Pacific Journal of Mathematics

ON THE SUMMABILITY OF DERIVED FOURIER SERIES

BILLY JOE BOYER

Vol. 10, No. 2 October 1960

ON THE SUMMABILITY OF DERIVED FOURIER SERIES

B. J. Boyer

1. Introduction. Bosanquet ([1] and [2]) has shown that the $(C, \alpha + r), \alpha \geq 0$, summability of the rth derived Fourier series of a Lebesgue integrable function f(x) is equivalent to the (C, α) summability at t = 0 of the Fourier series of another function $\omega(t)$ (see (4), §2) integrable in the Cesaro-Lebesgue (CL) sense. This result suggests the following question: Is there a class of functions, integrable in a sense more general than that of Lebesgue, which permits such a characterization for the summability of rth derived Fourier series and which is large enough to contain $\omega(t)$ also?

In this paper it will be shown that such a characterization is possible within the class of Cesaro-Perron (CP) integrable functions for a summability scale more general than the Cesaro scale (Theorems 1 and 2, §4). Theorem 3 provides sufficient conditions for the summability of the Fourier series of $\omega(t)$ in terms of the Cesaro behavior of $\omega(t)$ at t=0.

Integrals are to be taken in the CP sense and of integral order, the order depending on the integrand. It will be convenient to define the $C_{-1}P$ integral as the Lebesgue integral.

2. Definitions. A series Σu_{ν} is said to be summable (α, β) to S if

$$\lim_{n\to\infty} B\sum_{\nu< n} (1-\nu/n)^{\alpha} \log^{-\beta} \left(\frac{1}{1-\nu/n}\right) u_{\nu} = S$$

for C sufficiently large, where $B = \log^{\beta} C$ and C > 1. (It is sufficient to say for every C > 1.²)

The function $\lambda_{\alpha,\beta}(x)$ is defined by the equation:

$$(1) \qquad \lambda_{\alpha,\beta}(x) + i\overline{\lambda}_{\alpha,\beta}(x) = \frac{B}{\pi} \int_0^1 (1-u)^{\alpha-1} \log^{-\beta} \left(\frac{C}{1-u}\right) e^{ixu} du.$$

(2)
$$\varphi(t) \equiv \varphi(t, r, x) = \frac{1}{2} [f(x+t) + (-1)^r f(x-t)].$$

(3)
$$P(t) \equiv P(t, r) = \sum_{i=0}^{\lceil r/2 \rceil} \frac{a_{r-2i}}{(r-2i)!} t^{r-2i}.$$

$$\omega(t) = t^{-r}[\varphi(t) - P(t)],$$

¹ Many properties of CP integration have been given by Burkill ([4], [5] and [6]) and by Sargent [7]. Other properties used in this paper can easily be verified by induction. Received July 6, 1959.

² Bosanquet and Linfoot [3]. They have also shown the consistency of this scale for $\alpha' > \alpha$ or $\alpha' = \alpha, \beta' > \beta$.

for $-\pi < t < \pi$ and is of period 2π .

The rth derived Fourier series of f(t) at t = x will be denoted by $D_r FSf(x)$, and the nth mean of order (α, β) of $D_r FSf(x)$ by $S_{\alpha,\beta}(f, x, n)$. The kth iterated integral of f(x) will be written $F_k(t)$ or $[f(t)]_k$.

3. Lemmas. The following result is due to Bosanquet and Linfoot [3]:

LEMMA 1. For
$$r \ge 0$$
 and $\alpha = 0, \beta > 1$ or $\alpha > 0, \beta \ge 0$,
$$\lambda_{1+\alpha,\beta}^{(r)}(x) = 0(|x|^{-1-\alpha}\log^{-\beta}|x|) + |x|^{-r-2}) \text{ as } |x| \to \infty.$$

LEMMA 2. For
$$\alpha \geq 0$$
, $\beta \geq 0$ and $r \geq 0$,
$$x^r \lambda_{1+\alpha+r,\beta}^{(r)}(x) = \sum_{i,j=0}^r B_{ij}^r(\alpha,\beta) \lambda_{1+\alpha+r-i,\beta+j}(x),$$

where the $B_{ij}^r(\alpha,\beta)$ are independent from x and have the properties:

- (i) $B_{ij}^r(\alpha, 0) = 0 \text{ for } j \geq 1;$
- (ii) $\beta_{r_0}^r(\alpha, \beta) \neq 0$.

Proof. Let us put $\gamma_{1+\alpha,\beta}(x) = \lambda_{1+\alpha,\beta}(x) + i\overline{\lambda}_{1+\alpha,\beta}(x)$. For r=0 we take $B^0_{00}(\alpha,\beta)=1$. For $r\geq 1$ an integration by parts and the identity $u^r=-u^{r-1}(1-u)+u^{r-1}$ yield the following recursion:

$$(5) x^{r} \gamma_{1+\alpha+r,\beta}^{(r)}(x) = -(\alpha + 2r) x^{r-1} \gamma_{1+\alpha+r,\beta}^{(r-1)}(x) - \frac{\beta}{\log C} x^{r-1} \gamma_{1+\alpha+r,\beta+1}^{(r-1)}(x) + (\alpha + r) x^{r-1} \gamma_{1+\alpha+r-1,\beta}^{(r-1)}(x) + \frac{\beta}{\log C} x^{r-1} \gamma_{1+\alpha+r-1,\beta+1}^{(r-1)}(x).$$

The lemma follows easily from successive applications of equation (5).

LEMMA 3. For
$$n > 0$$
 and $\alpha = 0, \beta > 1$ or $\alpha > 0, \beta \ge 0$,

$$egin{align} \left(rac{d}{dt}
ight)^r & \left\{rac{1}{2\pi} + rac{B}{\pi} \sum\limits_{
u \leq n} \left(1 - rac{
u}{n}
ight)^{lpha} \log^{-eta} \left(rac{C}{1 - rac{
u}{n}}
ight) \cos
u t
ight\} \ &= n^{r+1} \sum\limits_{k=-\infty}^{\infty} \lambda_{1+lpha,eta}^{(r)} [n(t+2k\pi)] \; , \end{split}$$

for $r = 0, 1, 2, \cdots$.

Proof. Smith ([8], Lemma, 3.1) has shown that for every even periodic, Lebesgue integrable function Z(t),

$$(6) 2n \int_0^\infty Z(t) \lambda_{1+\alpha,\beta}(nt) dt = S_{\alpha,\beta}(Z,0,n).$$

Using Lemma 1 and the properties of Z(t), one can show in a straightforward manner that

(7)
$$\int_0^\infty Z(t)\lambda_{1+\alpha,\beta}(nt)dt = \int_0^\pi Z(t) \sum_{k=-\infty}^\infty \lambda_{1+\alpha,\beta}[n(t+2k\pi)]dt.$$

Let us define $Z(t) = \begin{cases} 1 & \text{for } |t| \le x \\ 0 & \text{for } x < |t| \le \pi \end{cases}$. Equations (6) and (7) imply that for every x, $0 \le x \le \pi$,

(8)
$$\int_{0}^{x} n \sum_{k=-\infty}^{\infty} \lambda_{1+\alpha,\beta} [n(t+2k\pi)] dt = \int_{0}^{x} \left\{ \frac{1}{2\pi} + \frac{B}{\pi} \sum_{\nu \leq n} \left(1 - \frac{\nu}{n}\right)^{\alpha} \cdot \log^{-\beta} \left(\frac{C}{1 - \frac{\nu}{n}}\right) \cos \nu t \right\} dt.$$

Since the integrands in (8) are continuous, even and periodic, the lemma is proven for k = 0.

To prove the lemma for $k \geq 1$, we need only to observe that the derived series are uniformly convergent in every closed interval by Lemma 1.

LEMMA 4. Let $f(x) \in CP[-\pi, \pi]$ and be of period 2π . Then for n > 0 and $\alpha = 0, \beta > 1$ or $\alpha > 0, \beta \geq 0$,

$$S^{r}_{\alpha,\beta}(f,x,n) = 2(-1)^{r}n^{r+1}\int_{0}^{\pi}\varphi(t)\sum_{k=-\infty}^{\infty}\lambda_{1+\alpha,\beta}^{(r)}[n(t+2k\pi)]dt$$
.

Proof. This result can be verified by direct calculation using Lemma 3 and the properties of CP integration.

When f(x) is Lebesgue integrable, Lemma 4 is equivalent to a slightly different representation given by Smith [8].

LEMMA 5. Let $f(x) \in C_{\mu}P[-\pi, \pi]$ and be of period 2π . Let ξ , $0 \le \xi \le \mu + 1$, be an integer for which $\varphi_{\xi}(t) \in L[0, \pi]$. Then, for $r \ge 0$ and $\alpha = \xi, \beta > 1$ or $\alpha > \xi, \beta \ge 0$,

$$S^r_{\alpha+r,\beta}(f,x,n) - a_r = 2(-1)^r n^{r+1} \int_0^{\pi} [\varphi(t) - P(t)] \lambda_{1+\alpha+r,\beta}^{(r)}(nt) dt + o(1)$$
.

Proof. From Lemmas 1 and 4 we see that

$$\begin{split} S^r_{\alpha+r,\beta}(P,\,0,\,n) &= 2(-1)^r n^{r+1} \!\! \int_0^{\pi} \!\! P(t) \sum_{k=-\infty}^{\infty} \!\! \lambda_{1+\alpha+r,\beta}^{(r)}[n(t+2k\pi)] dt \\ &= 2(-1)^r n^{r+1} \!\! \int_0^{\pi} \!\! P(t) \lambda_{1+\alpha+r,\beta}^{(r)}(nt) dt + o(1) \text{ as } n \to \infty \ . \end{split}$$

Since $(d/dt)^r P(t) = a_r$, then $S^r_{\alpha+r,\beta}(P, 0, n) \to a_r$ for $\alpha = 0$, $\beta > 1$ or $\alpha > 0$, $\beta \ge 0$.

It remains to be shown that

(9)
$$S_{\alpha+r}^{r}, (f, x, n) = 2(-1)^{r} n^{r+1} \int_{0}^{\pi} \varphi(t) \lambda_{1+\alpha+r,\beta}^{(r)}(nt) dt + o(1).$$

Successive integrations by parts give

(10)
$$n^{r+1} \int_{0}^{\pi} \varphi(t) \sum_{k=-\infty}^{\infty'} \lambda_{1+\alpha+r,\beta}^{(r)} [n(t+2k\pi)] dt = \sum_{j=0}^{\xi-1} (-1)^{j} n^{r+1+j} \varPhi_{j+1}(\pi)$$

$$\cdot \sum_{k=-\infty}^{\infty'} \lambda_{1+\alpha+r,\beta}^{(r+j)} [\pi n(2k+1)] + (-1)^{\xi} n^{r+1+\xi} \int_{0}^{\pi} \varPhi_{\xi}(t) \sum_{k=-\infty}^{\infty'} \lambda_{1+\alpha+r,\beta}^{(r+\xi)} [n(t+2k\pi)] dt$$

By Lemma 1 each of the integrated terms on the right side of (10) is o(1) as $n \to \infty$, and

$$n^{r+1+\xi} \sum_{k=-\infty}^{\infty} \lambda_{1+\alpha+r,\beta}^{(r+\xi)} [n(t+2k\pi)] = o(1)$$

uniformly in $t, 0 \le t \le \pi$. Since $\Phi_{\xi}(t)$ is Lebesgue integrable, it follows that the left side of (10) is o(1). This result and Lemma 4 prove (9) and complete the proof of the lemma.

It can be shown that Lemma 5 holds if \int_0^{π} is replaced by \int_0^{δ} , $\delta > 0$. Thus, for the values of α and β under consideration, the summability of $D_rFSf(x)$ is a local property of f(x).

Having found an expression for $S_{\alpha,\beta}^{\tau}(f,x,n)$, let us estimate the integer ξ in the preceding lemma.

LEMMA 6. If
$$h(t) \in C_{\mu}P[0, a]$$
 and $t^rh(t) \in C_{\lambda}P[0, a]$, then
$$H_{1+\xi}(t) \in L[0, a], \text{ where } \xi = \min \left[\mu, \max (\lambda, r)\right].$$

Proof. The case $\mu = -1$ is trivial by definition of $C_{-1}P$. Therefore, let us assume $\mu \geq 0$. We may also assume, by the consistency of CP integration, that $\lambda \geq r$.

It will be convenient to use the "integration by parts" formula:

(11)
$$[t^r h(t)]_k = \sum_{j=0}^r C_j(k, r) t^{r-j} H_{k+j}(t), \qquad k = 1, 2, \cdots,$$

where the $C_{j}(k, r)$ do not depend on t or the function h.

By the Cesaro continuity and consistency of CP integration, there exists an integer $k \geq \lambda + 1$ such that for $j \geq 0$,

(12)
$$H_{k+1+j}(t) = o(t^{k+j-r}) \text{ as } t \to 0.$$

³ Smith [8], Theorem 3.1.

Since $k \geq \lambda + 1$, equations (11) and (12) imply

$$[t^r h(t)]_k = o(t^{k-1}) = t^r H_k(t) + \sum_{j=1}^r t^{r-j} o(t^{k+j-1-r});$$

hence, $H_k(t) = o(t^{k-1-r})$. This result and (12) yield

(13)
$$H_{k+j}(t) = 0 (t^{k-1+j-r}) \text{ as } t \to 0 \text{ for } j \ge 0.$$

Since (13) is merely (12) with k replaced by k-1, this inductive process terminates with $H_{\lambda+1}(t)=o(t^{\lambda-r})$. Therefore, $H_{\lambda+1}(t)=o(1)$ as $t\to 0$ if $\lambda\geq r$.

But for $\eta > 0$, $h(t) \in C_{\lambda}P[\eta, a]$. Therefore, $H_{1+\xi}(t) \in L[0, a]$. Lemmas 5 and 6 may be combined to give the following:

LEMMA 7. Let $f(x) \in C_{\lambda}P[-\pi, \pi]$ and be of period 2π . If $\omega(t) \in C_{\mu}P[0, \pi]$, then for $\alpha = 1 + \xi, \beta > 1$ or $\alpha > 1 + \xi, \beta \geq 0$,

$$S_{\alpha,\beta}(\omega, 0, n) = 2n \int_0^{\pi} \omega(t) \lambda_{1+\alpha,\beta}(nt) dt + o(1), \text{ where } \xi$$

= min $[\mu, \max(\lambda, r)]$.

This section is concluded with two results of Tauberian nature.

LEMMA 8. If $\alpha \geq 0$, $\beta > 0$, $\{b_i\}_{i=0}^k$ and $\{a_i\}_{i=0}^\infty$ are sequences of real numbers with $b_0 \neq 0$, and if

$$F_{\alpha,eta}(n) = \sum\limits_{i=0}^k b_i \sum\limits_{
u \leq n} \left(1 - rac{
u}{n}
ight)^{\!\!lpha} \log^{-(eta+i)} \!\left(\!rac{C}{1 - rac{
u}{n}}\!
ight)\!\! a_
u = o(1) ext{ as } n o \infty$$
 ,

then $\sum_{\nu=0}^{\infty} a_{\nu} = o(a, \beta)$.

The proof of this result is too long to be given here. In general, however, this method is similar to one employed by Bosanquet and Linfoot.⁴

LEMMA 9. Let $S_{\alpha,\beta}(u,n)$ denote the nth mean of order (α,β) of the series Σu . For α, β and $r \geq 0$ and $i, j = 0, 1, \dots, r$, let us assume that

(i) The constants $C_{ij}(\alpha, \beta, r)$ have properties (i) and (ii) of the $B_{ij}^r(\alpha, \beta)$ in Lemma 2;

(ii)
$$\sum_{i,j=0}^{r} C_{ij}(k+\alpha,\beta,r) S_{k+\alpha+r-1,\beta+j}(u,n) = o(1),$$
 $k=0,1,2,\cdots;$

(iii)
$$\sum_{\nu=0}^{\infty} u_{\nu} = 0(C).$$

⁴ Bosanquet and Linfoot [3], Theorem 3.1.

Then $\sum_{\nu=0}^{\infty} u_{\nu} = 0(\alpha, \beta)$.

Proof. Let us consider the case $\beta > 0$. By (iii) of the lemma and the consistency of (α, β) summability, there exists an integer $K \ge 1$ such that $S_{\alpha+K+i\cdot\beta+j}(u,n) = o(1)$ as $n \to \infty$ for $i,j=0,1,2,\cdots$. Putting k=K-1 in (ii) above, we see that

$$\sum_{j=0}^{r} C_{rj}(K-1+\alpha,\beta,r) S_{K-1+\alpha,\beta+j}(u,n) + o(1) = o(1) .$$

Therefore, from (i) above and Lemma 8, $S_{K-1+\alpha,\beta}(u,n) = o(1)$. That is, for $K \geq 1$, $\sum_{\nu=0}^{\infty} u_{\nu} = o(\alpha + K, \beta)$ implies $\sum_{\nu=0}^{\infty} u_{\nu} = o(\alpha + K - 1, \beta)$. It follows immediately that $\sum_{\nu=0}^{\infty} u_{\nu} = o(\alpha, \beta)$.

The case $\beta = 0$, in which we deal with linear combinations of Riesz means, is proved similarly.

4. Theorems.

THEOREM 1. Let $f(x) \in C_{\lambda}P[-\pi, \pi]$ and be of period 2π . If there exist constants a_{r-2i} , $i = 0, 1, \dots, \lceil r/2 \rceil$, such that

- (i) $\omega(t) \in C_{\mu}P[0, \pi]$ for some integer μ ;
- (ii) $FS\omega(0) = 0(\alpha, \beta)$ for $\alpha = 1 + \xi, \beta > 1$ or $\alpha > 1 + \xi, \beta \geq 0$, where $\xi = \min [\mu, \max (\lambda, r)]$, then $D_rFSf(x) = a_r(\alpha + r, \beta)$.

THEOREM 2. Let $f(x) \in C_{\lambda}P[-\pi, \pi]$ and be of period 2π . If $D_rFSf(x) = a_r(\alpha + r, \beta)$ for $\alpha = 1 + \lambda, \beta > 1$ or $\alpha > 1 + \lambda, \beta \geq 0$, then there exist constants a_{r-2i} , $i = 0, 1, \dots, [r/2]$, such that

- (i) $\omega(t) \in C_{\mu}P[0, \pi]$ for some integer μ ;
- (ii) $FS\omega(0) = o(\alpha', \beta')$, where

$$\begin{cases} \alpha'=1+\xi, \beta'>1 \ \ \text{if} \ \ 1+\lambda\leq\alpha<1+\xi \ \ \text{or} \ \ \alpha=1+\xi, \beta\leq1 \\ \alpha'=\alpha, \beta'=\beta \ \ \text{if} \ \ \alpha=1+\xi, \beta>1 \ \ \text{or} \ \ \alpha>1+\xi, \beta\geq0 \end{cases} \} \text{and}$$

 $\xi = \min \left[\mu, \max \left(\lambda, r \right) \right].$

Before proving these theorems, let us observe that the existence of the a_{r-2i} in the theorems implies their uniqueness from the definition of $\omega(t)$. In fact, somewhat more is true. Observe that $\omega(t) = \omega(t,r) \in CP[0,\pi]$ implies $\omega(t,r-2i) = o(1)(C)$ as $t \to 0$. Therefore, if $\omega(t,r) \in CP[0,\pi]$ and $FS\omega(0) = 0(C)$, then assuming the truth of Theorems 1 and 2, it is clear that the a_{r-2i} are given by the formula:

$$D_{r-2i}FSf(x) = a_{r-2i}(C), i = 0, 1, \cdots [r/2].$$

Proof of Theorem 1. Lemma 7 and the consistency of (α, β) sum-

⁶ Compare Bosanquet [2], eqn. 5.2, for $f(x) \in L[\pi, \pi]$.

mability give the relations:

$$2n\!\int_0^{\pi}\!\!\omega(t)\lambda_{\scriptscriptstyle 1+\alpha+r-i,\beta+j}(nt)dt=S_{\scriptscriptstyle \alpha+r-i,\beta+j}(\omega,\,0,\,n)+o(1)=o(1)\;,$$

for $i, j = 0, 1, 2, \dots, r$. Therefore,

$$2n\int_0^\pi \omega(t) \sum_{i,j=0}^r B_{ij}^r(\alpha,\beta) \lambda_{1+\alpha+r-i,\beta+j}(nt) dt = o(1)$$
 ,

which by Lemma 2 becomes

(14)
$$2n^{r+1}\int_0^\pi \omega(t)t^r \lambda_{1+\alpha+r,\beta}^{(r)}(nt)dt = o(1).$$

Since $t^r\omega(t) = \varphi(t) - P(t)$, relation (14) and Lemma 5 imply that $S^r_{\alpha+r,\beta}(f,x,n) - a_r = o(1)$, i.e., $D_rFSf(x) = a_r(\alpha+r,\beta)$.

Proof of Theorem 2. Let us first prove part (i). Putting $P(t) \equiv 0$ in Lemma 5, we obtain

(15)
$$2(-1)^{r}n^{r+1}\int_{0}^{\pi}\varphi(t)\lambda_{1+\alpha+r,\beta}^{(r)}(nt)dt = S_{\alpha+r,\beta}(f,x,n) + o(1).$$

If the left side of (15) is integrated by parts $\lambda + 1$ times, the integrated part is o(1) as $n \to \infty$ by Lemma 1, and (15) becomes

(16)
$$2(-1)^{r+\lambda+1}n^{r+\lambda+2}\int_0^{\pi} \Phi_{\lambda+1}(t)\lambda_{1+\alpha+r,\beta}^{(r+\lambda+1)}(nt)dt = S_{\alpha+r,\beta}^r(f,x,n) + o(1)$$

Let us define $\Phi_{\lambda+1}(t)$ for $-\pi < t < 0$ to be an odd (even) function if $r + \lambda + 1$ is odd (even). Then (16) may be written

$$S_{\alpha+r,\beta}^{r+\lambda+1}(\Phi_{\lambda+1},0,n)=S_{\alpha+r,\beta}^{r}(f,x,n)+o(1)$$
.

It follows that $D_{r+\lambda+1}FS\Phi_{\lambda+1}(0)=a_r(C)$.

Since $\Phi_{\lambda+1}(t) \in L[-\pi, \pi]$, a theorem of Bosanquet establishes the following result. There exist constants $a^{r+\lambda+1-2i}$, $i=0,1,\cdots,[(r+\lambda+1)/2]$, with $a^{r+\lambda+1}=a_r$, such that

(17)
$$\gamma(t) \equiv \{ \Phi_{\lambda+1}(t) - P_*(t) \} t^{-(r+\lambda+1)} \in CL[0, \pi] \text{ and } FS\gamma(0) = 0(C)$$
,

where $P_*(t) = \sum_{i=0}^{\lfloor (r+\lambda+1)/2 \rfloor} [a^{r+\lambda+1-2i}/(r+\lambda+1-2i)!]t^{r+\lambda+1-2i}$.

For $\lambda=-1$, put $a^{r-2i}=a_{r-2i}$ in (17). Then (17) states that $\omega(t)\in CP[0,\pi]$ and $FS\omega(0)=0(C)$.

Let us consider the case $\lambda \geq 0$, and define $h(u, m+1) \equiv \{ \varPhi_{m+1}(u) - P_*^{(\lambda^{-m})}(u) \} u^{-(r+m+1)}$, $m=-1,0,1,\cdots,\lambda$. Then for $0<\eta< t\leq \pi$, an integration by parts yields

⁶ Bosanquet [2], Theorem 2. The superscript notation has been used here to distinguish these constants from those whose existence is to be proven.

Let us assume for the moment that for some integer $m, 0 \le m \le \lambda$, (19) $h(u, m+1) \in C_k P[0, t], k \ge \lambda + 1.$

From (19) and a result due to Sargent⁷, it follows that

$$\int_{\eta}^{t} h(u, m+1) du \in C_{k}P[0, t] \text{ and } (C, k+1) \lim_{\eta \to 0} \int_{\eta}^{t} h(u, m+1) du$$

$$= \int_{0}^{t} h(u, m+1) du .$$

Since $\eta h(\eta, m+1) \in C_k P[0, t]$ and is o(1)(C, k+1) as $\eta \to 0$, the right side of (18) has a limit (C, k+1) as $\eta \to 0$. Sargent's result (*ibid*.) and equation (18) imply

(20)
$$h(u, m) \in C_{k+1}P[0, t].$$

We infer from the recursive behavior of (19) and (20) that whenever (19) is true, then $h(u, 0) \in CP[0, t]$. But (19) is true for $m = \lambda$ by (17). Therefore,

(21)
$$h(t, 0) = \{ \varphi(t) - P_*^{(\lambda+1)}(t) \} t^{-r} \in C_{\mu} P[0, \pi] \text{ for some } \mu.$$

In the course of the argument above, it has also been shown that by taking C-limits of (18) we obtain

for $m=0,1,\cdots,\lambda$.

If we now define $a_{r-2i}=a^{r+\lambda+1-2i}, i=0,1,\cdots, [r/2]$, it is easily verified that $P_*^{(\lambda+1)}(t)=P(t)$ and $h(t,0)=\omega(t)$. Part (i) of the theorem follows immediately from (21).

Next it will be shown that $FS\omega(0) = 0(C)$ for $\lambda \geq 0$, the case $\lambda = -1$ having been settled already.

From equations (11) and (22), it is seen that

$$(23) [h(t,m)]_{k+1} = t[h(t,m+1)]_k + (r+m-k)[h(t,m+1)]_{k+1}.$$

If for some integer $m, 0 \le m \le \lambda$, the statement

(24)
$$h(u, m + 1) = o(1)(C, k) \text{ for some integer } k$$

is true, then (24) is also true when m+1 and k are replaced by m and k+1, respectively, by (23). In this manner we arrive at the conclusion that $h(t,0) = \omega(t) = o(1)(C)$ as $t \to 0$, which ensures that $FS\omega(0) =$

⁷ Sargent [7], Lemma 1.

0(C). However, $h(u, \lambda + 1) = \gamma(t)$ and $FS\gamma(0) = 0(C)$ from (17). Therefore, $\gamma(t) = o(1)(C)^8$, so that (24) is true for $m = \lambda$.

It remains only to prove the order relations in part (ii).

Having determined the polynomial P(t), we may state, with the aid of Lemmas 2 and 5, that

(25)
$$S_{\alpha+r,\beta}^{r}(f, x, n) - a_{r} = (-1)^{r} \sum_{i,j=0}^{r} B_{ij}^{r}(\alpha, \beta)$$
$$\left\{ 2n \int_{0}^{\pi} \omega(t) \lambda_{1+\alpha+r-i,\beta+j}(nt) dt \right\} + o(1) .$$

If $\lambda + 1 \le \alpha < 1 + \xi$ or $\alpha = 1 + \xi$, $\beta \le 1$, then for $\beta^* > 1$ and $k = 0, 1, 2, \dots, S^r_{r+1+\xi+k,\beta^*}(f, x, n) - a_r = o(1)$. Equation (25) then implies

(26)
$$\sum_{i,j=0}^{r} B_{ij}^{r} (1+\xi+k,\beta^{*}) \Big\{ 2n \int_{0}^{\pi} \omega(t) \lambda_{2+\xi+k+r-i,\beta^{*}+j}(nt) dt \Big\} = o(1)$$

Similarly, for $\alpha=1+\xi, \beta>1$ or $\alpha>1+\xi, \beta\geq0$, it can be shown that

(27)
$$\sum_{i,j=0}^{r} B_{ij}^{r}(\alpha+k,\beta) \left\{ 2n \int_{0}^{\pi} \omega(t) \lambda_{1+\alpha+k+r-i,\beta+j}(nt) dt \right\} = o(1).$$

With the definition of (α', β') and by means of Lemma 7, both (26) and (27) may be combined into the single equation:

(28)
$$\sum_{i=0}^{r} B_{i,i}^{r}(\alpha'+k,\beta') S_{\alpha l+k+r-i,\beta l+j}(\omega,o,n) = o(1), k=0,1,2,\cdots.$$

Since $FS\omega(0) = 0(C)$, Lemma 9 and (28) yield part (ii) of the theorem at once.

These two theorems may be combined in several ways to give generalizations to known results. In what follows it is assumed that $f(x) \in C_{\lambda}P[-\pi, \pi]$ and is of period $2\pi, \xi = \min [\mu, \zeta]$ and $\zeta = \max (r, \lambda)$.

COROLLARY 1. If $\omega(t) \in C_{\mu}P[0, \pi]$, then for $\alpha = 1 + \xi$, $\beta > 1$ or $\alpha > 1 + \xi$, $\beta \geq 0$, $D_rFSf(x) = a_r(\alpha + r, \beta)$ if and only if $FS\omega(0) = 0(\alpha, \beta)$.

COROLLARY 2. For $\alpha = 1 + \zeta$, $\beta > 1$ or $\alpha > 1 + \zeta$, $\beta \ge 0$, $D_rFSf(x) = a_r(\alpha + r, \beta)$ if and only if $\omega(t) \in CP[0, \pi]$ and $FS\omega(0) = 0(\alpha, \beta)$.

From Corollary 2 it follows that $D_rFSf(x) = a_r(C)$ if and only if $\omega(t) \in CP[0, \pi]$ and $FS\omega(0) = O(C)$. Along with a result by Sargent¹¹

 $^{^8}$ That FSg(0)=0(C) if and only if g(t)=o(1)(C) as $t\to 0$ has been shown by Sargent [7], Theorem 6.

⁹ For $\mu = -1$ compare Wang [9].

¹⁰ For $\alpha \ge r+1$ and $\lambda = -1$ compare Bosanquet [2].

¹¹ Sargent [7], Theorem 6.

this gives a solution, in the sense of Hardy and Littlewood, to the Cesaro summability problem for $D_rFSf(x)$ within the class of CP integrable functions.

The last theorem of this section sharpens a well known sufficient condition for the summability of $FS\omega(0)$ without, however, destroying the CP integrablity of $\omega(t)$.

THEOREM 3. Let $\omega(t) \in C_{\mu}P[-\pi, \pi]$ and be an even function of period 2π . For $k \geq \mu$, sufficient conditions that $FS\omega(0) = 0(1 + k, \beta)$, $\beta > 1$, are

- (i) $\omega(t) = 0(1)(C, k+1)$ and
- (ii) $\omega(t) = o(1)(C, k+2)$.

Proof. The proof of this theorem is similar to the proof of the analogous theorem for Riesz summability when $\omega(t)$ is Lebesgue integrable. Starting with Lemma 7 and k+1 integrations by parts, one obtains

$$S_{1+k,\beta}(\omega,0,n) = (-1)^{k+1} 2n^{k+2} \int_0^{\pi} \Omega_{k+1}(t) \lambda_{2+k,\beta}^{(k+1)}(nt) dt + o(1).$$

Writing $\int_0^{\pi} = \int_0^{K/n} + \int_{K/n}^{\delta} + \int_{\delta}^{\pi}$, it can be shown by straightforward calculations that for arbitrary $\varepsilon > 0$ and K > e,

 $|S_{1+k,\beta}(\omega,0,n)| \leq M_1(K) \cdot \varepsilon + M_2 \int_K^\infty (X^{-1} \log^{-\beta} X + X^{-2}) dX + o(1)$, where M_2 is independent from ε , K and n. The theorem follows from the last inequality by letting $n \to \infty$, $\varepsilon \to 0$ and $K \to \infty$ in that order.

The theorems of this section can be illustrated by means of the following CP integrable functions:

 $t^{-m}\sin t^{-1}$ and $t^{-m}\cos t^{-1}$, $m=0,1,2,\cdots$. For example, from Theorems 1 and 3, $FS[t^{-1}\sin t^{-1}]_{t=0}=0(1,\beta)$ and $D_1FS[\sin t^{-1}]_{t=0}=0(2,\beta)$ for $\beta>1$.

REFERENCES

- 1. L. S. Bosanquet, *Note on differentiated Fourier series*, Quart. Journal of Math. (Oxford), **10** (1939), 67-74.
- 2. _____, A solution of the Cesaro summability problem for successively derived Fourier series, Proc. London Math. Soc. (2), 46 (1940), 270-289.
- 3. L. S. Bosanquet and E. H. Linfoot, Generalized means and the summability of Fourier series, Quart. Journal of Math. (Oxford), 2 (1931), 207-229.
- 4. J. C. Burkill, The Cesaro-Perron integral, Proc. London Math. Soc. (2), 34 (1932), 314-322.
- 5. _____, The Cesaro-Perron scale of integration, Proc. London Math. Soc. (2), 39 (1935), 541-552.
- 6. _____, The Cesaro scales of summation and integration, Journal London Math. Soc.,

- **10** (1935), 254–259.
- 7. W. L. C. Sargent, On the summability (C) of allied series, Proc. London Math. Soc., **50** (1949), 330-348.
- 8. A. H. Smith, On the summability of derived series of the Fourier-Lebesgue type, Quart. Journal of Math. Oxford, 4 (1933), 93-106.
- 9. F. T. Wang, Cesaro summation of the successively derived Fourier series, Tohoku Math. Journal, **39** (1934) 399-405.

PURDUE UNIVERSITY

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG Stanford University Stanford, California

F. H. Brownell University of Washington Seattle 5, Washington A. L. WHITEMAN

University of Southern California Los Angeles 7, California

L. J. PAIGE

University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH

E. HEWITT A. HORN M. OHTSUKA H. L. ROYDEN

E. SPANIER
E. G. STRAUS

T. M. CHERRY D. DERRY

L. NACHBIN

M. M. SCHIFFER

F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics

Vol. 10, No. 2

October, 1960

Maynard G. Arsove, The Paley-Wiener theorem in metric linear spaces	365
Robert (Yisrael) John Aumann, Acceptable points in games of perfect	
information	381
A. V. Balakrishnan, Fractional powers of closed operators and the semigroups	
generated by them	419
Dallas O. Banks, Bounds for the eigenvalues of some vibrating systems	439
Billy Joe Boyer, On the summability of derived Fourier series	475
Robert Breusch, An elementary proof of the prime number theorem with	
remainder term	487
Edward David Callender, Jr., Hölder continuity of n-dimensional	
quasi-conformal mappings	499
L. Carlitz, Note on Alder's polynomials	517
P. H. Doyle, III, <i>Unions of cell pairs in</i> E^3	521
James Eells, Jr., A class of smooth bundles over a manifold	525
Shaul Foguel, Computations of the multiplicity function	539
James G. Glimm and Richard Vincent Kadison, Unitary operators in	
C*-algebras	547
Hugh Gordon, Measure defined by abstract L_p spaces	557
Robert Clarke James, Separable conjugate spaces	563
William Elliott Jenner, On non-associative algebras associated with bilinear	
forms	573
Harold H. Johnson, Terminating prolongation procedures	577
John W. Milnor and Edwin Spanier, Two remarks on fiber homotopy type	585
Donald Alan Norton, A note on associativity	591
Ronald John Nunke, On the extensions of a torsion module	597
Joseph J. Rotman, Mixed modules over valuations rings	607
A. Sade, Théorie des systèmes demosiens de groupoï des	625
Wolfgang M. Schmidt, On normal numbers	661
Berthold Schweizer, Abe Sklar and Edward Oakley Thorp, <i>The metrization of</i>	
statistical metric spaces	673
John P. Shanahan, On uniqueness questions for hyperbolic differential	
equations	677
A. H. Stone, Sequences of coverings	689
Edward Oakley Thorp, <i>Projections onto the subspace of compact operators</i>	693
L. Bruce Treybig, Concerning certain locally peripherally separable	
spaces	697
NI W. 1 W. O. I. C. I. C	
Milo Wesley Weaver, On the commutativity of a correspondence and a	
Milo Wesley Weaver, On the commutativity of a correspondence and a permutation	705
· · · · · · · · · · · · · · · · · · ·	705
permutation	713