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ON THE STABILITY OF BOUNDARY COMPONENTS

KOTARO OlKAWA

I. PRESENTATION OF THE PROBLEM

l Definitions

1Φ A boundary component of a plane region Z > c ( | ^ | ^ o o ) i s a
component of the boundary ΘD of D, i.e., a connected subset of dD
which is not a proper subset of any connected subset of dD.

There is an alternate definition. Let {Ωn}n=i be a sequence of
subregions of D such that

( i ) Ωx D Ω2 Z) ,

( i i) the relative boundary dΩn Π D consists of one closed analytic
curve in D,

(iii) fln=i ®n = Φ Two sequences {Ωn} and {Ω'n} are said to be
equivalent if, for any n, there exists m such that Ωm c Ω'n and Ω'm c Ωn.
A boundary component of Z> is an equivalence class of {Ωn}.

These two definitions are equivalent in the following sense:

( i ) Given a sequence {£?„}, the set Γ\n=iΩn is a component of dD
and, for two sequences, these sets coincide if and only if the sequences
are equivalent.

(ii) Given a component Γ of 3D, there exists a sequence such that

Γ = n~=l ®n-
For a boundary component Γ, the sequence { β j such that Γ = f\"alΩn

is called a defining sequence of Γ.

Let w — /(#) be a topological mapping of D onto a plane region D'.
Then we can immediately see from the second definition that / gives a
one-to-one correspondence between the boundary components of D and
D'. We shall speak of the image of a boundary component Γ under f
in this sense and denote it by f(Γ).

2. Let Dc denote the complement of D with respect to the extended
plane | z | <£ oo. For a boundary component Γ, there exists a uniquely
determined component of Dc whose boundary coincides with Γ. We call
it the component of Dc corresponding to Γ and denote it by /**.

If D does not contain the point 3 = 0 0 , the boundary component Γ
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such that oo e Γ* is called the outer boundary of D.

3. We call a region D a circular (or radial) slit disk if 0 e ΰ ,
D c (\z\ < R <oo), the outer boundary is | 2 | — i?, and every other
boundary component is either a point or an arc on | z | = const, (or a
line segment on arg z = const.).

2 The stability problem of boundary components*

4. Let Z) be a plane region and let Γ be a boundary component.
Sario [16, 17] gave the following classification:

(a) If f(Γ) is a point for every univalent function w = f(z) on D,
then Γ is said to be weak.

(b) If /(Γ) is a continuum, i.e., a connected closed set containing
more than one point, for every /, then Γ is said to be strong.

(c) If Γ is neither weak nor strong, it is said to be unstable.
Weak boundary components were first investigated by Grotzsch in

connection with the so-called "Kreisnormierungsproblem" (Grotzsch
[7] see also Denneberg [5] and Strebel [21]). He called them vollkom-
men punktformig. Regions of class OSB = OSD introduced by Ahlfors and
Beurling [2] coincide with those possessing merely weak boundary com-
ponents. Sario [16] has generalized the concept weak boundary com-
ponents for open Riemann surfaces. It has been discussed also by Savage
[19] and Jurchescu [10].

We are now lead to the following natural problems:

PROBLEM A. Given a boundary component consisting of a single
point, determine whether it is weak or unstable.

PROBLEM B. Given a boundary component consisting of a continuum,
determine whether it is strong or unstable.

We shall attempt to obtain concrete tests with practical applicability.

3. Related extremal problems*

5. Let D be a region containing the point z = 0. Let S3 be the
family consisting of all functions w = φ(z) which are regular and
univalent in D — {0}, and have the expansion \\z + cz + near z = 0.

Consider, with Grotzsch [6], the diameter of the image φ(Γ) of the
boundary component Γ. It is quite easy to see that Γ is weak if and
only if sup̂ gςg diam φ(Γ) = 0, and Γ is strong if inf^e^diam φ{Γ) > 0.

6. Let gr be the family consisting of functions w — f(z) such that
( i ) regular and univalent in D,
(ii) /(0) = 0 and/'(0) = l,
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(iii) f(Γ) is the outer boundary of f(D).
Rengel [14] introduced the following functionals on g Γ :

M(f) = max [ w | = sup \f(z) | ,
wef(r) zeD

m(f) = min
Jϋ6/(D

and considered the quantities

and

-~r(Γ: D) = mϊ

From the definition we have immediately the basic

THEOREM 1. Γ is strong if R(Γ) <oo. Γ is weak if and only if
r(Γ) =00.

These criteria are equivalent to those in No. 5, since

R{Γ) = 2/inf diam φ(Γ) ,
<peS8

r(Γ) — 4/sup diam φ(Γ) .
<pe<>8

In fact, for an arbitrary function f(z) a %Γ, the functions

and

ψf(z) =

belong to 93, and

^ 2/diam

^ 4/diam φf(Γ) .

On the other hand, for φ(z) e 93, let F(^) be the function which maps
(ψ(ΓY)c conformally onto the exterior of a disk with the center at the
origin. Assume further that F(w) — w + c + c'\w + near w=oo.
Then fφ(z) = IIF o φ(z) e %Γ and

2/diam φ(Γ) ^ M(fφ) = m(/y) ^ 4/diam
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The proof of the above equalities is hereby complete.

7. Whether or not R(Γ) <oo is necessary for strength is still an
open problem. We shall discuss this problem in No. 24.

We shall see in No. 17 that lir(Γ) equals the "capacity" of the
boundary component Γ introduced by Sario [16] (it is not necessarily
equal to the logarithmic capacity of the closed set Γ), and, therefore,
that the latter half of Theorem 1 is equivalent to Sario's result ([17],
Theorem 6). Jurchescu [10] showed that the "capacity" coincides with
the "perimeter" introduced by Ahlfors and Beurling [2],

It will be shown in No. 22 that R(Γ) coincides with the quantity
which Strebel [22] called "extremal Durchmesser''. Finally, Theorem 4
in No. 21 shows that the first half of the above theorem coincides with
Sario's result ([17], Theorem 4).

II. PRELIMINARIES

In this chapter, we collect a number of known results which will
be needed later.

4 Extremal length,

8, A curve γ considered here is either a closed rectifiable curve or
a curve of the form z = z(t) (0 < t < 1) every subarc of which is
rectifiable. If limt^oz(t) or lim^zOO exists, it is called an end point.

Let D be a reginon and let {7} be a family of curves γ c f l , Let
{p} be the collection of functions p which are ^ 0 and lower semi-con-
tinuous in D. With the understanding that 0/0 = 00/00 = 0, take

(mί\
λ{7}-sup V y

11 p2dxdy

It is called the extremal length of {7} (Ahlfors and Beurling [2], Ahlfors
and Sario [3]).

9. The following properties (I)-(V) are well known; for the proofs
the reader is referred to, e.g., Hersch [8]1:

( I ) λ{7} is independent of the choice of D.
(II) λ{7} is conformally invariant.
(III) λ{7'} ^ λ{7} if every 7 contains a 7'.
(IV) For {7i} and {72}, assume the existence of disjoint regions Dλ

and D2 such that 7V c Dv (v = 1, 2). If, for any 7 of the third family
1 His definition is different from ours, but his proofs remain valid.
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{7}, there exist rγ1 and γ2 such that ^ U 72 c 7, then

λ{7i} + λ{γ2} ^

(V) Let {Yi} and {γ2} be the same as above. If {γj U {72} c {7},
then

λ{72} λ{7}

(VI) (Hersch [8]1). For three families with {7} = {7i} U {72},

λ{7} λ{7χ} λ{72}

(VIII) Let {7i} be the subfamily of {7} consisting of 7 having both
end points and such that z(t) (0 ^ t ^ 1) is rectifiable. Then λ{7} = λ{7j.

In fact, since the extremal length of {72} = {7} — {7i} is infinite,
(VI) shows that λ{7i} ^ λ{7}, and λ{7} ^ λ{7j by (III).

(VIII) For a curve 7 : z = z(t) (0 < t < 1), let 7 be the curve
z = z(t) (0 < t < 1). If 2(0) = limc^0 z(£) exists and is real, put 7 =
7 U 7 U {#(0)}. Let {70} be a family of curves which are contained in
the upper half-plane and have the end points 2(0) on the real axis. Let
{7} be a family which contains all 70 and 7. Furthermore it is assumed
that, for any 7, there exist 70 and 7S in {70} such that y0 U 7o c 7.
Then

λ{7} = 2λ{70} .

In fact, to define λ{7}, we may restrict {p} to the subfamily con-

sisting of functions symmetric about the real axis. Since 2 infy I 0 ds =

infγ\ pds for such p, we conclude that λ{7} = 2λ{70}

(IX) Let A be the annulus 1 < | z \ < q or a region obtained by
deleting a finite number of circular slits from this annulus. Let {7} be
the family of all closed rectifiable curves in A separating | z \ = 1 from
1 2 I = ?. Then λ{7} = 2πj\og q. This is true even if each 7 is restricted
to a concentric circle in A.

The proof is found, e.g., in Hersch [8]1.

10. Let D be a region, and let Eo and Ex be compact sets such
that E; Π D Φ φ (v = 0, 1). Let {7} be the family consisting of 7:

2 = 2(ί) (0 < t < 1) such that 7 c A Πε>o{^); 0 < ί < ε} c J£o, and
Πε>oMO; 1 — ε < ί < 1} c Ex. Then λ{7} is called the extremal distance
δD(E0, EJ between Eo and Ex with respect to D.

By (VII), 8D(E0, Ex) coincides with the extremal length of the family



268 KOTARO OIKAWA

of rectifiable curves in D whose end points are on EQ and E1 respectively.
Under a certain restriction of the configuration, it is also equal to that
of a subfamily consisting of analytic curves (Wolontis [25]).

From this consideration, we get
(X) If no point of Eλ is accessible from D by a rectifiable curve,

then δD{EQ, Eλ) = oo.

(XI) (Pfluger [12]1). If cap Eλ = 0, then δD(E0, E1) = <χ>. For
D = (I z I - 1), Eo = (\z I - ε < 1), and Ex c (| z | = 1), δ ^ , ^ ) = oo
if and only if cap Eλ = 0.

Combining (VI), (X), and (XI), we get
(X') If no point on Elf except for a set of capacity zero, is acces-

sible from D by a rectifiable curve, then 8D(E09 EJ = oo.

(XII) Let D, Eo, and E1 be contained in the closed upper half-plane.

Let ί) be the region which is the union of D, the reflection of D across

the real axis, and the part of ΘD on the real axis. Let EQ and Eι have

analogous meanings. If δ£>(E0, Eλ) is expressed in terms of the extremal

length of a family consisting of analytic curves2, then

Proof. Let 8&(E0, Eλ) = λ{7} where 7 is an analytic curve and let
8D(E0, £Ί) = λ{7'}. Using the notation in (VII), we see immediately
that {7'} and {7'} are contained in {7}. Since λ{7'} =λ{7'}, we find,
on applying (V), that λ{7} S λ{7'}/2.

In order to prove the inequality in the opposite direction, we first
remark that, to define λ{7}, we may restrict p to a function symmetric
about the real axis. For a curve 7 : z = z(t) (0 < t < 1), let 7* be

_ ί«(«) if 3*(t) ̂  0

^W) if %z(t) ^ 0 .

Evidently \ pds = I # ds for a symmetric p.
)y J y

Since it is assumed that 7 is an analytic curve, 7* intersects the
real axis at only a finite number of points zlf z2, , zk. Let Δv be the
punctured disk 0 < | z - z, | < r (v = 1, 2, . . . , fc), where r is taken so
small that the Δv are mutually disjoint. The extremal length of the
family of curves in Δy separating zv from | z — zv \ = r is, by (IX), equal
to infinite. Therefore, for arbitrary ε > 0 and p, there exists a closed

curve 7v c J v encircling sv and such that I pds < e/A?. On replacing a

part of 7* Π 4., by a part of yv(v = 1, 2, •••, &), we obtain from 7* a
2 This restriction is satisfied in our subsequent applications. It is perhaps superfluous.

However, the author has not succeeded in furnishing the proof without it.
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curve 7' belonging to the family {7'} and such that 1 pds — ε < I pds.
Jr JY

Since 7 and ε are arbitrary, we get infγ, I p ds fg infγ \ /> ds for every

symmetric />. Since 11A/?2 cted?/ = 2 \ \ P2 dxdy, we conclude that λ{γ'} <̂

}2λ{γ}.
(XIII) Let A be the annulus 1 < | z | < q or a region obtained by

deleting a finite number of radial slits from this annulus. Let Eo =
(I z I = 1) and Eλ = (| 3 | = g). Then S ^ , £Ί) - (log g)/2ττ, and it is also
equal to the extremal length of the family of all radials from Eo to Eλ

in A.
For the proof, the reader is referred to, e.g., Strebel [20].

5* Teichtnϋller's extremal region*

11. Let D be a doubly connected region and let {7} be the family
of all closed rectifiable curves in D separating the boundary components.
The quantity 2π/λ{7} is called the modulus of D and is denoted by mod D.
As is well known, D can be mapped conformally onto an annulus
1 < I z I < q where log q = mod D.

For P > 0, the doubly connected region

DP = {[-1, 0] U [P, co]}'

where the brackets express a closed interval on the real axis, is called
Teichmύller's extremal region. It has the following extremal property
(Teichmϋller [23]): Let D be a doubly connected region such that one
component of Dc contains the point z = 0 as well as a point on | z \ — 1
and the other contains the point z = CXD as well as a point on | z | = P.
Then mod D <; mod DP and the equality holds if and only if D is a
region obtained by rotating DP about the origin.

12. It was proved by Teichmiiller [23] that Ψ(P) = exp (mod DP) is
a continuous function of P such that

(1) i ^

It is easy to see that

( 2) log ψ(-) = — £ .

VP/ \og¥(P)
On combining (1) and (2), we have

(3) logξp (P) ^ — f o r P — 0
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13 The following result will be used later:

LEMMA 1. Let

A = (l<\z\<q),

and

EΘ = {z; \z\ = q, \sirgz\ ^ θ} .

Then

8A(Γ, tf,)~i-logl for 0 - 0 .

Proof. δA(Γ, E) is equal to the extremal length λ{γ} where {γ}
is the family of all analytic curves in A connecting Γ with Eθ (cf.
Wolontis [25]). By (VIII) and (XIII), it is equal to 8Q(E'θ9 E'θ')j4: where

Q = (1/? < I s | < g) Π ( 3 * > 0) ,

and

Ei'= {z; \z\ = q, 0 ^ arg * ^ θ} .

Map Q onto the upper half-plane in such a way that llq and q correspond
to 0 and 1, respectively. Let — a and 1 + β {a, β > 0) be the images
of eίθ\q and qe*\ respectively. It is not difficult to see that

ϊ for θ — 0

[β ~ ĉ 6>2

where c and cf are constants independent of θ. The region obtained by
deleting the intervals [— oo, — α], [0,1], and [1 + β, oo] from the
extended plane is conformally equivalent to Teichmuller's extremal region
with

p = <*β
l

c (Θ0) .
a + β

Therefore, on applying (VIII) again, we get SΛ(Γ, Eθ) = ττ/(4 log Ψ{P))
and, by (3),

δΛ(Γ, Eθ) - - ^ - I o g 4 ^ — log-ί for 0 - 0 .
47Γ P π θ
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6* Koebe's distortion theorem*

14* The following is a slight modification of the original form of
Koebe's well-known distortion theorem, which will be used frequently:

Let φ(z) be a function which is univalent and regular in \ z | < ε0

with φ(0) = 0 and φ'(0) = 1. Then there are numbers a(e) and b(e)
which are independent of ψ and have the properties that

a(e) ^ I φ(z) I ̂  b(ε) on \ z | = ε <ε 0

and

«ί! l = Mm .*(!). = 1 .
ε-»o £ ε-»0 S

In fact, we may take α(ε) = εεg/(ε + ε0)
2 and b(ε) = εεg/(ε — ε0)

2.

7 Quasi'conformal mappings*

15 In Chapters IV and V, we shall make use of quasi-conformal
mappings to illustrate our results by examples. As in the type problem
of Riemann surfaces, they are utilized to replace a given region by a
simpler one.

A sense-preserving topological mapping w = T(z) of a region D onto
another is said to be quasi-conformal if there exists a finite number K
such that mod T(Q) ^ K mod Q for any quadrilateral Q c D (Ahlfors
[1]). Here, mod Q of a quadrilateral Q means the extremal distance
between two opposite sides of Q. The minimum value of K is called
the maximal dilatation of T.

For the proofs of the following properties (I)—(III), the reader is
referred to Ahlfors [1]:

( I ) If T is quasi-conformal of maximal dilatation K, then
mod T(A) ^ K mod A for any doubly connected region A a D.

(II) Let E be a set which is contained in a finite number of ana-
lytic arcs. Let D be a region containing E, and let T be a topological
mapping of D which is quasi-conformal in D — E. Then it is quasi-
conformal in D with the same maximal dilatation.

(III) If T is a topological mapping of class C\ then the maximal
dilatation is given by K = sup,e2) (| Tz\ + | Tz |)/(| Γ, | - | Γs |) where Γ,
and 2> are complex derivatives.

(IV) Let {γ} be a family of curves in D. Let Γ be a quasi-
conformal mapping of class C1 with the maximal dilatation K. Then

λ{Γ(γ)} S

The proof is found in Hersch [9]1.
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REMARK. Even if T is not of class C1 throughout D, this inequality
holds under, e.g., the following restriction: T is of C1 in D except for
a countable number of analytic arcs clustering nowhere in D, i.e., every
point of D has a neighborhood intersecting at most a finite number of
the arcs, and every γ is the union of a countable number of analytic
arcs clustering nowhere in D. This generalization will be needed in
No. 35.

III. CIRCULAR AND RADIAL SLIT DISKS

8 Circular slit disks*

16 Let D be a plane region containing the point z = 0, and let Γ
be a boundary component. The problem of minimizing M(f) in %F for
a region of finite connectivity has been discussed by Rengel [14]. To
consider it for a region of arbitrary connectivity, in particular to show
the uniqueness of the minimizing function, Sario [16] introduced the
functional

=( log|/|.darg/
JdD

Here the line integral means lim^oo \ log | /1 d arg / for an exhaus-

tion Dn ] D\ the limiting value exists and is independent of the exhaus-
tion. He proved the existence of a function g0 such that

M(g0) =

and

2π log M(g0) = J(f) - D(\og \ f \ - log | g01)

for all /eg/-, where the second term means the Dirichlet integral over
D. Evidently g0 is the unique function which minimizes J(f).

From these relations we can derive the following facts (Sario [16]):
( I ) There exists a function g0 e %F such that M(go)=mmfe%Γ Λf(/) =

r(Γ). If r(Γ) < cx5, the minimizing function is determined uniquely.
It maps D onto a circular slit disk \ w \ < r(Γ), where the area of
slits, i.e., gQ(dD — Γ)*, vanishes,

(II) Let QeDn } D be an exhaustion and let Γn be the component
of dDn separating Dn from Γ. Then

r(Γ) = Km r(Γn).
n-*oo

If r{Γ) < co, the sequence {gn} of the minimizing functions on Dn

converges to g0 uniformly on each compact set in D.
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17 By making use of this result, we can express r(Γ) in terms of
extremal length. Let ε0 be a small number such that | z | ^ ε0 is con-
tained in D. For 0 < ε < ε0, the numbers α(ε) and b(e) were defined in
No. 14. The following theorem has been proved, in essence, by Jurchescu
[10]:

THEOREM 2. Let {γ}ε be the family of all closed curves in Dε =
D — (I z I ̂  ε) which separate Γ from the point z = 0. Then

l o g

b(ε)

ami, therefore,
log r(Γ) - lim (log s +

o V
im (log s + ^

The result remains valid if the γ are restricted to analytic curves.

Proof. Consider the metric given by p = | g[ | /1 g01. Since the area

of the circular slits is zero, li p2 dxdy ^ 2π log (r(F)/α(ε)). Therefore,

λ {7} ε ^ (2π)2/2τr log (r(Γ)/α(ε)) .

To prove the left inequality, take an exhaustion Dn ] D and consider
the family {γj ε of all closed curves yn in Dn — (| z \ ̂  ε) separating Γw

from z — 0. Since Z>w is of finite connectivity, the proposition (IX),
No. 9, shows that 2τr/λ{γJε ^ log (r(Γn)/δ(ε)). When we take the limit
for n —> 00, we have by virtue of the relation λ {γ} ε <̂  λ {yn} ε that

18 The following criterion for weakness due to Grotzsch [7] will
be useful in the next chapter:

THEOREM 3. In order that Γ be weak, it is necessary and sufficient
that, for an arbitrary positive number I, there exist a finite number
of doubly connected regions Alf A29 Ak in D — (| z \ ̂  ε) satisfying
the following conditions:

(i ) The Av are mutually disjoint,
(ii) A, separates Γ from (| z | ^ ε) (v — 1, 2, , k) and separates

Λ,-! from A,+1 (v = 2, 3, , k - 1),
(iii)



274 KOTARO OIKAWA

Proof. Sufficiency: By (V), No. 9, and by Theorem 2, l^
Σϊ^mod A, ^ 2ττ/λ{γ}ε ^ log (r(Γ)/(ε)). Therefore, r(Γ) = oo and, by
Theorem 1, Γ is weak.

Necessity: Take an exhaustion (| z | <̂  ε) c Dx c D2 c a Dn a
• I D and consider the extremal function gw on Dw. By Koebe's distor-
tion theorem, No. 14, the image of | z | = ε is contained in α(ε)^ 1w | ^δ(ε),
so that the set &(ε) < | w | < r(Γw) minus the circular slits is contained
in the image of Dn — (| z | ^ ε). From the annulus δ(ε) < | w \ < r(Γn),
delete all the concentric circles containing the circular slits. Then we
get a finite number of concentric annuli A[, A2, , AJ. such that
Σ?=imod A[ = log (r(ΓJ/6(ε)). Since r(Γ) = limn_*«, r(Γw) = ω, we can
take n so large that the right hand side is greater than the given I.
The inverse images Alf A2, , Ak of A[f A2, , Â  are what we
desired.

REMARK. We see from this theorem that the weakness of Γ depends
merely on the configuration of dD near I. Furthermore, by (I), No. 15,
the weakness is invariant under quasi-conformal mappings.

9 Radial slit disks for special regions •

19 Unlike the case of the functional M(f), the function maximiz-
ing m(f) does not exist in general; by slightly modifying the example
given by Strebel [20], we get a region on which m(f) < R(Γ) = sup / eg r

m(f) for a l l / e g Γ .
Under a restriction, however, we get a result analogous to that of

No. 15. Let G be a region containing the point z = 0 and such that a
component Γ of dG consists of a closed analytic curve which is isolated,
i.e., dG — Γ Π Γ = φ. Let §IΓ be the subfamily of g r consisting of all
functions with M(f) = m(/). On this family Sario [17, 18] introduced
the functional

l(f) - 2π log m(f) - \ log | /1 . d arg/
JΐlD-Γ

and proved the existence of a function f0 e ?ίΓ such that

( 4 ) 2π log m(/0) - /(/) + D(\og \ f \ - log | f01)

for all /eSI^. Evidently f0 is the unique maximizing function of /(/)
in Sir.

We can derive from this relation the following facts (Sario [18]),
which have been obtained by Rengel [14] for a region G of finite con-
nectivity :
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( I ) R{Γ) is finite. f0 is the unique function maximizing m(f) in
2I7.. It maps G onto a radial slit disc \w\< R(Γ), where the area of
slits, i.e., /0 (dG — Γ)*, vanishes.

(II) Let {Gn} be a sequence of regions such that 0 e Gn } G and dGn

consists of Γ and a finite number of closed analytic curves. Then

R(Γ; G) = \imR(Γn; Gn)

and the sequence {fn} of the maximizing functions on Gn converges to
/0 uniformly on each compact set in G U /τ.

20 Let {γ}ε be the family of rectiίiable curves which connect
I z I = ε with Z1 in G — (| z | ^ ε). In a method similar to the proof of
Theorem 2 we can obtain the following relations:

g b(ε) J
(5) R(Γ} ^

α(ε)

(6 ) log R(Γ) = lim (log ε + 2π\ {j} ε) .

Here {γ}ε can be replaced by the subfamily of analytic curves.

lO Characterizations of R(Γ).

21. Let D be an arbitrary region containing the point z = 0. Let
{βn}n-i be a defining sequence of Γ such that 0^ Ωn (n = 1, 2, •).
Then Gw = D — Ωn is a region and its boundary component Γn — dGn Π dΩn

satisfies the condition of No. 19.

THEOREM 4. {R(Γn, Gn)}ζ=1 is an increasing sequence and R{Γ) =
Gn).

Proof. {R(Γn; Gn)} is an increasing sequence by (6).
For an arbitrary ε > 0, there exists an f(z) e g r such that m(f) >

R(Γ) — εl2. Then there exists an nQ such that the m of this f(z) on Gn

(we denote it by mn(f)) has the property that mn(f) > m(f) — ε/2
whenever n>,n0. Therefore, R(Γn; Gn) ̂  mn(f) > R(Γ) — ε and

Next, let An be the doubly connected region bounded by Γn and Γ.
Then .Γ is an isolated boundary component of the region Gn — Gn[jAn\jΓn.
Γ is not necessarily a closed analytic curve, but from the result of
No. 19 we can see the existence of the function fn(z) in g r of Gn such
that m(/J = R(Γ; Gn). Evidently fn(z) belongs to g Γ of D. By (6),
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R(Γn; Gn)£R(Γ; Gn). Consequently, R(Γn; Gn) £ R(Γ; Gn) = m(fn) £
R{Γ) and limw_i2(Γ; Gn) k R(Γ).

This reasoning remains valid for the case where R(Γ) = oo.

REMARK. Combining Theorem 4 with Theorem 1, we see that
l i m ^ R(Γn Gn) < CΌ implies the strength of Γ. This fact was proved
by Sario [17].

22. Let {γ}ε be the family of curves γ : z — z(t) (0 < t < 1) in

D - (1 z 1 ^ ε) such that Πβ>o {*(«); 0 < £ < ε} c (| z | = ε) and Γlε>o

1 — ε < ί < 1} a Γ. Let {γj ε be the corresponding family in Gn,
Strebel [22] has proved the relation λ{γ}3 = lim^oo λ{γj ε. On combin-
ing this with (5), (6), and Theorem 4, we have

THEOREM 5.

log
α(ε)

log R(Γ) = lim (log ε + 2τrλ{γ}ε) .

Here γ can be restricted to the curve which is the union of a countable
number of analytic arcs which cluster nowhere in D (cf. No. 15,
Remark).

REMARK. The exponential of the right hand side of the second
relation was called "extremal Durchmesser" by Strebel [22]. On combin-
ing Theorem 5 with Theorem 1, or directly from (XI), No. 10, we see
that X{y}s < °° implies the strength of Γ. This result was generalized
for open Riemann surfaces by Constantinescu [4].

23* For an exhaustion Dn \ D in the ordinary sense, it has not been
proved whether \\mn^R{Γn\ Dn) exists or not. We obtain merely the
following

THEOREM 6. Let Δ be a region such that Oe Δ, ΔcD, and bounded
by a finite number of closed analytic curves. Denote by ΓΔ the com-
ponent of dΔ which separates Δ from Γ. Then

R(Γ) = lπnR(Γd; Δ) ,
Δ-*D

where the right hand side is a directed limit.

Proof. For ε > 0, there exists by Theorem 4 an ti such that
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R(Γ)-ε<R(Γn; Gn). By Theorem 5 R(Γn; Gn) ^ R(Γ,; A) for any
J D Γ . U {0}. Therefore, R(Γ) ^ l i n w R(ΓΔ; A). On the other hand,
for ε > 0 and a compact set K a D, take an n0 such that K c GnQ.
There exists, by (II), No. 19, a A c Gno such that i2(Γ^; Λ) c #(ΓWo; GWo) + ε,
and, therefore, R(ΓA;A) < R{Γ) + ε. Consequently limΔ^i2(Γ4; A)£

REMARK. On combining Theorem 6 with Theorem 1 we see that
KmΔ̂ D R{ΓΔ A) < co implies the strength of /\ Sario [18] has shown
that Γ is strong if lunΔ_DR{ΓΔ A) < co.

l l Unsolved problems.

24* As we pointed out in No. 7, the following problem has not
been solved:

(1) Is R(Γ) < oo necessary for the strength of Γ ?
Since the maximizing function of m(f) in %F, or equivalently the

minimizing function of diam φ(Γ) in S3, does not exist in general, the
case is different from that of a weak boundary component. The example
of Strebel [20] stated in No. 19 is for R(Γ) > oo, and it does not answer
this question.

Let {Gn}n=i be the sequence introduced in No. 21 and let fn(z) be
the extremal function on Gn. Since {/„}"„i is a normal family, we may
assume that/ n converges to a univalent function f(z). One can imagine
that, if R(Γ) = oo, then f(Γ) would be a point. However, we can only
prove that f(Γ) consists of the point w = oo and possibly of radial
segments emanating from it whose arguments form a set of measure
zero (Strebel [22]). Such line segments appear in our Example 10, Nos.
39, 40. Nevertheless the boundary component of this example is unstable,
because we can map it onto a region such that f(Γ) is a point and
f(ΘD — Γ) consists of circles (No. 39).

We have several other unsolved problems as follows:
(2) Is strength a boundary property?
(3) Is 1S^R(Γ Δ ; A) equal to l i m . ^ ^ Λ ; z/)?
(4) Is strength preserved under quasi-conformal mappings?

IV. CRITERIA FOR WEAKNESS AND INSTABILITY

In this chapter we consider Problem A presented in No. 4. Several
sufficient conditions for weakness have been obtained by Savage [19].
Here we shall consider some special regions and attempt to get more
concrete necessary or sufficient conditions.
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12 Boundary on the positive real axis*

25. Let {αw}~=1 and {δw}^=0 be sequences of positive numbers such
that

1 <K-1^an<bn (w = l , 2, . . . ) ,

l i m an = CXD .
n-*oo

Denote by [α, 6] the closed interval on the real axis. Then

is a region and Γ — {oo} is its boundary component. The present sec-
tion is devoted to discussing the following problem: When is Γ weak
and when is it unstable*!

26. THEOREM 7. (i) / /

( 7 )

then Γ is weak.

(ϋ) //

(8) lim h. = l

(MUZ

(9) Σ ^ <oo
""'log i

ίfce^ Γ is unstable.

Proof, (i) Consider the annuli An = (an < j z \ < bn) (n = 1, 2, .).

Since Σ m o ( i ^ . w = Σl°£(δn/#n) = °°> Theorem 3 shows that Γ is weak.
(ii) Let A19 A2, •••, Afc be doubly connected regions satisfying the

conditions (i) and (ii) of Theorem 3. For any AV9 there exists an n such
that Av passes through the open interval (an9 bn) and a component of
Av contains 0 as well as an. The region

D(n) = {[0, an] U [bn, α,]}c

is conformally equivalent to Teichmϋller's extremal region with P =
{bnlan) — 1. By the extremal property of D(n), No. 11, the sum of the

3 If \imn->oo bn/an > 1, then Γ is weak by (i), Theorem 7
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moduli of all such Av does not exceed mod D(n) = log Ψ((bjan) — 1).

(10) Σ m o d Av ^ Σ log ψβ± - ί) .
v-i n-1 \an J

By (3), No. 12,

π2

log jpY** -

log-

Therefore, the right hand side of (10) converges and, by Theorem 3, Γ
is unstable.

EXAMPLE 1. an = 2n+ 1, bn = 2n + 2. Evidently (7) diverges so
that Γ is weak.

EXAMPLE 2. an = n*, bn = nk + 1 (k > 1). Since (7) converges and
(9) diverges, we cannot decide by Theorem 7 (see also No. 27).

EXAMPLE 3. an — en, bn — en + 1. Similarly, we cannot decide (see
also No. 27).

EXAMPLE 4. an = en<*, bn — en<* + 1 (a > 1). JΠ is unstable by (ii).

27* We derive another criterion applicable to Examples 2 and 3.
To this end, we first prove

LEMMA 2. For the doubly connected region

Ah = ( 1 < I z \< q) - [1 + h, q)

where h > 0 and q is fixed,

mod Ah ~ for h-»0 .

2 1 o g |
h

Proof. By (VIII), No. 9, mod Ah = 4π/λ{γ} where {γ} is the family
of rectifiable curves in Q = Ah Π (ί$z > 0) joining [— q, — 1] with
[1, 1 + h]. Map Q conformally onto the upper half-plane in such a
manner that —q, — 1 , 1 correspond to — oo, — 1 , 0, respectively. The
image P of 1 + h has the property that

P~ch2 for h->0

where c is a constant independent of h. From (VIII), No. 9, we con-
clude that
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mod Ah = log Ψ{P) ^ — — (h -> 0) .

k>,± 21ogi-

THEOREM 8. Suppose that linv^ bjan = 1. If an+1lan is bounded
away from 1, then Γ is weak if and only if

Σ
l log-

Proof. If the series converges, Γ is unstable by (ii) of Theorem 7.
Conversely, suppose that the series diverges. The doubly connected

region An — (an<\z\< an+1) — [bn, αn+1) is conformally equivalent to
the region A'n = (1 <\z\ < an+1jan) — [6n/αn, an+1lan). By the assumption
1 < 1 + δ < αw+1/αw and, therefore, AH = (1< |«| < 1 + δ) — [6Λ/αn, l + δ)cA^
so that mod ̂ ' ^ mod An. By Lemma 2

mod A'n
f ^ (n —> oo) .

2 log-

Consequently, the assumption implies that Σ mod An = oo, and we infer
from Theorem 3 that .Γ is weak.

EXAMPLE 3 (No. 26). an = en, bn = en + 1. By Theorem 8, Γ is
weak.

EXAMPLE 2 (No. 26). an = nfc, bn = n* + 1 (ft > 1). Since αw+1/αw =
(w + l)fc/^fc is not bounded away from 1, the above theorem is not
applicable. However, we can see as follows that Γ is weak. For
simplicity, we consider the case ft = 2 the general case can be treated
in a similar fashion. Consider the region An = (a2n < | z \ < α2w+i) —
[6an, αan+i), which is conformally equivalent to (1 < | « | < 4) — [1 + 2~2w, 4).
By Lemma 2, mod An ~ π2/(4^ log 2) for w <— oo and X m°d -An = °° I*
follows from Theorem 3 that Γ is weak.

More generally, this result can be stated as follows:

THEOREM 8'. Suppose that lim^*, bjan = 1 and that there exists a
subsequence {%J c {n} such that an + \an, is bounded away from 1 and

(12) Σ
ϊ = l log-

Then Γ is weak.
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28* When an+1jan is not bounded away from 1, we may also apply
the following criterion:

THEOREM 9. Suppose lim^oo bnlan = 1 and lim^*, an+1/an = 1. If

(13) lim l0«(l>nM

n->~ \og(an+1lan)

exists, then

f; log (an+1lan) = ^(14)
1 log

n \ 1 / l o g ( α n + l / α » )' βn \ 1 / g ( n + l / » ) _ - .

\αn/

implies that Γ is weak.

Proof. Consider the doubly connected region A'n = (1 < | £ | < qn) —
[1 + fcn, qn) (n = 1, 2, .), where 0 < Λw < gw — 1 and l inv^ ^w = 1.
Map the annulus 1 < | z \ < qn onto 1 < | w \ < e by the quasi-conf ormal
mapping

w = Γ n(2) = rlll0*qneiθ (z = rβu) .

Its dilatation equals I/log qn provided n is so large that qn < e. The
image of A'n is Aϊ = ( 1 < | w \ < e) - [(1 + λn)

1/loββ», β). From (I), No.
15, we have

(15) log qn mod A!£ ^ mod A'n .

Now suppose that lim^oo (log (1 + ^))/log qn exists. If

then mod A'J and log {1/[(1 + hn)
llloeqn — 1]} are bounded and bounded

away from zero. Hence the divergence of

(16) l oi

log
( l + hny

ιlosqn - 1

implies that Σn-i 1°& Qn * mod A" — oo and, by (14), that Σn-i m °d Άή = °°
If lim^oo (1 + hny

llog qn = 1 we obtain by Lemma 2

log A;' ^ ( w - o o ) .
2 log

Therefore, the divergence of (16) again implies that of Σw=iΠiod A'n.
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In the given region, consider An = (an < | z \ < an+1) — [bn, an+1). It
is conformally equivalent to the above A'n for 1 + hn — bjan and qn =
an+1/an. Therefore, ΣSLiinod-A,, = oo and .Γ is weak.

This criterion is applicable to Example 2.

EXAMPLE 5. an = n, bn = n + e~n. In this case (7) converges and
(9) diverges, so that we cannot decide by Theorem 7. Since an+1/an is
not bounded away from zero, we cannot apply Theorem 8.4 For every
subsequence such that l i m ^ α ^ ^ / α ^ > 1, (12) converges, and we cannot
use Theorem 8'. (14) also converges and, therefore 9 is inapplicable.
We have not been able to decide whether Γ is weak or unstable. In
general, for an = n, bn~n + e~n<* (a > 0), Γ is unstable for a > 1 but
it is unknown if it remains true for 0 < a ^ 1.

13* A generalization*

29 • Consider the case where the intervals are distributed on the
whole real axis. We treat again the simplest case.

PROBLEM. Let {αw}^=1 and {bn}ζ=Q be the sequence of positive numbers
such that

0 < bn-λ ^an<bn (n = 1, 2, •••)

l i m an = oo .
n—»o

Consider the region

Z> = ( | z | < c o ) - ύ [δn_ lf an] - U [-a,, — 6»_J .
W = l W = l

Under what condition is Γ = {oo} a weak boundary component of 5 ?
This problem can be reduced to the case which we discussed in the

previous section. More precisely, let Γ = {oo} be a boundary component
of

D = (\z\< c o ) - U [&»-i> α»] i

then we have

THEOREM 10. Γ is weak if and only if Γ weak.

Proof. If Γ is unstable, then, since D c D, Γ is unstable by the
definition.

4 The author is indebted to Professor R. Redheffer for the argument that follows in
this example.
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Suppose that Γ is unstable. Since weakness is a boundary property

(No. 18), we may assume without loss of generality that b0 > 1. By

Theorem 2, λ{γ} > 0 where {γ} is the family of curves in D — (\z\^l)

separating Γ from | z | = 1. Let {<yj be the family consisting of curves

in the upper half of D — (| z | ^ 1) connecting (1, oo) — Un-i [δ»-i> αΛ]

with ( —oo, —1) — u ~ β l [ —αn, —6n-i]. Let {γί} be its subfamily con-

sisting of curves whose end points are symmetric with respect to the

origin. Then, by (VIII), No. 9,

λ{γί} ^ λ ( 7 j = λ { γ } / 2 > 0 .

Consider the region Δ = (| ξ | < oo) — JJn-i [&S-i> 4 ] a n d its boundary
component (f = oo). Let {γ*} be the family of curves in Δ — (| ζ | 2g 1)
separating oo from | ξ | ^ 1. By making use of the mapping ζ = a;2, we
can immediately see that λ{γ*} = λ{γj} and, therefore, (ξ = oo) is an
unstable boundary component of J .

The mapping

ζ = Γ(^) = rV θ (« = re ί a)

is quasi-conformal and maps D onto Δ, z = oo onto f = oo. Since weakness
is preserved under quasi-conformal mappings (No. 18), Γ is unstable.

REMARK. Using the same method, we can also prove Theorem 10
when the intervals are distributed on k half-lines reί27ίV/fc (0 <g r < oo),
v = 0, 1, •••, k.

14. Criteria for arbitrary regions*

3O Let D be a plane region such that Γ = {oo} is a boundary
component. If D is contained in another region discussed in preceding
sections and {oo} is its unstable boundary component, then, by the
definition of instability, Γ is an unstable boundary component of D.

If such a condition is not satisfied, the following criterion may be
applicable. It is a simple generalization of (ii) of Theorem 7, and we
omit the proof.

THEOREM 11. Let D be a region such that OeD and Γ = {00} is
a boundary component. Γ is unstable if there exists a sequence {Cw}^=1

of components of ΘD — Γ satisfying the following conditions:
( i ) For a doubly connected region A c D separating 0 from 00,

there exists a number n such that A separates Cn from Cn+1.
(ii) For every n, there exist points aneCn and bneCn+1 such that

an — h I = dist (Cn, C n + 1),
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and

Σ
71 = 1

\Φnlan) - 1

31 This criterion is not a necessary condition for instability. This
is apparent from the following

EXAMPLE 6. Consider the closed sets

En = {z n2 + 1 <:\z\ <:(n + I)2, | a rgz | ^ π — ε J ,

0 < εM < 7Γ , w = 1, 2, .

If εn(w = 1, 2, •••) are taken sufficiently small, then Γ — {°o} is an
unstable boundary component of D — (\z\ < oo) — (J~==1 £7W. It does not
satisfy the assumption of Theorem 11.

Proof. For an arbitrary subsequence {Cw}~=1 of {En}n-i and every
choice of an and bn,

^i 1 ^ 1 A 1
w = i i 2 ra-i

- 1

Therefore, the assumption of Theorem 11 is not satisfied.
In order to show the instability of Γ, consider the following cross

cuts of D:

an: mz = 0, (n + I)2 ^ $z ^ (n + I)2 + 1 ,

βn' ]z\ = (n + I ) 2 , I a r g z | ^ π - εn ,

β'n . I z I = (w + I)2 + 1, I arg z \ ̂  TΓ - εn+1 ,

(w = l, 2, . . . ) .

Let 8n be the extremal distance between an and /5W U βf

n with respect
to the region (n + I)2 < | z \ < (n + I)2 + 1. It is possible to take εw and
en+1 so small that δn > w2 (w = 1, 2, « •). Let {γ}w be the family con-
sisting of closed curves in D — (\z\ <; 1) separating Γ from | z \ ̂  1 and
passing through an. Let {7i}w c {γ}w be the subfamily of curves contained
m(n + iγ<\z\<(n + iγ + l and put {γ2}, = {y}n - fa},. By (VI),
No. 9,
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λ{γ2}M

Since n2 < Sn ^ λ{γ2}ra and 2τr/λ{γ1}M = log(l + l/(w + I)2), we get

λ{γ}n ~ ~2τr" °gV + (n + I) 2 / + »?

if w is sufficiently large, and, therefore, Σ«-1l/λ{γ}M converges.
To apply Theorem 3, take Alf A2, , Afc. Then evidently

Σ mod A, ^ Σ l/λ{7}« < °°
V = l n - 1

and we conclude that Γ is unstable.

32* Finally, for the sake of completeness, we shall present a well-
known sufficient condition for weakness. For a bounded doubly connected
region A, we have that mod A ^ log (1 + (πditt)). Here d is the distance
between the components of dA and I is the infimum of the lengths of
closed curves which separate the components of dA and whose distance
from dA is ^ d/2 (Sario [15], Meschkowsky [11]). Therefore we get
immediately from Theorem 3 the following result (Meschkowsky [11],
Savage [19]):

THEOREM 12. Let D be a plane region containing the point z = 0
and suck that Γ = {oo} is a boundary component. Suppose there exists
a sequence of doubly connected regions An c D — (| z \ ̂  ε) (n = 1, 2, •)
wΐίfc ίfce following properties:

( i ) T%e 4̂W are mutually disjoint^
(ii) Aw separates Γ from \ z \ ̂  ε (n = 1, 2, •) cmd αiso separates

A*-! /rom Λn+1 (w = 2, 3, . •),
(iii)

Γ is a weak boundary component of D.
On applying this theorem, we obtain

EXAMPLE 7 (Denneberg [5]). Let D be a region such that Γ={oo}
is the only accumulating boundary component. If there exist numbers
a > 0 and β < oo such that the distance between every pair components
of 3D — Γ is ^ a and the diameter of every component of dD — Γ is
^ /9, then Γ is weak.

EXAMPLE 8 (Cf. Wagner [24]). Let @ be the group of transforma-
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tions z' = z + mω + nω' (m, n = 0, ± 1, ± 2, •) and let £Ό be a closed
set contained in the interior of the fundamental parallelogram of ©.
Then Γ = {oo} is a weak boundary component of the region Z) =

V. CRITERIA FOR STRENGTH AND INSTABILITY

In this chapter we shall discuss Problem B, No. 4. For simplicity
we mean by a boundary continuum a boundary component of a region
which is a continuum containing more than one point.

15 Strong boundary components*

33 If Γ is an isolated boundary continuum of D, i.e., if there
exists an open set U such that Γ c U and U n (djD — Γ) — φy then Γ
is evidently strong. More generally,

THEOREM 13. A boundary continuum Γ of a region D is strong if
there exists a disk U such that U Π Γ φ φ and U Π (dD — Γ) — φ.

This theorem is also almost trivial. To prove it rigorously, we shall
use the following

LEMMA 3. Let Δ be a simply connected region which is a proper
subset of (I ξ I < 1). Map Δ conformally onto the upper half-plane.
Then the image E of dΔ Π (| ζ \ < 1) is a set which does not belong to
the class ND.δ)

The proof is easy and we omit it. It may appear plausible that E
contains an interval. That this is however not so has been remarked
by Koebe (see Radό [13], p. 2, Bemerkung). We can even see that the
condition of Lemma 3 is necessary and sufficient.

Proof of Theorem 13. Map a component Δ of Uf]D onto the upper
half-plane by ψ and let E be the image of Γ Π Δ. By Lemma 3 Eφ ND

and, therefore, E is of positive measure (Ahlfors and Beurling [2]). If
Γ is unstable, a univalent function f(z) transforms Γ to a point. There-
fore, the univalent function / o φ on the upper half-plane takes a con-
stant boundary value on E, contrary to the well-known theorem of F.
and M. Riesz.

REMARK 1. In this case, R(Γ) < oo and we can also use Theorem
1 to conclude that Γ is strong. To prove the finiteness of R(Γ), we
apply Theorem 5. Take a component V of U Π D. It is easy to find

5 A compact set E is said to belong to the class ND if E° does not admit a function
with a finite Dirichlet integral.
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a simply connected region A such that A c D, V c A and (| z \ S ε)cz/.
Since the set E$ND is of positive capacity (Ahlfors and Beurling [2]),
λ{γ}ε < oo by Lemma 3 and (XI), No. 10.

REMARK 2. Because of this theorem, we may consider from now
on only the case where every point of Γ is an accumulation point of
dΏ-Γ.

?A. We shall now give two other kinds of examples of strong
boundary components which do not satisfy the condition of Theorem 13.

EXAMPLE 7. Let D be a radial slit disc | z | < a in the sense of
No. 3 and let Γ = (| z \ = a). If the arguments of the slits form a set
of measure μ less than 2π, then R{Γ) < oo and, consequently, Γ is
strong.

In fact, we can easily obtain the estimate

λ{γ}ε ^ {log(α/ε)}/(2ττ - μ)< oo .

35 EXAMPLE 8. Let {cn}£=1 be a sequence of numbers such that
0 < cn ^ τr/2w+1. Put r n = 1 - II{n + 1) and let

cn ^ arg z s,I z I rn, + cn ^ arg z s,

(fc = l, 2, . . . , 2W+1; n = l, 2, . . . ) •

Z7 = (12 I = 1) is a boundary continuum of the circular slit disc D =
(I s | < 1) - U».*sS. If Hm^oo cn2

n > 0, then iί(Γ) < oo and therefore, Γ
is strong.

Proof. Clearly it is sufficient to give the proof for cn2
n = 8 > 0.

For simplicity, we choose δ = τr/4, i.e., cn = π/2n+2. In order to show
the finiteness of R{Γ), we map D quasi-conformally onto the radial slit
disc Δ = (I w I < 1) — U n . * ^ where

; rne"V2 ^ | w | ^ rneV2 , arg w =

(& = l , 2 f •• ,2»*1;Λ = l f 2 f •••)•

Consider the doubly connected regions

A, = {«; - 1 <3ϊ2 < 1, - ί < 3z < i}

and

Aro = {w; - 1 < Mw < 1, - i < ^w <

- {w; mw = 0, - I ^ %w ^
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It is not difficult to map A, quasi-conformally onto Aw by a function
which is of class C1 in Az and is the identity mapping on the outer
periphery of Az.

In our region D, consider the quadrilaterals

„ p~c ^ I „ I / r .cM 7r(fc — 1) . . πfc
rMe n <^\z\ <^ rne n, — <, arg z <. - —

£t Δi

(Λ = l, 2, . . . , 2W+1; w = l, 2, . . . ) .

They are mutually disjoint and all Q* — s\ and Q* — σ\ are conformally
equivalent to Az and Aw, respectively. Therefore, we can contruct the
mapping w — T*(z) of Ql — si onto Q£ — a* which is the identity mapping
on dQl and whose maximal dilatation K depends neither on k nor on n.
Then

w = T(z) - \ n { Z ) i n Q5 - *5 (fc = 1, 2, , 2»+1; n = 1, 2, .)

is a qussi-conformal mapping of D onto z/ such that T(T) = (\w\ = ϊ) = Γr.
Since J belongs to the case of Example 7, R(Γ'\ Δ) < oo, and, by

Theorem 5, λ{γ'}5 < oo. Here γ' is a rectifiable curve in Δ — {\w\^έ)
connecting | w \ = ε with Γ'. It is furthermore assumed that γ' is a
union of a countable number of analytic arcs clustering nowhere in Δ
(cf. Remark, No. 15). On D, we have the corresponding family {γ}:

and, by (IV), No. 15, λ{γ}ε g K\{y'}e < oo. Therefore, by Theorem 5,
R(Γ) < oo and Γ is strong.

35 We continue to consider Example 8. If cn decreases sufficiently
fast, then R(Γ) = oo. In fact, let {γn}8 be the subfamily of {γ}ε which
consists of curves passing through the arc {z; z = rn, | arg « | ^ cn}. By
(VI), No. 9, λ{γ}ε ^λ{γj ε /2 w + 1 and, By Lemma 1, No. 13,

M % J s ~ - ^ - l o g — (n—oo) .
2π cn

For this reason R(Γ) = co if, for instance, cw = exp ( — 22W). However,
it is unknown in this case whether Γ is strong or unstable.

16» Unstable boundary continua

37 As in No. 21, let {£?w}w=i be a defining sequence of Γ and let
0 eGn = D — Ωn I Zλ Consider the function w = /n(^) maximizing the
functional m(/) in %Fn on Gw (No. 19). We may assume that {fn(z)}ζ=1

converges to a univalent function w = /(«).
In the following case, R(Γ) = oo implies that /(Γ) = {oo}:
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THEOREM 14. Let D be a region containing z = 0 and let Γ be a
boundary continum. Suppose that

( i ) D is symmetric with respect to the lines

Zv: reVic'2ίc ( -00 < γ <oo), v = 1, 2, . , 2fc

/or some integer k |Ξ> 0,
(ii) e^erτ/ component of dD — Γ intersects at least one lv.
Then Γ is strong if and only if R(Γ) < 00 .

Proof. We may assume that each Gn is symmetric with respect to
all the lv. By the uniqueness of fn(z) (No. 19), we can immediately see
that fn(z) and, a fortiori, f(D) are symmetric about these lines. As has
been shown by Strebel [22], f(dD — Γ) consists of radial segments. By
the assumption f(dD — Γ) is contained in Uϊ*i^-.

Now assume that/(Γ) Φ {00}. If /(Γ)c Ui-ikU {<»}, then/(Γ)nίv
is a line segment which does not meet ~f{dD — Γ), so that R(Γ)< 00 by
Remark 1, No. 33. If /(Γ) ς£ Uί-i^v U {^} there exists a sector S
bounded by two neighboring Zv's such that S (Ί /(Z7) does not intersect
f(ΘD — Γ) and we have R(Γ) < 00. Consequently, the strength of Γ
implies that R(Γ) < 00.

38. We can find many examples of unstable boundary continua
belonging to this category, e.g., as follows:

EXAMPLE 9. Consider the region

D - (|s I ̂  cx>) - r - U (sί U 8i U A U ~k) ,

where

Γ = {z -l^ίΆz^l, ^ = 0},

; 1 ^ 9te ^ 1, 3ίs
A;

Since every point on Γ, except ± 1 , is inaccessible, R(Γ) = co by
No. 10. From this and from Theorem 14, we infer that Γ is an unstable
boundary continuum of D.

39* Meschkowsky [11] has proved that a region satisfying certain
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metric conditions can be mapped conformally onto a region bounded by
circles or points in such a way that the image of a preassigned boundary
continuum is a point. This case is also an example of an unstable
boundary continuum.

40. The following example belongs to this category but does not
necessarily satisfy Meschkowsky's conditions. Moreover, the fuijction
f(z) = lim^oo/n(z) of No. 37 does not transform Γ to a point.

EXAMPLE 10. Let 1 = {z; - 1 ^ 3te ^ 1, $z = 0} and let

Γ = {z; Viz^O, - 1 SLSZ^ 1}

Choose a sequence {cfc; ά = ± 1, ± 2, •} such that

C-JC = — Cfc, Cx > C2 > I 0 ,

and let

fc ™ I & n> I 1 | 1/ • . - / ^ _L I ,

Sfc Z —— v β * V"̂  / *^ * ^ * * ^ -LI ,

s-*/»: J3 = re«°t-*ι» (l/l & I! ^ r ^ 1) ,

where k = ± 1, ± 2, •••. Then Γ = / U /' is an unstable boundary
continuum of the region

D = (I 2 I g ex)) - r - U (β* U s ί / 2 U ί U s,"^2) .

In fact, Z> can be mapped onto a region such that /(Γ) is a point

and every component of f(dD — Γ) is a circle. For the proof, map the

region

2 I; ^ °°J — U \sfc U 8j u oA u bjc )

conformally onto a region bounded by 8n circles;* we may require that
the mapping function w = f(n)(z) has the expansion z + bnlz + near
# = oo (^ = 1, 2, •••). The existence and the uniquess of such a map-
ping are well known. A suitable subsequence of {/(w)(2)}T~i converges
to a univalent function w = /(«). We can easily prove that every
component of f(dD — Γ) is a circle (see, e.g., Meschkowsky [11]). In
what follows we shall show that f{Γ) = {0}.

First we remark that R(Γ) = co, because every point on Γ, except
0, ± 1, ± i, is inaccessible (cf. (Xf), No. 10). Second, D and, therefore,
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f(D) are symmetric with respect to the following four lines: l0 = (real
axis), lκU — (9te = $z), lπ,2 = (imaginary axis), and Z_π/4 = (fRz = — $2).

The component /(Γ)* of /(D)c corresponding to /(Γ) is a compact
connected set which contains the point w = 0 and is symmetric about
these four lines.

The component /(eg)* of D c (/3 = 0, ±7r/2, ττ; k = ± 1, ± 2, •) is
a disk, which we denote by

The radius ρk does not depend on β because of the symmetry. Fur-
thermore,

(17) lim ft = 0;

in fact, all the Δ% cluster to /(Γ)*, so that the sum 8π Σ ϊ - i P* of their
areas converges.

Consider a quadrilateral

*~^~ ^A

which connects si with sΐϊ (fc = 1, 2, •)• The extremal distance between
si and stf

k with respect to D does not exceed

log A;

Let Lfc be the infimum of lengths of curves in f(D) connecting Δ\ with
z/%2. Then

(18) L | ^ (7Γ/2) - 2cfc _ Q (fc—co)
//Z7 logfc

where ^Ϊ7 expresses the area of a bounded open set U containing /(Γ)*.
For this reason and by virtue of (17) and (18), we have

lim I al - a% \ ̂  lim (Lfc + 2ρk) = 0 .

It follows, by symmetry, that {a\}k^1 and {αl^}^.! cluster to lπU in the
first quadrant. From this and again from the symmetry, we see that
the set H of all accumulation points of al (β = 0, ± π/2, π; k = ± 1 ,
± 2 , •••) is contained in lnU U i-^4. Evidently it is symmetric about l0

and lx!l, and Hczf(Γ)*.
Next we shall show that i ϊ = {0}. Suppose that H contains a point

w0 = pβί7r/4 (p > 0). Then there must exist a point qeiicμeH (0 <; g < p).
For otherwise if would consist of four points: H= {peiθ θ— ±τr/4, ±3ττ/4}.
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Then all but a finite number of components of f(dD — Γ) in the first
quadrant would be contained in | w — pei7ί/41 < p/4. Since w0 and 0 are
contained in /(Γ)* and /(Γ)* is a continuum, f{Γ) would have a "free"
subset as in Theorem 13. But the reasoning of Remark 1, No. 33,
shows that this property of f(Γ) contradicts the fact that R(Γ) = oo
and, therefore, qeί7ClieH exists. Take a subsequence {kό} c {k} such
that

Then

Lkj + 2pkιj ^ £^L > 0

for sufficiently great j , contrary to (17) and (18). Consequently, wQ does
not exist and H= {0}.

Finally, if /(Γ)* ^ H, then f(Γ) would again have a "free" subset,
contrary to the fact that R(Γ) = oo. We conclude that /(Γ)* = {0}.

41 Transform the region Z) by ξ" = \\z and, for simplicity, denote
the image again by D. For the sequence Gn ] D of No. 37, we take

Gn = (\z\<n\ + cn+1) n 2)

U L . i « < i ? i Λ^ ^
Λ = l ( 2

n = 1, 2, •••, and consider the extremal function /„(«). We shall show:
// Cj; = — c_ft decreases sufficiently fast (e.g., cft = e" ί !), ί/iew

limn_,»/n(2) = 2 uniformly on every compact set in D.
In order to prove this, we estimate the Dirichlet integral of

log I/«(«)/« I over Δ = (| z \ S 1/2):

„(«) I - log \z I) <£ Z>ffκ(log I /,(2) I - log h I)

| d a r g / » - l o g | 2 | - d a r g / , ,

— log I /» I ^ arff 2 + log I 2; I d arg 2)

= ( (log \fn I d*rgfn - 21og I/. | tfargz

+ log I z I eZ arg z)

= 2π log i2(Γn Gn)-2 log #(ΓW GJ [ d arg 2

+ ( log I z I dargz ^ 2τr{logw! - logi2(Γn; GB)} .
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To estimate the last term, we shall use the relation log R(Γn Gn) =
lim8_»0 (log e + 27τλ{γ}^})» where the sequence is increasing (No. 22). Here
{γ}£w) is the family of curves in Gn — (| z | <̂  ε) connecting Γn with
I z I = ε. We take the closed disks

Δh

n : \z - eiiίhl21 ^ cn ,

h = 0, 1, 2, 3; w = 1, 2, . . Let {γ1}^) c {7}?} be the family of curves
connecting | z \ = ε with UΛ.»^ί U ^«ft and put {γ2}

(

ε

w) = {7}(

8

n) -
By (VI), No. 9,

or

It is evident that

2π — 8cn e 2π e

Therefore,

log R(Γn Gn) ^ log ε + 2τrλ{γ}^ ^ log n! - 2:

whence

If cw is taken sufficiently small, then linv+oo λl/λχ = 0. For instance, if
cn = β"w!, we have λ ! ^ ( 8 n!)/π (?ι-^oo) by Lemma 1, No. 13, and
λϋ/λi —> 0. In such a case, l i n v ^ i)^ (log |/n(«) | — log | z |) = 0 and we
conclude that lim^*, fn(z) = « uniformly on each compact set in D.

Consequently R(Γ) = oo for our region, but lim,^*, fn(z) does not
transform Γ to a point.
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