f(x)εL2, it is possible to take Fourier transforms
and obtain

%y

where g(x) denotes the Fourier transform of g(x).
A 1

LEMMA 3. The expression KN Λx) —:—^- is in absolute value less
tyeιy

than c(y) = C-- ', ,—i- where C is an absolute constant. As M—+co

m
the expression converges to a function Kz(x) except for x = 0. Fur-

thermore, as e—>0,Kζ(x) converges to a function K(x) except for x = 0.
A 1

From its definition KN2(x) -.—Ty is equal to
%ys

N\x\ piίsgnx β-iy

dt — .
t1+ίy iyεiy J ε i x i

Now

(4. i ) Γ'6 $ilTY

g dt = β U s g n ^ 1 + , y Γ + 1 + %Ί Γ-

and

Cb pit sgnx pit sgnx b QQ TΊ γC^

(4.z) \ at :==- -\~ \ •
)a t1+iy —iytiy a y )a

If necessary, split the integral

fJV|»| pit

dt

into two parts, the first with limits less than or equal to one, and the
second with limits greater than or equal to one. Then applying (4.2)
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to the first part and (4.1) to the second part, it is clear that the whole

integral is in absolute value less than C ^ γ ' + * for some absolute con-

stant C.

Using (4.1), it is clear that

A 1 / f l s,it sgnx

lim KN 2(x) - ~J— = I x H i dt + lim

+ lim l

1+ίy sgn x

N\x\

isgnα Ji t2+iy

and the two limits certainly exist. From this and (4.2) it follows that

A Γ / eUs%ΏX λ f1

lim Kζ(x) — lim | x \ίy( — : — - + 1
ε-+o ε^o L \ —iytιy εla l J ε |

pU sgn x

ί sgn x

l

The limit of the integral clearly exists. The lower limit on the first
integrated part and the last term combined give

n i i i \JU\ y — — 7 ^ — j — — — 7 ^ — i n n — — \ v — L) — \) .

It follows that

Λ A / ^gίsgnx Λrtίsgnx Γl

K{x) = l i m Ks(x) = I x \ίy( 1 h I -
β-o V y S g n ί C Jô v

+ l +

pU8gnx

sgnx

COROLLARY 1. If f(x) belongs to L\ then the transformation

2. As ε-0,

fs(x) converges in L2 norm to a function f(x) which also satisfies

/ Λ 1 \ Λ A

The expression lKN>ζ(x)—-.—^)f(x) converges in L2 norm to Kζ(x)f(x)
because the first part of the product converges boundedly. Con-
sequently, taking Fourier transforms, fNt2{x) converges in L2 norm to
fζ(x). Similarly, since Ks(x) f(x) converges in U norm, the Fourier
transform, fz(x), converges in L2 norm to a function f(x). The state-
ments concerning the norms follow immediately from the estimate in
Lemma 3.

For later proofs there is a more convenient form for K{x). Adding
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the identity

0 = - 1^1" +

 l'rAirί'-iseΏX 1

iy

f1

Jo

to (4.3) gives

A
(4.4) ^γ L Jo

ie ίsgn:B sgn x + ±±J1A 1 dt .
i sgn^Ji t2+ιΫ J

Now for |γ | < 1 the expression in brackets is uniformly bounded. This
is obvious for the last two terms. Furthermore,

t~iΊ - 57

0

t'iudn
|logί|

so that the first integral is also uniformly bounded. This leads to the
following.

COROLLARY 2. The transform = lim-M
|t |>3 \t\

\<γ\ < 1, satisfies ||jPy(aj)||2 < A||/(α?)||2 where A is independent of γ and
f. As γ —> 0, Fy(x) converges in L2 to the ordinary Hilbert transform
of f{x).

Fy(x) may be written in the form

lim
t1+ίy

iyε
iy

f(x)

Now observing that

it is clear that

5 -8 βixt CN

-dt ~ \
fii(-x)t

dt,

= -(^W - K(-x))f\x) .
TV \ J

From (4.4) it is clear that Kix) — Ki — x) is bounded uniformly in y
since the unbounded terms cancel. Letting y —»0 in (4.4) then gives

]im(k(x)-K(-x))
γ-»o

cos^= -2 ί sgn #Γlog * cos tdt + 2ί sgn x cos 1 + —f°°_co
Jo ίsgna Ji t

dt
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/ f ̂  sin t \= 2i sgn xί lim I dt ) = πi sgn x .

Therefore,

lim Fy(x) = i/(aj) sgn a? .

The Fourier transform of the Hubert transform of f(x) may be
written as

JLlim lim (I - dt)f(x) = if(x) sgn x .

Thus, the two transforms are the same.

5* The JV dimensional case. Most of the important results for
the n dimensional case can be obtained from one dimensional results
quite simply by the method of rotation which is treated in §8. Rota-
tion methods, however, fail in certain cases, and for these a direct ap-
proach must be used. This will be similar to the one dimensional
methods and is actually just a generalization of them.

In n dimensions the transforms will be of the form

\t\
f(x) = [ fi^jmidt where Ω(t) -

is a function only of angle and is integrable on the unit sphere, Σ.
The part of the integral for which 0 < 11 \ < 1 is obtained by using the
same summation methods as before. The same reasoning shows that
the existence of

(5.1) lim JK*-«w> dt^JΛ±>_\ Ω(t)dσ

where dσ is the element of " a r e a " of the unit sphere, implies the ex-
istence of the original definition. The convergence in norm implies the
convergence in norm of the original definition.

In n dimensions define
rΛ/j.\

e<\t\<N

elsewhere .

LEMMA 4. The expression KNt2(x) — —=— -̂i Ω{t)dσ is in absolute

vvlue less than c(γ) = C '̂ ^ .—M \Ω(t)\dσ where C is an absolute
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constant. As ΛΓ—• <χ> the expression converges to a function Kz{x) except
for x = 0. Furthermore, as ε —+ 0, Ks(x) converges to a function K{x)
except for x — 0.

Let θ be the angle between x and t. Then using polar coordinates

(5.2)
v ' Γ /{N oir\x\ cos0

= iΩvdσ(ίJh^-dr-
The inner expression is the same at the one dimensional Fourier trans-
form except that x has been replaced by |x|cos0. Hence by Lemma

3 it is in absolute value less than C^^\ ,— -̂. The convergence as
MY

N-+00, and ε—>0 follow from this. Applying Holder's inequality then
shows these conclusions hold for the whole expression.

COROLLARY 3. If f(x) belongs to L2, the transform

f{x - t)Ω(t)
>* \t\n+iy

satisfies ||/8(a?)||2 < c(γ)||/(a?)||2. As ε-^>0,fs(x) converges in L2 norm to
a function f(x) which also satisfies ||/(a?)||2 < c(<γ)\\f(x)\\2.

The existence almost everywhere of fz(x) follows from the reason-
ing of [3] p. 292. The result then follows from Lemma 4 in the same
way that Corollary 1 followed from Lemma 3.

COROLLARY 4. If I Ω(t)dσ = 0 and Ω(t) belongs to L log + L on Σ,

then the transform Fy(x) = lim I m»+«? dt for \ γ | < 1 satisfies
^ ε->o J |t|^β I M

||ULγ(αj)||2 < i4.||/(ί»)||2 where A is independent of γ and f. As γ—* 0,
F(x) converges in L2 to the ordinary Calderon and Zygmund singular
integral lim ί /(a - *)fl(<) Λt%

Using the one dimensional formula (4.4) in (5.2) shows that

(5.3) K{x) = \ Ω(t)(~~\χco*θ\iy)dσ + [ Ω(t)H(\x\ cos θ, γ) da

where ΈH\x\ COS61, γ) is uniformly bounded in both arguments. The
first term may be written as

I Ω(t)dσ = 0.since I Ω(t)da = 0. Now
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log I cos θI 1 i\cosθ\iudu
Jo < log

I c o s 6> I

and since Ω(t) belongs to L log+ L on Σ, an application of Young's in-
equality1 shows that the first part of (5.3) is also uniformly bounded.
Convergence follows from the pointwise convergence of the expressions
in the integral signs and the bounded convergence theorem. The first
part converges to 0 and the second part as in Corollary 2 converges to

i πi sgn (cos θ)Ω{t) dσ. That the Fourier transform in the case of the

ordinary singular integral converges to the same value follows by ex-
pressing the transform in polar coordinates and again applying the re-
asoning of Corollary 2.

6, Convergence in norm. Let βf(y) = sup | S | where all sets S

such that I f(x)dx > \S\y are considered. Further, given a function
JS

Ω(x) of the type considered in the last section, let ω(r) be its modulus
of continuity; that is ω(r) = sup | Ω(x) — Ω(y) | where x and y both lie
on the unit sphere and \x — y\ < r.

LEMMA 5. Let f(x) be non negative and belong to Lp, 1 < p < 2,

in En. Let Ω(t) = Ωi-r—r) be such that its modulus of continuity satis-
\ 11\ J

fies I ω(r' dr < oo. Let Ey be the set where

(6Λ) ^ = L w ^ f i x -t)dt - i^lm dσ

exceeds y in absolute value. Then \Ey\ < ^p-\ n[f(x)]2

ydx + c(<γ)βf(y),

y J E

where [f(x)]y = min(f(x), y) and c(y) = —'' y y"— -̂ where C depends

only on Ω.

Note. The primary use of this lemma will be for the one dimen-
sional case where the continuity condition is automatically satisfied and
the constant C is an absolute constant.

This lemma is the same as Lemma 2, Chapter I of [1] except that
the transform

has been replaced by (6.1) and λ by 1/ε. The proof is almost identical,
and therefore will not be repeated. The few minor differences will be

See [7] Vol. I, p.'HΘ.
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mentioned.
When f(x) is split into the two parts g(x) and h(x), the proof for

the one in L2, h(x), is a consequence of Corollary 3. The proof that

satisfies

«•> = L ^ * ' " t ) Λ

[\k(x)\dx<c\ \g(x)\dx

is the same except where the expression for the difference of the
kernels is obtained. The principal difference there is that the expression

arises instead of

mn ι**ι-
However, using the fact that

the same inequality can be obtained. Now

so that

\_,19*{x) \dx = L, I k(x) \dx < c\ I g(x) \ dx .
jDr

y jD'y jDy

From this point the proofs are again identical. Following the details
closely also shows that the constants are of the desired form.

From this result Theorems 1 through 7 of Chapter I of [1] follow
immediately, either with the same proofs or with minor modifications.
In some cases where only norms are concerned it is more convenient to
carry through the proof for

and then to add in the other term for which the theorems are obviously
true. Lemma 5 is also obviously valid for just this term of the
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transform. Thus, for example, the following are true.

THEOREM 1. Let fix) belong to Lp, 1 < p < oo, in En. Then with
the continuity condition on Ω of Lemma 5, the function fζ{%) of (6.1)
also belongs to ZΛ Furthermore, ||/8(ίc)||, < c(γ, p)\\f(x)\\p where c(γ, p) =

C i L —^~r and C depends only on Ω.
\Ύ\(P - 1)

The form of c(γ, p) can be obtained by using the reasoning of the
remark on page 99 of [1], following the constants through the proof,
and using the fact that for

THEOREM 2. Let f(x) be a function such that

Then with the continuity condition of Ω of Lemma 5 /ε(#) is integrable
over any set S of finite measure and

\Mx)\dx < c(ry)\ Jf(x)\dx
S jEn

(X) log

where c(γ) = C"^', ,—^ and C depends only on Ω.
m

THEOREM 3. Let f be integrable in En and Ω satisfy the continuity
condition of Lemma 5. Then if S is a set of finite measure,

\ lΛ(aOΓ-"cto<^|S|*(ί n\f(x)\dxTa

Js a \jEn /

where c is a constant independent of a, S, e and /.

THEOREM 4. Let μ(x) be a mass-distribution, that is a completely
additive function of Borel set in En, and suppose that the total varia-
tion V of μ in En is finite. Let μ\x) denote the derivative of μ(x)
which exists almost everywhere. Then if Ω satisfies the continuity
condition of Lemma band if

dμ(x - t) - 4MS Ω(t) da ,

over every set S of finite measure
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a

THEOREM 5. Let f(x) belong to Lp, 1 < p < co, and let Ω satisfy
the continuity condition of Lemma 5. Then fs(x) converges in the
mean of order p as ε —»0 to a function f(x).

From this last theorem it follows by use of Lemma 2 that the
original summation definition of f(x) also converges in Lp norm if / is
in Lp and 1 < p < oo.

7 Pointwise convergence*

THEOREM 6. If f{x) belongs to Lp, 1 < p < co, then fξ(x) converges
almost everywhere to a function f(x) as ε —»0. Moreover, the function
sup \f,(x)\ belongs to Lp and ||sup |/έ(x)|||p < c 11/(35)11,, c being a constant

ε ε

which depends on p, γ, and Ω only.
The proof is similar to that of Theorem 1, Chapter II of [1], Define

1^7 ι ι * .
0 \x\ < ε .

Let H(x) be non negative, zero outside the unit sphere, have continu-

ous first derivatives, and have \ H(x)dx = 1. Denote by f(x) the limit
JEn

in norm of fs(x) and define

By the lemmas in Chapter II of [1], fs(x) converges almost everywhere
to/(x) and ||sup/.(a?)||, < c| |/(α)| |, < c\\f(x)\\p. As in [1] every con-

ε

stant not depending on / will be denoted by c simply.
Using the fact that fs(x) converges in norm to f(x),

l(x) = lim \ LH(^L=±)\\ f(t - v)Kλ{v) dv

Ω(w)dw\dt .J

This may be considered as the difference of two integrals and written
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Making the substitutions t—x—u+v in the first integral and t—x~u
in the second gives

f(x-u{\ J^±H oij h JJ

= lim ί f(x - u)
λo j w

\ Jψ-H
LJi^i^ε ε

— Ω
du .

Since !?(#) is diίferentiable, the limit may be taken inside the integral
signs to give

= ί j(χ - u) \
jEn LJ

\v\<e Sn

where K(v) = KQ(v).
Now it is also true that

ϊ(x)=\ f(x-uf\ J^H

since the integral I H(x)dx = 1. For |%| > 3ε it is clear that
jEn

If . K ^ f f / u = v \ d υ _ Γ ^ M i ϊ
| j £ ? w ε w \ e / J B W ε w

\u\»

As before ω is the modulus of continuity of Ω and c is independent of
ε. The last inequality for | Kε(v) — Ks(u) \ is the one used in the proof
of Lemma 5 it is valid here because | u — v \ < ε when the integrand
is not zero.

For \u\ < 3ε it is clear that both

if Z&
\ ) E

n ξ,n a n d
If *&LH
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are less than or equal to

253

μ
Here %(0,5) is the characteristic function of the interval (0, 5).

Similarly

<c\\ E^
UnKβ εn

Combining all of these results

cω\ cε

ΰ
\u\n

n

du

^γ L εnjEn \ ε •

From this the lemmas of the second chapter of [1] give

Then since lim fs(x) = f(x) almost everywhere and
^ ε-»Ό ε

and /s—>/ in mean of order p> the theorem follows

THEOREM 7. Let μ(x) be a mass distribution, that is, a completely
additive function of Borel set in En and suppose that the total varia-
tion V of μ(x) in En is finite. Then the expression

fε(x) = f
J

-t)- Mf
; lye*)

Q ,

where μ\x) is the derivative of μ(x) where this exists, has a limit f
almost everywhere as ε tends to zero, and over every set S of finite

measure \ \f(x)\ι-«dx K^-IS^V1-".
J s CX

This corresponds to Theorem 2, Chapter II of [2]. The proof is the
same except that Theorem 6 is used to obtain the convergence of the
integral involving g(x).

Other theorems. With this basis all the basic theorems in [2]
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and [3] can easily be shown to have their analogues for transforms of
the type considered here. The periodic and discrete cases can be done
simply; in the discrete case the subtracted term even disappears.

The rotation method as presented in [3] can also be applied in this
case but the proof is much simpler. The method that applies only to
odd kernels in the ordinary case applies to all kernels in this case. To
illustrate this the following important theorem is given.

THEOREM 8. Let f(x) belong to Lp,l < p < oo, in En. Let Ω(t) =

be merely integrable on the unit sphere Σ. Then if

f9(x) = ( JWLf(x _ t)dt - I@L[ Q(t)dσ ,

it satisfies

where C depends only on Ω. As ε —* 0, fs(x) converges in Lv norm to

a function f(x). Furthermore, ||sup |/β(a?)|||p < C||/(OJ)||P where c is in-

dependent of f, and fζ(x) converges almost everywhere to f(x) as e -^ 0.

That fs(x) exists almost everywhere is shown on page 292 of [3].
Let the norm symbol || \\p apply to the variable x. To write the

integrals in polar coordinates let t = rV, V on the unit sphere. Then

/(3 - t)dt -
^γε^

Using Minkowski's integral inequality this is less than or equal to

Using the one dimensional version of theorem 6 on the inner integral
by first integrating x parallel to V and then over the space of such
lines gives

||sup l/toHl, <

The inequality for ||/ε(#)IU follows using the same method and the one
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dimensional version of Theorem 1. The rest of the proof is the same

as that of Theorem 3 of [3] once convergence for continuously differ-

entiable / vanishing outside a bounded set is shown. Writing fs{x) as

f(χ-t)-f(χ)Ω{t)dt

|ί|"*

+ . J^-t)o{t)dt_m_[Ω
d t

\t\n+iy iη

shows clearly that it converges point wise in this case.

9 Transforms of fractional integral type.2

DEFINITION. Tz{f) = c^ns(t)[^jf(x - t)dt for 0 < R(z) < 1,

f /θ(t)V f
T2{f) ^ cz lim s(t)(ίm f(x - t)dt - — T ^

ε - > o j ι t ι ^ ε \ \ t \ n J (nz — ri)εnz~n

for R(z) = 1 and z Φ 1, and Tt{f) = —-f(x)\ s(t)θ(t)dσ, where c2 =
n j 2

-β- sxr> o° is taken as 0, θ(t) = ̂ (TTΓ ) > 0 is integrable on the unit

v̂  ~~ Δ) \ IίI /

sphere 21, s(ί) = si-jrj j has absolute value one, and R(z) denotes the

real part of z.

To obtain the principal theorem of this section a theorem of Stein
[4] p. 483 will be used. For this purpose it will be necessary to show
that the operators Tz as defined above satisfy the conditions of this
theorem. Using the terminology of [4], the following lemma may be
proved.

LEMMA 6. Consider the set Tz as a family of operators from
functions in En that are zero off the sphere \x\ < D to functions in
En. The set Tz is then an analytic family of operators of admissible
growth in the strip 0 < R(z) < 1. For a simple function φ in the

given set, the inequalities \\T1+iyφ\\p < - C p \\φ\\p for 1 < p < <», and

II TiyφWn < IIφ\\x hold where C depends only on θ(t) and not on D.
Throughout the proof φ and ψ will be simple non negative functions

and M the maximum of φ. Since any simple function can be written
as the difference of two such functions, it will be sufficient to prove
the assertions for these. The lemma will be proved in parts as indicated.

a. Simple functions in the given set are transformed into measurable
functions for 0 < R(x) < 1. For R(z) = 1 this follows from the preced-

2 The method of this section was suggested by A. P. Calderon.
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ing sections. To consider the case 0 < R(z) < 1, let r = \t| and ί' = ί/|t|.
Then changing to polar coordinates

(9.1) T,(φ) = c^it'mt'Wdσ^f^-Jp dr .

Using this,

I TZ(Ψ)\ <

where A is the greater of \x\ — D and 0 and B = |x\ + D. Both in-
tegrals are obviously finite so that Tzφ exists. The measurability follows
from the Fubini theorem.

b. If R(z) = 1 and 1 > ε > l/3w, then \Ta-B(g>)\ is bounded by a
constant that is independent of z and ε. For ε = 1

\Tz^(φ)\< \ Jφ(x-t)\dt

and is obviously bounded. For 1 > ε >

by use of Holder's inequality. The second integral is certainly bounded.
Writing the first integral in polar coordinates shows that it is in abso-
lute value less than

>Mdr

so that it too is bounded. Since the exponents are between 0 and 1
the whole expression is bounded.

c. If R(z) = 1 and l/3n > ε > \I(z)\, where I(z) denotes the im-
aginary part of z, then | Tz-Z{φ) \ is bounded by a constant that is in-
dependent of z and ε. Using polar coordinates,

< 2e\

n

nε

θ(t'))dσ .



ON CERTAIN SINGULAR INTEGRALS 257

d. If R{z) = 1, ε < \I(z)\ and ε < Ij2n, then the integral

is uniformly bounded. For z φ 1 it converges to 0 as ε approaches 0.

The integral of (9.2) is clearly dominated by ( 2(1 + e(t)) φ(x _t)dt

ht\>ι | £ | w - i

which is finite. Since cz-s is bounded, the expression (9.2) is bounded;
convergence follows from the dominated convergence theorem.

e. If R(z) = 1, ε < \I(z)\ and ε < Ij2n, then the integral

(9.3) czSnea^da\ *(*X W ^ * ~ *) dt .
J J \t\nz

has uniformly bounded L2 norm. For 2 Φ 1 it converges in L2 to Ts(<p)
as ε approaches 0.

As before, let the norm symbol || ||2 apply to the variable x. Then
changing to polar coordinates the L2 norm of (9.3) is

^ ||

Then applying Minkowski's integral inequality twice shows that this is
less than or equal to

Using Corollary 1 and performing the integration of x first over lines
parallel to V and then over the space of such lines shows that the whole
expression is bounded by

C ( 1 + | ^ | g ) | a ) ^ 1 + θ(t'))dσ .i + g ( O ) ^ | ^ |

To prove the convergence consider the expression

(9.4)

This converges in U norm to Tz(φ) by Corollary 3 and Lemma 2 since
its limit is the Abel summation definition of Tz(φ) written in polar co-
ordinates. The reasoning used above to show that (9.3) had bounded
U norm can be applied to the difference of (9.3) and (9.4). This shows
that the L2 norm of the difference is less than or equal to
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and this converges to 0 as ε approaches 0. Consequently, (9.3) converges
tθ T9(φ).

f. F(z) = [ψTz(φ)dx is analytic in 0 < R(z) < 1. For 1 - R(z) >

\I(z)\ or 1 — R(z) > 1/3% this follows immediately from the majorizing
expressions for Tz{φ) in parts b and c. Since Tz(φ) is a uniformly con-
vergent integral of an analytic function in these cases, Tz(φ) and hence
F(z) are analytic. For 1 — R(z) < \I(z)\ and 1 — R(z) < Iβn observe
that Tz{φ) is the sum of (9.2) and (9.3). By the same reasoning as in
the other case, the integral of the product of ψ with either (9.2) or
(9.3) is analytic. Therefore, the sum of these parts, F(z), is analytic.

g. F(z) = \ψTz(φ)dx is continuous on R(z) = 1. By its definition

Tz(φ) is the product of cz and the transformation of the previous sec-
tions where s(t)(θ(t))z has replaced Ω(t) and (nz — n)li has replaced γ.
Using Fourier transforms then gives fz(φ) = czKzφ where Kz is the
function K of Lemma 4 with γ = (nz—n)\i, provided that z Φ 1. Using
the expression (4.4) in (5.2) gives an expression for czKz. Its form shows
that czKz is uniformly bounded in x and z. Furthermore, for 0 < a <
x < b < oo, it is also clear that czKz is continuous in z, uniformly in x.

I f Λ

Both statements remain valid if ——I s(t)θ(t)dσ is used for c ^ . Using
A A n J2

this, it is also clear that T1{φ)—c1K1φ-
Now let z be a complex number with R(z) = 1, and let ε > 0 be

arbitrary. Choose real numbers a and b so that if S consists of points
in En whose distance from the origin lies between a and 6, and Sf is
the complement of iS in £?w, then

<

Let w be another complex number with R(w) — 1. Then

t fwφ\\2\F(z) -F(w)\<
<
s l l f l l

£11*11

H 11*11

II T
211 J-

•(L
•(L

zΨ

φ* dx Y sup

ixψ sup |
/ xes

czKz - cwίtu

The first part is less than ε/2 and the second part approaches O a s w
approaches z. This shows the desired continuity.

h. F(z) is continuous and bounded on 0 < R(z) < 1. From parts
b through e it is clear that F(z) is uniformly bounded in 0 < R(z) < 1
and \im F(z — ε) = F(z) for R{z) = 1 and zφl. These facts, together

with the analyticity and continuity on R(z) = 1, give the desired con-
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tinuity and boundedness.

x and \\T1+iyφ\\p < A-V-—\\<p\\p,l< p < ™ ,
p — 1

where y is real and A depends only on θ(t) and not on D or φ. The first
is trivial. The second follows from Theorem 8 since (1 + l2/|a)|c1+iy|/|2/| is
bounded.

This completes the proof of the lemma.

THEOREM 9. Let p, q, and X be positive numbers such that

1 < P < q < co and — = — - λ. Let f be in Lp on En and Ω(t) =
q p

J-J) be in L s, s = ^ —, on the unit sphere. Then the integral

exists for almost all x and

where C depends only on Ω.
Applying the theorem of Stein [4] p. 483 to the Tz with px = 1,

Qi = °°, Ί>2 = Q2 = ^(1 — λ), JS; = 1 — λ gives for simple £>,

Now let ^(ί) = |β(t) | i- λ , and s(t) = sgnβ(ί). Then dividing the above
inequality by cx_λ gives

Now if Ω > 0 all the integrands are positive. Given an arbitrary posi-
tive function / in Lp, take a sequence of simple functions φn that
vanish off bounded sets and converge in Lp norm to /. Then taking
the limit in the inequality above gives

p —
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From this Dλ{f) exists almost everywhere. In the case where / and Ω
are not positive the integrand of Dλ(f) is majorized by a positive func-
tion that does satisfy the desired inequality. This completes the proof.

It is known that the usual fractional integration theorem and, as a
result, Theorem 9 fail for the cases p = 1 and q = oo. Zygmund [8]
p. 605-6 proved substitute results for the usual fractional integral case,
and these results can be extended to the present case. The proof of
Theorem 10 is an adaptation of the corresponding proof in [8].

THEOREM 10. Let p = 1/λ be a positive number greater than 1.
Let f be in Lp on En, vanish off a bounded set R and \\f\\v < 1. Let

Ω(t) = Ω(TTT) be in L% s = ^ -- on the unit sphere. Then the ex-
pression Dλ{f) exists for almost all x. Furthermore, if Φ(x) =
eχS — xs — 1, there exist constants a and A, independent of f and R,
such that

En
Φ{a\Dk{f)\) < A\R\ .

n

Using Theorem 9

n\

yJL
\n/ nn \ns
) ( — ) \\f\\ns

— λ) 2 / V λ / n2 n! V (n — 1)(1 — λ) 2 / V λ

where pn = -, ™ , N . Now using t h e fact t h a t ( - r ^ Λ \f\vr ί n "
l — λ + Xn \ \ KI j R J

creases with p shows that the preceding sum is less than or equal to
Σ (<aSD^n \R\\\f\\n

p

s where D is a constant independent of n,f, and R.
2 n l

Then using the fact that | | / | | p < 1 and Stirling's formula shows that
for as = l/(2βD) the series converges to a constant A.

THEOREM 11. Let q = 1/(1 — λ) be a positive number, 1 < q < oo.
Let Ψ{x) = (1 + x)[log (1 + x)f~λ and f be a function in En such that

[ Ψ(\f\) is finite. Let Ω(t) = Ωf^λ be in Ls, s = 1/(1 - λ) on the unit
jEn \ I ί I /

sphere. Then the expression Dλ(f) exists for almost all x, and over
any set R oj finite measure

^ < A(\R\ + \R¥(\f\))

where A is independent of f and R.
By differentiating it is clear that Ψ{x) is greater than the function
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conjugate to Φ(x) = eχS — xs — 1 in the sense of Young.3 Consequently,
for real positive numbers b and d, bd < Φ(b) + Ψ(d) by Young's inequ-
ality. Now consider a function g in Lp, p = 1/λ, vanishing outside R
and with \\g\\p < 1. Then using Theorem 10

If nDλ(g)f < - [ a\Dλ(g)\\f\<±(\ nΦ(a\Dk(g)\))+ \ Ψ{\f\)

<λfA\R\ + \ J(\f\)).

However, by interchanging the order of integration

IL^I = I W>
Since g is an arbitrary function in Lp on R, the least upper bound for

l-Dλ(/)lβ) by the converse of Holder's inequality.
R /

Therefore §\D>tf)\ψ < -^- +
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