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1. Introduction. Let B be a complex Banach algebra with an involu-
tion x —> x* in which, for some k > 0, || xx* || ^ k \\ x \\ \\ x* || for all x
in B. Kaplansky [8, p. 403] explicitly made note of the conjecture that
all such B are symmetric. An equivalent formulation is the conjecture that
all such B are J3*-algebras in an equivalent norm. In 1947 an affirmative
answer had already been provided by Arens [1] for the commutative case.
We consider in § 2 the general (non-commutative) case. It is shown that
the answer is affirmative if k exceeds the sole real root of the equation
4ί8 - 2t2 + t - 1 = 0. This root lies between .676 and .677. In any case
these algebras are characterized spectrally as those Banach algebras with
involution for which self-adjoint elements have real spectrum and there
exists c > 0 such that p(h) ̂  c\\h\\,h self-ad joint (where p(h) is the
spectral radius of h).

A basic question concerning a given complex Banach algebra B with an
involution is whether or not it has a faithful*-representation as operators
on a Hubert space. In § 3 we give a necessary and sufficient condition
entirely in terms of algebraic and linear space notions in B. This is that
p(h) = 0 implies h — 0 f or h self-ad joint and that R Π ( — R) — (0). Here
R is the set of all self-ad joint elements linearly accessible [11, p. 448] from
the set of all finite sums of elements of the form x*x. This is related to a
previous criterion of Kelley and Vaught [10] which however involves topo-
logical notions (in particular, the assumption that the involution is continu-
ous).

If B is semi-simple with minimal one-sided ideals a simpler discussion
of ^-representations ( § 5) is possible even if B is incomplete. For example
if B is primitive then B has a faithf ul*-representation if and only if xx^ — 0
implies x*x — 0. The incomplete case has features not present in the
Banach algebra case. In the former case, unlike the latter, (^-representa-
tion may be discontinuous. A class of examples is provided in § 5.

2. Arens*'algebras Let B be a complex normed algebra with an in-
volution x —> x*. An involution is a conjugate linear anti-automorphism
of period two. Elements for which x = x* are called self-adjoint (s. a.)
and the set of s. a. elements is denoted by H. Let § be a Hubert space and
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be the algebra of all bounded linear operators on £>. By a*-represen-
tation of B we mean a homomorphism x —• Tx of B into some ©(£)) where
Tx* is the adjoint of Tx. ^-representation which is one-to-one is called
faithful.

We shall be mainly, but not exclusively, interested in the case where
B is complete (a Banach algebra). In § 2 we shall assume throughout that
B is a Banach algebra with an involution x —> x*.

As in [5, p. 8] we set χoy =. x + y — xy and say that x is quasi-regular
with quasi-inverse y if χoy = ?/oχ = 0. The quasi-inverse of α? is unique,
if it exists, and is denoted by xf. As, for example, in [16, p. 617] we define
the spectrum of x, sp(x), to be the set consisting of all complex numbers
X Φ 0 such that λ"1^ is not quasi-regular, plus λ = 0 provided there does
not exist a subalgebra of B with an identity element and containing x as an
invertible element. (The treatment of zero as a spectral value plays no
role below.) The spectral radius p(x) if x is defined to be s u p | λ | for
λ 6 sp(x).

We say that B is an Arens*-algebra [1] if there exists k > 0 such that
|| x*x || ^ fc || a? || || x% ||, xe B. As usual, we say that B is a B*-algebra if

2.1. L E M M A . Let B an Ar ens*-algebra with \\ xx* \\^k\\x\\ | | x* \\,

xe B. Then for each s. a. element h, ρ(h) >,k\\h\\ and sp(h) is real.

That the spectrum of a s. a. element h is real is shown in [1, p. 273].
By use of the inequality || hf || ^ k || h?~Ύ ||2 as in [16, p. 626] it follows that
P(h) ΞΞ> k || h ||. We shall show (Theorem 2.4) that the spectral conditions
of Lemma 2.1 imply that B is an Arens*-algebra.

2.2. LEMMA. Suppose that for each s. a. element h, p(h)^tc \\h\\ and
sp(h) is real, where c > 0. Let h be s. a., sp(h) c [—α, 6] where a >̂ 0,
6 :> 0 and Ze£ r > 0. Tfcew

( 1 ) || (-ί-1/*)' | | < r i / 1 > ( 1 - cr)blcr and t > (1 + cr)a/cr,
( 2 ) || {t-λh)f \\<rift>(l- cr)alcr and t > (1 + cr)6/cr.

Note that (2) follows from (1) as applied to the element-^. By [18,
Theorem 3.4] the involution is continuous on B. Therefore h generates a
closed*-subalgebra J50. Let 2JΪ be the space of regular maximal ideals of
BQ. For t > a set u = {—t~ιhy. By [8, Theorem 4.2], u e Bo. It is readily
seen that u is s. a. Since —t~xh + u + t~λhu = 0 we have, for each Λf e 2W,
w(Λf) = Λ(M)/(ί + h(M)). By, [8, p. 402] the spectrum of h is the same
whether computed in B or in BQ so that — a <£ Λ(Λf) <£ &. Since λ/(ί + λ)
is an increasing function of λ we see that —al(t — a) ^ %(Λf) ^ 6/(ί + 6).
Now p(u) = sup I ^(ikί) I, Jkf 6 3Jί. Therefore, since u is s.a.,

(2.1) c || w || ^ ]0(^) ^ max [α/(ί - α), δ/(ί + 6)] .
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From formula (2.1), \\u\\ < r if α/(ί — a) < cr and 6/(ί + 6)<cr. This
yields (1).

Note that, under the given hypotheses, c ^ 1.

2.3. LEMMA. Let x and y be quasi-regular. Then x + y is quasi-
regular if and only if x'y' is quasi-regular.

The formulas χΌ(χ + y)oy' = x'y' and x + y — χo(χ'y')oy yield the de-
sired result. Let r > 0. If | |OJ'| | < r and || y' \\ < r"1 it follows from
Lemma 2.3 and [12, p. 66] that (x + 2/)' exists.

Consider the situation of Lemma 2.2 and let hk be s. a., k = 1, 2 where
JV = max00(^0, i W ) . By Lemma 2.2, || («-%))' || < 1 and || (-«-%)' | | < 1
if ί > ( 1 + c)ΛΓ/c. Then, by Lemma 2.3,

(2.2) sp{hx + h2) c [-(1 + 0)2 /̂0, (1 + c)Nlc\ .

Suppose next that sp(hk) c [0, oo), k = 1, 2. Then || (£"%)'11 < 1 if
ί > ( 1 + c)iV/c and || (-t-'hj | | < 1 if t > (1 - c)iSΓ/c. Then by Lemma
2.3,

(2.3) spih + h2) c [-(1 - c)Nlc, (1 + c)Nlc] .

2.4. THEOREM. Suppose that for each s. a. element h, p(h) ^ c\\h\\
and sp(h) is real, where c > 0 . Then B is an Arens*-algebra with ||a%e*||J>
k || x || || x* ||, x e Bf where k can be chosen to be c5/(l + c)(l + 2c2).

Let x — u + iv where u and v are s. a. Then #*# = u2+v2+i(uv — vu),
xx* = u2 + 'y2 + i(vu-uv) and $#* + α?*α? = 2^2 + 2^2. We next compare
p(u2) = [^(u)]2 and p^2) with jθ(χ^*). For this purpose we may suppose
that p(u) ^ p{v) for otherwise we can replace x by ix = — v + iu. If
X Φθ then λespOα?*) if and only if Xesp(x*x). Thus />(xx*) = p(x*x).
By (2.2), sp(cc^* + x*x) c [-(1 + c)ρ(xx*)lc, (1 + c)ρ(xx*)lc]. Now 2^2 =
xx* + ίc*α; - 2i;2. Let r > 0, ί > 0. By Lemma 2.2,

(2.4) || [t~\xx* + x*x)γ | | < r , ί > ( l + cr)(l + c)p(xx*)lc2r .

Since sp( — 2v2) c ( — oo, 0] and jθ(2^2), ^ p(2u2), by Lemma 2.2 we have, for
t > 0 ,

(2.5) || [ί-1(-2^2)]' || < r~\ t > ( r - φ ( 2 O / c .

we select c < r < 2c. For such r, Lemma 2.3 and formulas (2.4) and (2.5)
show that [t-\2u2)]' exists if t >max{(l+cr)(l+φ(α?a?*)/cV, (r-c)ρ(2u*)lc}.
Now (r — c)/c < 1 and sp(2u2) c [0, oo). Therefore, letting r—>2c, we have

(2.6) ρ(2u2) ^ (1 + 2c2)(1 + φ(ra*)/(2c3) .

O n t h e o t h e r h a n d \\x\\ ^ \\u\\ + \\v \\ ^ [ρ(u)+ ρ{v)]lc ^ 2ρ(u)\c a n d
|| a?* || ^ 2ρ(u)\c. Therefore, by (2.6),
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(2.7) || x || || x* || ^ 4iφe2)/c2 ^ (1 + 2c) (1 + c)p(xx*)lc5 .

But p(xx*) ίg || xx* ||. This together with (2.7) completes the proof.

2.5. COROLLARY. Under the hypotheses of Theorem 2.4, the norm of
the involution as an operator on B does not exceed (1 + c)(l + 2c2)/c5.

In (2.7) we may replace 11 x | | 11 x* \| by 11 x* | |2 and p(xx*) by \\x\\ \\x*\\.

This gives || x* || ^ (1 + c)(l + 2c2) || x | |/c5.

We denote by P(N) the set of x e B such t h a t sp(x*x) c [0, oo) (sp(x*x) c

(--,0]).

2.6. LEMMA. For an Arens*-algebra B the following are equivalent.
( a ) B is a B*-algebra in an equivalent norm.
( b ) N=(0).
(c) P=B.
Suppose that N = (0). Let y e B. Since the involution on 5 is con-

tinuous, the element y*y generates a closed*-subalgebra BQ. Let 9Jϊ be the
space of regular maximal ideals of Bo. By [1, p. 279] the commutative al-
gebra Bo is *-isomorphic to C(Wl). Also sp(y*y) is real. Hence there exist
u,ve BQ such that u(M) = sxιp(y*y(M)9 0) and 'y(M) = — mi(y*y(M), 0),
ikf e 9Jϊ. Then w and Ί; are s. a., #*τ/ = u — v and wy = 0. As in [14, p. 281],
(yv)*(yv) = —v3 so that ?/̂  = 0 by hypothesis. Then v = 0 and sp(y*y) c
[0, co).

A theorem of Gelfand and Neumark [13] asserts that if B is semi-sim-
ple, has a continuous involution, is symmetric (B = P) and has an identity
then there exists a f aithf ul*-representation x —> Tx of 5 . This theorem is
also valid when B has no identity [4, Theorem 2.16]. In our situation, B
is semi-simple [18, Lemma 3.5] and the involution is continuous. Thus a
faithful*-representation exists. This representation is bi-continuous by
[18, Corollary 4.4].

That (a) implies (b) follows from the well-known fact that any i?*-al-
gebra is symmetric [14, p. 207 and p. 281].

The equation At3 — 2t2 + t ~ 1 — 0 has exactly one real root a. This
root a lies between".676 and .677.

2.7. THEOREM. Suppose that for each s. a. element h, p(h) }> c\\h\\
and sp(h) is real, where c > 0. Then there is an equivalent norm for B
in which B is a B*-algebra if c > a.

Suppose that sp{x*x)a{ — oo, 0]. By Lemma 2.6 it is sufficient to show
that x = 0. Suppose that x Φ 0. By Theorem 2.4 it is clear that x*x ψ 0
and p(x*x) Φ 0. Set x = u + iv where u and v are s. a. As in the proof
of Theorem 2.4, xx* + x*x = 2u2+2v2 and we may assume that ρ(u)^p(v).
Since sp(u2) c [0, oo), sp(v2) c [0, oo) formula 2.3 shows that s^(2^2+2^2) c
[-(1 - c)io(2u2)/c, (1 + c)p(2u2)jc]. Let r > 0, t > 0. From Lemma 2.2,
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[~t~\2u2 + 2v2)]' | | < r if t > (1 - cr)(l + c)p(2u2)l(c2r) and t > ( 1 + cr)

We write x*x = 2u 2 +2v 2 +(-xx*) . By Lemma 2.2, )| [—ί-^—a?a?5|c)]'||<
r" 1 if £ > 0 and £ > ( r — c)p(x*x)jc since sp( —ίc^*)c[0, /?(#*#)]. By Lemma
2.3, (- ί-VαO' exists if £>max { ( l+cr)( l-φ(2^ 2 )/c 2 r , (l-cr)(l + c)p(2u2)l
c2r, (r — c)p{x*%)jc}. Since s#(x*£) c (-co, 0], />(#*x) cannot exceed this
maximum. Now select r, 1 g r < 2c which is possible since c > α. Then
(r - c)/c < 1 and (1 + cr)(l - c) ^ (1 - cr)(l + c). Therefore ρ(x*x) ^
(1 + cr)(l — c)p(2u2)lc2r. Letting r —* 2c we obtain

(2.8) p(x*x) ^ (1 + 2c2)(l - c) ρ{2u2)l2c3 .

Next we express — 2u2 = 2v2 + (— xx* — x*x). By formula (2.3),
sp(-xx* - x*x) c [-(1 - φ(B*α)/c,(l + c)ρ(x*x)lc]. Recall that |θ(2v2)^
jθ(2t62). Repeating the above reasoning we see that for r > 0, t > 0,
( - £-χ( - 2u2))f exists for ί > max {1 - cr) (1 + c)p(x*x)lc V, (1 + cr) (1 - c)p{x*x)\
c2r, (r ~ c)ρ(2u2)/c}. But sp(—2^2) c ( — oo, 0]. Then by the argument
above we obtain

(2.9) p(2u2) ^ (1 + 2c2)(l - c)p{x*x)\2& .

From formulas (2.8) and (2.9) we see that (1 + 2c2) (1 - c) ^ 2c8 or
4c3 — 2c2 + c — 1 <; 0. This gives c <J a which is impossible by hypothesis.

Thus if c > a we have N=(0). We subsequently show (Corollary 2.11)
that, in any case, JV and P are closed in an Arens*-algebra B.

Following Rickart [16, p. 625] we say that B is an A*-algebra if there
exists in B an auxiliary normed-algebra norm | x \ (B need not be complete
it this norm) such that, for some c > 0, | x*x \ ̂ c | x |2. He raises the ques-
tion of whether every A*-algebra has a faithful*-representation.

2.8. COROLLARY. An A*-algebra B where \ x*x \ ̂ > c\x\2, xe B, in
the auxiliary norm has a faithfuls-representation if c > a.

Observe that | x* \\ x \ ̂  c | x |2 so that | x* \ ̂  c"11 x ], x e B. Thus the
involution on £> is continuous in the topology provided by the norm \x\.
Let Bo be the completion of B in the norm \x\. We extend the function
] x ] from B to Bo by continuity. Likewise the involution x —> x* can be ex-
tended by continuity to provide a continuous involution y —> y* on BQ. We
then have | y*y \ ̂  c\y |2, y e Bo. As in [16, p. 626] we obtain ρ(h) ^c\h
for h s. a. in Bo where />(/?,) is the spectral radius computed for h as an ele-
ment of the Banach algebra BQ, p(h) = lim | hn \lln. Also | y*y \ ^c2\y*\\y\,
y e Bo, so that Bo is an Arens*-algebra. Hence, by Lemma 2.1, the spect-
rum of each s. a. element of Bo is real. By Theorem 2.7, Bo is a J3*-algebra
in an equivalent norm. Therefore B has the desired faithful*-representa-
tion.

We have no information on the truth or falsity of Theorem 2.7 for c ^



350 BERTRAM YOOD

To prove Theorem 2.7 without restriction on the size of c one can assume
without loss of generality that B has an identity. For suppose that B has
no identity, || x*x \\^k\\x*\\\\x\\,xeB. Adjoin an identity e to B to
form the algebra Bx with the norm defined in Bλ by the rule

|| λe + x || = sup || Xy + xy\\ .
llί/ll-i

veB

Then Bλ is a Banach algebra with the involution (Xe + x)* = Xe + #*[1, p.
275]. By changing in minor ways arguments in [14, p. 207] we see that B±

is an Arens*-algebra. There is a constant K such that || x* || ^ K \\ x ||,
xe B. Choose 0 < r < 1. Given λe + α? e Bλ there existsy e B, \\y || = 1,
such that

r 2 1 | λe + α? | |2 <\\Xy + xy | |2 ^ JBΓ || (Xy + xy)* \\ \\ Xy + xy \\

+ x)*(Xe + x)y \\

x)*{Xe + x)\\.

Then

l| (λe + x)*(Xe + x) || ^ k K~2 \\ Xe + x ||2 ^ (fcif-2)21| λe + x || || (λe + a?)*||.

We use this fact later.
Some results on spectral theory in Arens*-algebras were obtained by

Newburgh [15]. In a J3*-algebra p(x) is a continuous function on the set
H of s.a. elements since ρ(h) = \\h\\,he H. This property holds for all
Arens*-algebras.

2.9. THEOREM. In any Arens*-algebra, ρ(x) is a continuous function
on H.

We assume that p(h) Ξ> c \\ h \\ and sp(h) is real, heH. We shall use
the following principle [12, p. 67]. If yf exists and || z \\ < (1 + || yf \\)-χ

then (y + z)f exists.
Let heH, h Φ 0. Select t > p(h) and set u = (t~λh)f. We proceed as

in the proof of Lemma 2.2. Let Bo be the closed*-subalgebra generated by
h and let 2ft be its space of regular maximal ideals. Then ue BQ. Since
t~1hou = 0 we obtain, for each Meyjl,u(M) = h(M)!(h(M)-t). Since
λ/(λ — £) is a decreasing function of λ, sup | u(M) | can be majorized by
ρ(h)l(t-p(h)). Ύhen(l + \\u\\)~1^(l + c-1p(u))-1^c(t-p(h))!(ct + (l-
α(ί), say.

Therefore ί"1^ + t~% is quasi-regular if || t'% \\ < α(ί) or if

(2.10) ct2 - c[p(h) + || hλ ||lί - (1 - φ(Λ) || ^ || > 0 .

We apply this to fex 6 ϋ", || fex || < ρ(h). The larger zero d of the left hand

side of (2.10) is given by
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(2.11) 2d = p(h) + || K || + [(p(h) - || K | |)2 + 4c"Y#) || h, \\γ>* .

The radical term of (2.11) is majorized by ρ(h)-\\h1\\+2(c-1ρ(h)\\h1\\)1i2. Hence
d ^ ρ(h) + (c-'pih) | | /y) 1 / 2 . Thus t<βsp(h + hλ) if t > /tW + ίe'TWPill) 1 ' 8 .
Likewise ί 0 sp(—h — /^) under the same condition. This shows that

(2.12) p(h + hλ) ^ p(h) \l/2

provided h±e Hand || hτ \\ < p(h).
Note that p(h + hλ) ^ c\\h + ^ || ^ c (|| Λ || - |l ^ ||) ^ c(^(fe) - || Λx | |).

Therefore if || h, \\ < c(p(h) - | | ^ ||) or equivalently if || ^ || <cp(h)l(l + c)
we have || hx \\ < ρ(h + h^. We may then apply the above analysis to the
pair of s. a. elements (h + h^, —hlf to obtain (if || hx \\ < cp{h)\{l + c))

(2.13) p(h) ^ pih + h2) + (c-*p(h + h) || hλ \\^ .

From (2.12), p(h + h^ ^ [c~1/2 + l]p(h). Inserting this estimate in the
radical term of (2.13) we obtain

(2.14) p(h) ^ p(h + hx) + (c-1 + c-*ι

Combining (2.12) and (2.14) we obtain

I p(h + h) - p(h) I ̂  [(c-1 + c

provided \\h\\ < cρ{h)j{l + c).
This show that ρ(x) is continuous on H at x = h. Clearly we have con-

tinuity on H at x = 0.
For x s.a. in an Arens*-algebra let [α(#), b(%)] be the smallest closed

interval containing sp(x).

2.10. COROLLARY. For an Arens*-algebra B, a(x) and b(x) are con-
tinuous functions of x on H.

As remarks above indicate, there is no loss of generality in supposing
that B has an identity e. Let h be s.a. Choose λ > 0 such that sp(Xe+h)<z.
[1, OD). Let hn —»h, where each hn is s.a., and choose 0 < ε < 1. We have
ρ(Xe + h) = b(Xe -{- h) = X + b(h). By the ' 'spectral continuity theorem"
(see e.g. [15, Theorem 1]) for all n sufficiently large sp(Xe + hn) c
(1—ε, b(Xe+h) + e). Also for all n sufficiently large \ρ(Xe+hn)—ρ(Xe + h)\<ε
by Theorem 2.9. Since, for such n, sp(Xe + hn) c (0, oo), then λ + b(hn) =
ρ(Xe + h j -> λ + δ(Λ). Therefore 6(^w) —> b(h). A similar argument shows
that a(hn) —• α(/ι).

2.11. COROLLARY. For cm Arens*-algebra B, N and P are closed
sets.

This follows directly from the continuity of the involution on B and
Corollary 2.10. Likewise the set H+ of all s.a. elements whose spectrum is
non-negative is closed.
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3 Faithful*τeρresentations Let B be a Banach algebra with an in-
volution x —> x*. Our aim here is to give necessary and sufficient conditions
for B to possess a faithful*-representation. Our criterion (Theorem 3.4) is
in terms of algebraic and linear space properties of B. A criterion of Kel-
ley and Vaught [10] is largely topological in nature. To discuss this we
first prove a simple lemma. We adopt the following notation. Let Ro be
the collection of all finite sums of elements of B of the form x*x. Let R =
{x e HI there exists y e RQ such that ty + (1 — t)x e Ro, 0 < t ^ 1}. In the
notation of Klee [11, p. 448], R = lin Ro (computed in the real linear space
H, the union in if of Ro and the points of H linearly accessible from Ro).
Let P be the closure in B of Ro. If B has an identity e and the involution
is continuous then H is closed, e is an interior point of Ro [10] and R = P
[11, p. 448]. If B has no identity or if the involution is not assumed conti-
nuous we see no relation, in general, between R and P other than R c P.

3.1. LEMMA. Suppose that B has a continuous involution x —* x*
and an identity e. Then there is an equivalent Banach algebra norm
|| x ||i where || x* ]Ĵ  = || x \\u x e B, and || e \\x = 1.

We first introduce an equivalent norm || x ||0 in which | | # * | | 0 = || x ||0,
a? 6 JB, by setting || x ||0 = max (|| a? ||, || x* | |). Let LX(RX) be the operator on
JS defined by left (right) multiplicaton by x Lx(y) = xy and Rx(y) = yx. Let
|| Lx || be the norm of Lx as an operator on B where the norm \\y\\0 is used
for B. || Rx || is defined in the same way. We set || x ||x = max (|| Lx ||,
|| Rx | |). Then || x + y \\λ ̂  || x ||x + || y W, and || ajy |k ^ || x ||x || y || lβ Clearly
l| x ||i ^ || x ||0. Moreover || Lx \\ ̂  \\x ||0/|| e ||0 and the norms || x ||0 and
|| x ||i are equivalent. Trivially || e ||χ = 1. Also

|| Lx* || = sup || x*y ||0 = sup || y%x ||0 = || i2x || .

Then || x* ||, = max(| | Lx* ||, || βx* ||) = max(| | Lx ||, [| Rx ||) - || x ||x.
In view of Lemma 3.1 the result [10, p. 51] of Kelley and Vaught in

question may be expressed as follows.

3.2. THEOREM. Let B be a Banach algebra with an identity and an
involution x —> cc*. Then B has a faithful*-representation if and only if*
is continuous and P Π (—P) = (0).

As it stands this criterion breaks down if B has no identity. For let
B = C([0,1]) with the usual involution x —> x* and norm. Let Bo be the
algebra obtained from B by keeping the norm and involution but defining
all products to be zero. Then* is still continuous and PΠ(-P) = (0). But
Bo has no faithful*-representation, for otherwise Bo would be semi-simple
[16, p. 626].

As in [4] we call the involution x-^x* in B regular if, for h s.a., p(h) = O
implies h = 0. By [4, Lemma 2.15]. * is regular if and only if every
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maximal commutative *-subalgebra of B is semi-simple. Also every maxi-
mal commutative*-subalgebra of B is closed [4, Lemma 2.13].

By a positive linear functional f on B we mean a linear functional
such that f(x*x) ^ 0, x e B. The functional / is not assumed to be conti-
nuous. If B has an identity then [13, p. 115], f(h) is real for h s.a. and
/(a?*) = /(#*). Trivial examples show this to be false, in general. However,
from the positivity of /, f(x*y) and f(y*x) are complex conjugates which is
the fact really needed for the introduction of the inner product in Theorem
3.4.

3.3 LEMMA. Let the involution on B be regular. Then
(1) a positive linear f satisfies the inequalities

(3.1) f(v*hy) £ f(y*y) \\h\\,yeB,heH,

(3.2) f(y*x*xy) ^ f(y*y) \\x*x\\,x,yeB ,

( 2) if B has an identity e, any h e H, \\ e— h \\ S 1 has a s.a. square
root and, moreover, any positive linear functional is continuous on H.

Suppose first that B has an identity e, || e — h \\ ^ 1, h s.a. In the
course of the proof of [4, Theorem 2.16] it was shown that h has a s.a. square
root. Next do not assume that B has an identity. Let Bx be the Banach
algebra obtained by adjoining an identity e to B. Consider the power
series (1 - tf12 = 1 - ί/2 - ί2/8 . Let he B, h s.a. and || h \\ ̂  1. Then
the expansion — hj2 — h2j8— converges to an element ze B. Let Bo be
a maximal abelian*-subalgebra of B containing h. As noted above, Bo is a
semi-simple Banach algebra. The involution is continuous on Bo ([16, Corol-
lary 6.3]). Therefore z is s.a. Also (e + zf = e — h. Let yeB and set
k = y + zy. Then k*k = (y* + y%z)(y + zy) = y*(e + zfy = y*y - y%hy.
For any positive linear functional / o n B,f{k*k) ^ 0 which yields (3.1).
Formula (3.2) is a special case.

Suppose that B has an identity e. If we set y = e in (3.1) we obtain
\f(h) I ̂  /(e) || h || which shows that / is continuous on H.

3.4. THEOREM. B has a faithful*-representation if and only if * is
regular and R Π (-R) = (0).

Suppose that i? has a faithf ul*-representation $ —> Tx as operators on
a Hubert space ξ>. Let fc be s.a. and p(h) = 0. Then |θ(7\) = 0. As Th is
a s.a. operator on a Hubert space, Th — 0 and therefore /̂  = 0. Thus the
involution is regular. Let x e R Π (—R) and let / be a positive linear func-
tional on B. Then clearly f(y) ^ 0, y e Ro. From the definition of R there
exists yeRQ such that tf(y) + (1 - ί)/(a?) ^ 0, 0 < t ^ 1. It follows that
f(x) > 0 and hence f(x) = 0. Let ξe§ and set /(a?) = (Tzξ, ξ). Then
(Γxl, ξ) = 0 for all § e ξ>. Since Γx is a s.a. operator we see that Tx — Q and
x = 0.
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Suppose now that* is regular and 22 Π (—22) = (0). We show first that
the regularity of the involution makes available a general representation
procedure of Gelfand and Neumark [13].

Let / be a positive linear functional on B. Let If = {x\f(x*x) = 0}. If

is a left ideal of B. Let π be the natural homomorphism of B onto B\IS.
Since f(x*y) = f(y*x)f tQ'f=BIIf is a pre-Hilbert space if we define (π(x),
π(y)) == f(y*x). As in [13, p. 120] we associate with p £ a n operator A{
on φj> defined by A{ [π(x)] = π(2/ίc). Formula (3.2) yields

(3.3) || A { [ π ( 3 ) ] ||2 = f(x*y*yx) ^\\y*y\\\\ π(x) ||2 .

Thus A{ is a bounded operator with norm not exceeding || y*y ||1/2. It may
then be extended to Tf

y, a bounded operator on the completion $f of £>/.
The mapping x —> T{ is a ^-representation of 2? with kernel {yeB\yxeIf,
for all ίU6jB}=£ Note that JΓ* = K.

Now take the direct sum ξ> of the Hubert spaces ξ>r as / ranges over
all positive linear functionals on B ([13, p. 95]). Since || Tζ || ^ || y*y ||1/2

by (3.3) and this estimate is independent of/, the direct sum ([13, p. 113])
x —> Tx of the representations x —> Tζ yields a*-representation of B as
bounded operators on ξ> with kernel {y e B | yx e Π //, for all x e B}. If 2?
has an identity, the kernel is the reducing ideal of B ([13, p. 130]), namely

nif.
Supppose first that B has an identity e. The set Ro has the property

that x, y e Ro, λ, μ ^ 0 imply Xx + μy e Ro. By Lemma 3.3, i?0 =>
{xeH\ \\e — x\\ <^1}. Thus β is an interior point of Ro. By the theory
of convex sets in normed linear spaces, R is the closure in H of Ro and
R is a closed cone in i/([ll, p. 448]).

Let / be a positive linear functional on B. By Lemma 3.2, / is con-
tinuous on H. Also f(w) ^>0,weR. Let H' be the conjugate space of H
and G = {0 e ΐ P | #(w) ^ 0, w 6 R}. It is easy to see ([10, p. 48]) that G,
the dual cone of R, is the set of linear functionals on H which are the
restrictions to H of positive linear functional on B. There is no loss
generality in assuming that | | e | | = 1. Let xeH. By [10, Lemma 1.3],
d i s t (— x , R)=sup {g(x) \geG, g(e) ^ 1 } .

We show that R Π (-22) = fl" Π (Π //). Let y e H, y e Π//. For any
fixed f,Tf

y = 0 and (Tζξ, ξ) = O,ξe$f. Then (π(yx), π{x)) = 0 for all x e B
in the notation used above. Therefore f(x*yx) = 0, x e B. Setting x = e
we see that/(^/) = 0. Then by the distance formula, —yeR. Likewise
ye 22. Suppose conversely that ye R Π (—22). It is easy to see that for
each ze B, z*RozaRQ. Therefore z*RzaR. Hence z*yze RΠ(-22), zeB.
From the distance formula, sup {f(z*yz) | / positive, f(e) ^1} = 0 =
sup {/(—z*yz) | / positive, f(e) <: 1}. Hence f(z*yz) = 0 for each positive
linear functional. Then (Tf

yπ(z), π{z)) = 0 for all z whence Ύ{ = 0. There-
fore Ty = 0 and 2/ e ί ί Π (Π //).
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This proves the theorem in case B has an identity. Suppose that B
has no identity. Let Bλ be the algebra obtained by adjoining an identity e
to B. We extend the involution to Bx by setting (Xe + #)* = Xe + x*. The
involution on Bx is regular [4, Lemma 2.14]. Let 22$ and 22' be the sςts
22O and R respectively computed for the algebra 2?2. By the above it is suf-
ficient to show that R Π (~R) = (0) implies Rf Π (-22') = (0). Suppose
that 22 Π (-22) = (0).

Let x,yeB. Then y*(Xe + x)*(Xe + x)y = (Xy + xy)*{Xy + a?y). This
shows that y*R'oy c Ro which implies y*Rfy c 22. Note also that 2? is semi-
simple [18, Lemma 3.5] which implies that zB = (0), or Bz = (0), ze B, can
hold only for z = 0.

Suppose that λe + # e 22' Π (—22') where xe B and λ is a scalar. We
derive a contradiction from λ Φ 0. For every ί/eΰ, 2/*(λe+#)2/e 22Π(—22).
Setting u= —xjX we have y*(e—u)y = 0 or 2/*?/ = 2/*w|/ for all y e JS. Then

(3.4) h2 = tefe, Λ s.a.

Let fei and h2 be s.a. Then (fex + h2f = (Λx + h^n^ + h2). From (3.4) we
obtain

(3.5) / ^ + h2hx = ^ ^ 2 +

Also (Λ2 — ih2){hx + ih2) — (hλ — ih^u^ + ih2) From (3.4) we get

(3.6) h2hx — hjι2 = h2uhλ — ^ Λ 2

From (3.5) and (3.6) we see that hjι2 — hλuh2. Consequently for hk s.a., fc =
1, 2, 3, 4, we see that (hλ + ih2)(h3 + i/&4) = (/̂  + ίh2)u(h3 + ih^). In other
words

(3.7) zw = 2ww, z, weB .

From (3.7) (2 — 2%)w = 0 for all w e B so that z — zu for each z. Hence u
is a right identity for B. Likewise from z(w — uw) =0 for all ze B we see
that u is an identity for B. But this is impossible since we are considering
the case where B has no identity.

We now have x e R' Π (-22'). Then y*xy = 0 for all | / ε ΰ . Therefore
hxh — 0,h s.a. Also for hk s.a., fc = 1, 2, (fex + h2)x{hγ + h2) = 0 so that
/̂ x/ki + /^x/^ = 0. Also (hλ — ih^x^ + ίh2) = 0 so that /̂ cc/̂  — ^x^! = 0.
Therefore hxxh2 = 0. It follows that zxw = 0 for all z, we B. This implies
that x = 0 and completes the proof.

4 Preliminary ring theory. Let 22 be a semi-simple ring with mini-
mal one-sided ideals. For a subset A of 22 let 8(̂ L) = {x e R \ xA = (0)} and
3ϊ(A) = {x e 22 I Ax = (0)}. Consider a two-sided 2 of 22. If x e R(I), yeR,
ze I then zy e 2, 2(7/χ) = 0 so that 3Ϊ(2) is a two-sided ideal of 22. Therefore
9ΐ(2)2is an ideal. But [3ΐ(2)2]2 = (0). Thus, by semi-simplicity, m(I)I =(0)



356 BERTRAM YOOD

and 3ΐ(7) c 2(1). Likewise we have 2(1) c 3K(J) and thus 31(7) = S(J).
Let S be the socle [5, p. 64] of 72. This is the algebraic sum of the minimal
left (right) ideals of 72. S is a two-sided ideal. Therefore 2(S) = 3t(S).
This set we denote by S x . Note that S Π S1 = (0).

We call an idempotent e of R a minimal idempotent if e 72 is a minimal
right ideal.

4.1. LEMMA. (a) Let I be a left (right) ideal of 72, I Φ (0). Then
I contains no minimal left (right) ideal of R if and only if I a S1.

(b) 72/S± is semi-simple. If So is the socle of RjS1 then £ x = (0).
Let / Φ (0) be a left ideal of R. Suppose that 7 c S1. Then I cannot

contain a minamal left ideal J of R for any such J would be contained in
S f] S1. Next suppose that I ς£ S1. We must show that 7 contains a
minimal left ideal of R. There exists a minimal idempotent e such that e
I Φ (0). Choose ue I such that eu φ 0. By semi-simplicity and the mini-
mality of eR, eR = euR. Thus there exists z e R such that euz = e. Since
(euzf = β, we have j Φ 0 where j" = zew. Note that j2 — j . As ue I we
have i y c 7. To see that 7y is the desired minimal ideal it is sufficient to
see that jRj is a division ring [5, p. 65].

Note that jz — zeuz = ze Φ 0. Then Rze = Re so that there exists
v e 72 where vze = β. Then ΐλ? = wzew = e% and vjz = e.

We assert that ./ay = yce-J if and only if euxλze — eux2ze. - For if jxj^
jx2j, multiply on the left by v and on the right by z and use the relations
vj = eu and jz = ze. If ewa ̂ e = eux2ze multiply on the left by z and on
the right by u and use zeu = j .

Therefore the mapping τ: τ(jxj) = βiicca e is a well-defined one-to-one
mapping of /Kj into eRe. The mapping is onto. For let ewe e β72e. Then
ewe = euzwvze — τ(jzwvj). τ is clearly additive. But also τ[(jxj)(jyj)] =
τ(j%jyj) = euxjyze = (euxze)(euyze) = τ(jxj)τ(jyj). Therefore r is a ring
isomorphism of jRj onto eJ?β. Since eRe is a division ring so is jRj.

Let J be the radical of RjS λ and π be the natural homomorphism of R
onto JB/S1. Suppose that J =£ 0. Then π ' V ) => S1- and π ' V ) ^ S 1 . By
(a), π~ι(J) contains a minimal idempotent e of 72. We then have π(e) e J,
π(e) 9̂  0. This is impossible since the radical of a ring contains no non-zero
idempotents.

Let So be the socle of RjS1- and e be a minimal idempotent of 72.
Clearly π(e) =£ 0 and π is one-to-one on eRe. Then 7r(e)7r(72)τr(e) is a division
ring so that, since R jS1 is semi-simple, π(e)eS0. Let π(x)e S^-. Then
π(ea) = 0 so that exeS1 Π S = (0). Hence x e S 1 and π(x) = 0.

The following result is due to Rickart [17, Lemma 2.1.]:

4.2. LEMMA. Let A be any ring. Let x -* x* be a mapping of A onto
A such that #** = x, (xy)* — y*x* and xx* = 0 implies x = 0. Then any
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minimal right (left) ideal I of A can be written in the form I=eA(I=Ae)
where e2 — e Φ 0, e* = e.

We improve this result by relaxing the conditions on x —> x* but at the
expense of assuming the ring to be semi-simple.

4.3. LEMMA. Let R be semi-simple with minimal one-sided ideals.
Let x—>x*bea mapping of R onto R satisfying x** = x and (xy)*—y*x*.
Then the following statements are equivalent.

(1) Every minimal right ideal is generated by a s.a. idempotent.
( 2 ) Every minimal left ideal is generated by a s.a. idempotent.
( 3 ) jj* φ 0 for each minimal idempotent j of R.
(4) xx* = 0 implies x e SL

We say that the idempotent e is s.a. if e* = e. Note that x —* x* is
one-to-one and 0*=0. As a preliminary we show that j * is a minimal idem-
potent if j * is a minimal idempotent. The ideal I = jR is a minimal
right ideal. Then I* = Rj* is a left ideal Φ (0). Suppose J* z> K Φ (0),
J* Φ K where if is a left ideal of R. By semi-simplicity there exists
xeKsuch that x2 Φ 0. Then I* ID Rx Φ (0), J* Φ Rx. This implies that
/ ID x*R Φ (0), / Φ x*R. This is impossible. Therefore /* is a minimal
left ideal and j * is a minimal idempotent. It is clear from this argument
that (1) and (2) imply each other.

Assume (1). Let j be a minimal idempotent, I — Rj a minimal left
ideal. We can write I — Re where e is a s.a. idempotent. Then for some
v e R, vj = e. But e = ee* = vjj*v. Therefore jj* Φ 0. Thus (1) implies
(3).

Assume (3). Suppose that xx* = 0, x Φ 0. Let J = Rx. Then /^(0).
Suppose that / contains a minimal left ideal Rj of ϋ? where j is a mini-
mal idempotent. We can write j = i/#, yeR. Then 0 =£ jj'* = yxx*y*~§.
This shows that / contains no minimal left ideal of R. By Lemma 4.1,
I a S1. Then for any minimal idempotent e, 0 = e(ex) and x e S 1 . Thus
(3) implies (4).

Assume (4). If j is a minimal idempotent and jj* = 0 then j eS1-.
But j e S and S Π S1 = (0). This shows that (4) implies (3).

Assume (3). Let j be a minimal idempotent, I — jR. Since jj* Φ 0,
jj*i? = /. There exists u e R, jj*u = j . As noted above j * is a minimal
idempotent. By (3), 0 Φ j*j. Then 0 Φ (u*jj*)(jj*u) = u*(jj*)2u. There-
fore (jj*)2 Φ 0. Set h = j j*. Since J is minimal, / = ft/. As in the proof
of [17, Lemma 2.1] there exists u e I such that h — hu. Set e = uu*. As
in that proof, e is a s.a. idempotent and it remains only to check that eΦO
to obtain (2) from (3). If e = 0 then 0 — uu* — huu*h = h2 which is impos-
sible.

5 Normed algebras with minimal ideals. We are concerned here
with*-representations of semi-simple normed algebras B with an involution
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where B has minimal one-sided ideals. B may be incomplete.

5.1. LEMMA. Let B be a complex semi-simple normed algebra with
minimal one-sided ideals. Let e19 e2 be minimal idempotents of B. Then
the following statements are equivalent.

( 1 ) eiBeΛΦ(0).
( 2 ) eiBe1Φ(0)9

( 3) eJBe2 is one-dimensional.
( 4 ) e2Beλ is one-dimensional.
Suppose (1). There exists ue B, eλue2 Φ 0. Since exue2B — e±Bf there

exists v e B where eλue2v — eλ. Then e2ve1 Φ 0 and (1) implies (2). Let E—
{Xe2ve1 I λ complex}. Clearly e2Bex ID E. Let e2xex e eJBeλ. Then e2xe1 —
e2x(exue2ve^) — (e2xeλue2)e2ve2, a scalar multiple of e2 by the Gelfand-Mazur
Theorem. Thus (1) implies (4). The remainder of the argument is trivial.

For the remainder of § 5, B denotes a semi-simple complex normed al-
gebra with an involution and with minimal one-sided ideals.

5.2. THEOREM. The following statements concerning B are equiva-
lent.

( 1 ) Every minimal one-sided ideal is generated by a s.a. idempotent.
( 2 ) There exists a*-representation with kernel S-1.
(3) There exists a*representation with kernel contained in SL.
(4 ) j — i* is quasi-regular for every minimal idempotent j.
( 5) jBj* Φ (0) for every minimal idempotent j and xx* — 0 implies

x^xeS1-, xeB.
Suppose that (1) holds. Let Q be the set of all s.a. minimal idempotents of
B and let j e Q. By the Gelfand-Mazur Theorem, jBj = {Xj \ λ complex}.
Suppose jx*xj = Xj. Taking adjoints, λ = λ so λ is real. We show that
jx*xj = — j is impossible. For suppose jx*xj = —j. Now jxj = aj for
some scalar a = a + bi, where α, b are real. Set c = a + (a2 + 1)1/2. By
the use of jx*xj = — j one obtains (jx* — cj)(jx* — cj)* = 0. From Lem-
ma 4.3 we have jx* — cj = 0. Then (a — bi)j = jx*j = cj. It follows that
c = a and 6 = 0. This is impossible.

For j e Q we define the functional /,(#) on B by the rule fj(x)j = jay.
By the above, /,(&*&) ^ 0, a? e B, x e B and //a?*) =7Jx). The functional
/j is a positive linear functional on i? and is continuous on B.

The following inequality of Kaplansky [9, p. 55] is then available.

(5.1) fΛ(y*χ*χy) ^ v ( χ * χ ) f s ( y * v ) , χ , y e B ,

where v(x*x) = lim || (^*ίtj)w ||1/w. Let ̂  = {a? |/Xa?*a?) = 0}. Let TΓ be the
natural homomorphism of B onto B/Ij. The definition (̂ (a?), π(y)) = fj(y*x)
makes B/Jj a pre-Hilbert space. Let ξ)j be its completion. See the discus-
sion of the Gelfand-Neumark procedure in § 3. To each yeBwe correspond
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the operator A3

y defined by A5

y[π(x)] = π(yx). Then

II Ai[π(x)] ||2 = fj(x*y*yx) £ v{y*y) \\ π(x) ||2

by (5.1). Thus Aj

y can be extended to a bounded linear operator Tj

y on § J f

and the mapping y —> Tj

y is a*-representation of B.
Since || Ty || ^ v(y*y)1/2 and the estimate is independent of j eQ we can

take the direct sum § of the Hubert spaces fej,J€Q and the direct sum #—>
Γx of the representations x —> T£. This gives a*-representation of B with
kernel iΓ where

K = {α e J3 I ay e f| Jj, for all yeB} .

We show that if = S 1 .
It is clear that S* = S and therefore (S1)* = SL. Using this and

Lemma 4.3 we obtain the following chain of equivalences: xef] Ij^jx*xj =
0, alii eQ<-^jx* e SL, alii 6 Q+^jx* = 0, alii e Q-+x* e S1 ~x eS1-.
Therefore n Ij = S 1 . Thus JBΓ = {x | ay e S S all y e B}. If x e K then
xj e S"- Π S = (0) for all i e Q and aj e S x . Clearly S-1- c K. Therefore
K = S x . Hence (1) implies (2). Clearly (2) implies (3).

Assume (3) and let φ be a*-representation whose kernel c S 1 , Let j
be a minimal idempotent of B. Let A be the subalgebra of B generated by
i and i*. By the Gelfand-Mazur Theorem, jj*j = λi for some scalar λ.
Thus A is the linear space spanned by j , j * , jj* and j^j. A is finite-dimen-
sional and A a S. Since S Π S 1 = (0), ^ is one-to-one on A. Note that
A = A*. Let i<7 be the i?*-algebra obtained by taking the closure in the
operator algebra on the appropriate Hubert space of φ(B). Clearly φ(A) is
a closed*-subalgebra of E. The element <p(j — i*) is a skew element of E
and therefore quasi-regular in E. By [8, Theorem 4.2] its quasi-inverse in
E already lies in ψ{A). As φ is one-to-one on A, j — i* has a quasi-inverse
in A. Thus (3) implies (4).

Assume (4). Let j be a minimal idempotent of B. There exists % e δ
such that i — i* + u — (j — j*)u = 0. If ϋ * = 0 then left multiplication
by i gives j = 0 which is impossible. Therefore ϋ * =£ 0. By Lemma 4.3,
we see that (4) implies (1). Clearly (1) implies (5) by Lemma 4.3. Assume
(5). Let j be a minimal idempotent of B. If j*j = 0 then 0 = x*j*jx =
(jx)*(jx). Also i^cc*i* e S 1 n S = (0) for all x e B. Since iJ?i* ^ (0), jBj*
is one-dimensional by Lemma 5.1. Hence there exists u Φ 0 in B and a
linear functional /(#) on B such that i#i* = f(x)u. Then f(xx*) = 0 for
all x e S . Expanding 0 = /[(a? + 2/)(a? + y)*} = /[(a? + Ϊ2/)(a> + ij/)*] we see
that f(xy*) = 0 for all x,yeB. Hence / vanishes on JS2. Take any 2 6 B.
We have f(jz)=0 or i^i*=0. Thus jBj*=(0) which is impossible. There-
fore yy ^ 0. By Lemma 4.3, (5) implies (1).

Algebras to which Theorem 5.2 can be applied most easily are those for
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which S1 = (0). Examples are semi-simple annihilator algebras studied by
Bonsall and Goldie [3] and primitive algebras (Corollary 5.4).

5.3. COROLLARY. If B is an Arens*-algebra with non-zero socle then
NaS1.

Let xQ e N, sp (xox*) c ( — oo, 0]. Then we can write xox* = — h2 where
h is s.a. The ideal S1 is closed and self-ad joint. Let π be the natural
homomorphism of B onto B/S1. An involution can be defined in B/S1 by
the rule [π(x)]* = π(x*). Since B is semi-simple, BjS1 has non-zero socle.
Let π(x) be a minimal idempotent of BIS1. Then [π(x)]* — π(x) = π(x* — x)
is quasi-regular in B/S1 since x* — x is quasi-regular in B. By Theorem
5.2 and Lemma 4.1, B/S1 has a faithful*-representation. Then, by Theo-
rem 3.4, π(xox*) = 0 = π(/&2). Therefore v ί e S 1 and (jxo)(jxo)* = 0 for
each minimal idempotent i of 5. Therefore jx0=0 for all such i and ^ θ i S 1 .

We call the involution x —> x* proper if xx* = 0 implies x = 0. We call
the involution quasi-proper if $#* = 0 implies x*x — 0. Not every involu-
tion is quasi-proper. For example let B be all 2 x 2 matrices with the in-
volution defined by

la b\* I a —c\

\c d) \-b dj

To see that this is not quasi-proper choose x as

1 i
0 0

Every proper involution is quasi-proper but the converse is false. Con-
sider, for example B = C([0,1]) and set x*(t) = x(l — t).

5.4. COROLLARY. Let B be primitive with non-zero socle. Then the
following statements are equivalent.

(1) The involution* is proper.
( 2 ) The involution* is quasi-proper.
( 3 ) There exists a faithful*-representation of B.
Suppose that S1 Φ (0). Then by [5, p. 75], S c S1. Since SnS1^^)

this is impossible. Therefore S1 = (0). Assume (2). Let j be a minimal
idempotent of B. Then jBj* Φ (0) (see the prooof of [16, Theorem 4.4])
and, consequently (5) of Theorem 5.2 is satisfied. Then by Theorem 5.2,
(2) implies (3); the remainder of the proof is obvious.

The equivalence of (1) and (3) was noted by Rickart [17, Theorem 3.5].
By Lemma 4.3 and Theorem 5.2 this equivalence of (1) and (3) holds for any
B for which S1 = (0).

If B is complete the following statements hold. (1) Any ̂ representa-
tion of B is continuous [16, Theorem 6.2]. (2) If B has a faithfuls-repre-
sentation then the involution is continuous [16, Lemma 5.3]. We show that
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both these statements can be false for B incomplete. Our discussion is
based on work of Kakutani and Mackey [6, p. 56] (see also [7] for the com-
plex case). Let X be an infinite-dimensional complex Hubert space, (x, #) 1 / 2=
|| x ||. Let HI x | | | be any other norm on X such that | | | # | | | ^ \\x ||, xeX. Let
Xi = {ye 36|(α?, y) is continuous on X in the norm |||a?|||} and endow Xx with
the norm ||| x | | |. Then [6, p. 56] a linear functional f(x) on Xx has the form
f{x)—{x, y). Moreover Xx is dense in X in both norms. If there exists e > 0
such that || x \\ <: c \\\ x | | |, xe Xx then X = 3^ and 3^ is complete.

Let ©(X^ be the normed algebra of all bounded linear operators on Xx.
As shown in [6, p. 56], Gf(Xi) has an involution T —• T * where (ΪXαO, 2/) =
(#, T *{y)), x,ye Xx. In these terms we show the following.

5.5. THEOREM. The following statements are equivalent.
( 1 ) 3Ej is complete.
( 2 ) The involution in ©(Xx) is continuous.
( 3) ϊ%e faithfuls-representation of Theorem 5.2 for ©(Xj) is conti-

nuous.
As already noted (1) implies (2) and (3). Assume (2) and let M be the

norm of the involution. By [2] any minimal idempotent of Gf(Xi) is one-
dimensional and the operator J defined by the rule J(x) = {x, u)u where
(u, u) = 1 is a minimal idempotent. Since (J{x), y)— (xf u){u, y)=(x, J(y))
we have J=J*. The functional / defined by /(U)J = JUJ is a continuous
positive linear functional on ©(X^. For z e Xx define the operator W0 by the
rule Wz{x) = (α?, %)«. Then we can write the norm of W, as C || | z | | | where
C is independent of «. A simple computation gives JWf WZJ = (2, 2)J. By
formula (5.1), where || Z7|| denotes the norm in @(Xi),

II z ||2 = (z, z) ^ v(W*W.) ^ II TΓ*TΓf || ^ C'ilf || | 2 | | | 2 .

This shows that X2 is complete.
Assume (3) and let N be the norm of the faithful*-representation. Let

If = {Ue ©(XO |/(C7*Z7)=0}, π be the natural homomorphism of @(X0 onto
©(Xi)/// and (1,3y)r be the inner product for the pre-Hilbert space ©(ϊx)///.
Let F—> Γf be the partial*-representation induced by/. Its norm cannot
exceed JV. Now (π(J), π{J))f = 1 and

N2 II C/||2 ^ II Tί[π{J)} ||2 = (D/, UJ)f = f{JU*UJ) = f{U*U) .

Applying this formula to U = TF2 we obtain i\Γ2C2 | | | 2 || |2 ^ (2, 2) and again
Xx is complete.

A specific example is suggested in [6, p. 57]. Let X = I2, \\\ {xn} | | | =
sup I xn \. An easy computation gives Xx = I2 Π i1 in the sup norm. Here
the involution and*-representation are therefore not continuous.

6. Involutions on @(ξ>). Let ξ> be a Hubert space and @(£>) the 5*-
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algebra of all bounded linear operators on ξ>. We determine in Theorem 6.2
all the involutions on Gf (£>) for which there are faithful adjoint-preserving
representations.

6.1. LEMMA. Lβί* be any involution on (£(£>). Then there exists an
invertible s.a. element U in (£(ξ>) such that Γ* = U-χT*Ufor all Te&(&).
Conversely any such mapping is an involution.

The mapping Γ-> T**, Te (£(£), is an automorphism of ©(£). Thus
there exists F e ©(£>) where T** = VTV~\ Te (£(£>). Set U = F*. Then
Γ* = U-Ύ+U. Since T** = Γ, Γ = (U^T^Uf = C7"1ί7*T(i7*)-1?7. Thus
U*1!!* lies in the center of ®(ξ>). Consequently Ϊ7 = λ?7* for some scalar
λ. Since *7* Ϊ7 = | λ |2 C7* [/ we see that | λ | = 1. Set λ = exp (iθ) and W=
exp(-i0/2)I7. Then TF* = TFand T* = T P - ^ I F , Te ©(£>). The remain-
ing statement is easily verified.

6.2. THEOREM. An involution T -*T% on @(ξ)) is proper if and only
if it can be expressed in the form T* = U"1T*Uf Ue G?(φ) where U is s.a.
and sp(U) c (0, oo).

If T —• T# is a proper involution then (see [7]) an inner product can be
defined in ξ> in terms of which T* is the adjoint of T. Hence the proper
involutions are those for which there is an adjoint preserving faithful re-
presentation.

Let W be a one-dimensional operator, W(x) = {x, z)w with wΦO,
Then W*(x) = (x, w)z. By Lemma 6.1 we can write T*= U^T^U, Te
where £7 is s.a. Then 0 Φ W*W= U^W+UW. Hence 0 Φ W*UW. But
W*UW(x) = (x, z)W*U{w) = (α?f z)(U(w), w)z. Therefore (t/(w), w) Φ 0
for an arbitrary non-zero weξ). Hence {U(w), w)Φθ for an arbitrary non-
zero weH. Hence (U(w),w) has a constant sign and, by changing to
— U if necessary, we may suppose that (U, w), w) ^ 0, we ξ>. Then we
can write U = F 2 where Fis s.a. in ®(ξ>).

Suppose conversely that T* = v~2T*V\ Te ®(φ) where Fis s.a. Then
TΓ* = (ΓF-^ίΓF-^^F 2 . Thus TT* = 0 implies that T F " 1 = 0 and that
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