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Introduction. In this paper, the prime number theorem in the form

(@) = S me, log p = x + o(x-log="*+*x), for every € > 0, is established
via a proof that in the well-known formula

(1) o) = 3 02D _logp 4 O(1) =logz + a, ,
sz O™
a, = — A, + o(log~%+2x). (A, is Euler’s constant.)

Throughout the paper, p and ¢ stand for prime numbers, k, m, n, ¢,
and others are positive integers, and x,%, and 2z are positive real
numbers.

Some well-known formulas, used in the proof, are

loghn. _ 1 o 4u log” _
(2) nZéx P —k+1log x-i—Ak—i-O( - ), for k=0,1,

(2) 3 Lilogrmly) = . L

y<nsz N +

i -log**'(2ly) + O(%-log’“(zw)) ,

for k=0,1, ---
(38) S logk(x/n) =O(x), for k=1,2, ...
nsz

(4) > log p-logh(z/p™) = O(x), for k=0,1, .-

p"sz

(5) 3 pn)n = 0Q1) ((n) is Moebius’ function.)

Two other formulas, used prominently, are

(6) o) = > 8P .1og (pm) = —;—-logzx — A, log 2 + g, (9, = O(1)

m
p'ms:c

(1) <@ = 3 “EL log(w/p™) = --log's — Avlog's
sz

4+ (2-42+4-A)logxz + O(1) .
With the help of (1), (2), and (4), (6) can be proved easily :

o(x) = >, 12%2 . ( > 1n— A+ O(p"‘/x)) , or, with k =mn.p™,

™5z n<z/p™

o) = S+ 3 logp — Avlog z + 01)
™/

k=

= 5 8% _ Alog a4 0() = L-log's — Aylog 2 4 O(1)
ksz
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Also, again with k =n . p™,

loghk x
= gy
=5 1.g . Slogp= S logp: ¥ -log( xm>
iz ko ko o gz W D" nep
. logf.{bg(_ﬂ%). s 1o s Eg_n_}
sz D p nsz/p™ T agaep™ N
= 31 XEL {log’a/p™) + Aylog (&p") — 5 log’ @lp™ — A} +O()
(by (2) and (4))
= —+7(@) + Ap0(z) — A0(@) + O1)

(7) follows now by (1), (2), and (6).

The proof now proceeds in the following steps: in part I, certain
asymptotic formulas for a, (see (1)) and g, (see (6)) are derived ; they
suggest that ‘‘on the average,” a, is —A4, and g, is A} + 24,. In
part II, formulas for a, and g, are derived which are of the type of
Selberg’s asymptotic formula for +(x); part III contains the final proof.

PArT 1

First, the following five formulas will be derived; K,, K,, ---, are
constants, independent of x.

(8) X tea,=—Aloga+g, + K+ 0(LE2)
nsw X

_7?
(9) 2—1- O = — Aylog 2 + K, + 0<1ogac>
nsz N X

(10) 105:;10. =_Alogx+gz+—;-ai+K4+O<loix)

» Sz p p
an Lo =@+ 24) 1080+ 00)
12 S Leg.=(A+24)lga+ K, + 0 8T),
nsx N @
Proofs.
o(2) = 3, log i(p(n) — pln — 1)) = . p(n)-log %i n o@o&)

x
Z‘,o(n) +K+O(logx>

nszx N
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(8) follows now from (6) and (2).

Also
Z -1_' Ayin = i"( 2 logmp — 10g£>
nsz N nsz N p™=z/n p n
. 1 G 1 X — m
=2 logp — > —log—= (k=mn-p")
K<z ™k n<x N n
_ log & 1 x
= — >, —log = . which proves (9) by (2)
IET I nsw M n
And
1 1
5 8P, = 5 PEP( 5 1080 jogpm))
pmgz p pmgx p q”gp'n q
=L PEEY 4 L 5 18D _pogy. 3 8D 4 x5 JBD g 2
2 Mz p 2 "<z p P pm M pm pm
Thus, by (1), (2) and (6),
S lo;gmp =—(log:c+a)2+K + O(logx>—log’x~(logx+az)
I)"Lé.‘t
+ % log*x — Aylog x + g, , which proves (10).
In the next proof, use is made of the easily established fact that
o(n) - log L + 1 _ =dmn + 1) — ao(n) .
(@) = 3 log? (2 Jotm) — p(n — 1)
n=x n
_ 2 X\ 2 X
= B ooz () - o' (55 )) + 0w
- e t1 100 % 10a
S oty log "E2 Jog o s +0()
= on + 1) — a(n)) - lo —L—+01
= 3,00+ 1) — o)+ log T e + O
= S om)-log 211 4 0(1) = S o(m)- 2 1 0)
=y lgn g w8 o v g 1 00) by 6)
nsx n nsxw n nsx N,
This proves (11), with the help of (2) and (7).
Finally
1., -1, logp oo @ 1 q0o2( ) 1A Joe X
En Gan En (szm o ogn.pm 5 log <n>+ o log n)

or, with £k = n - p™,
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Z"l_'g:chl
nsrx N
= .l.]ogﬁ. Zlogp_l_.z.l.logJ(i)_t_A Z__ log__
isz kb kg 2 gssm n nss N
1 x 1 1
=>LigZilogk—L. 5110 ) 4,51 0g 2
isz k ogk g 2 én g( + ng:cn Og

(12) now follows by (2).
Formulas (8) through (12) suggest setting

(13) b:n = Ay + AO ’ h’:c =90,— (Ag + 2A1) .
In terms of b, and h,, the five formulas read
(8) s1.p, =h +K +O(1°gx)
n=x N

(9 s L., =K+ o(182)

nsz N X
W) S BP . A (A by A2 AR +E,

pmSz
1 . . log x
+ 5 (— A+ b) +0( ! )

N 1 ., log x

=+ bm+Ka+0( ; )
(1r) >Lh=0q)

nsx N

(12) 5L = K, + O 222).

nsr N X

Next, it will be shown that

(14) g%w; =5 L b2, +0@),

and

(15) Sttt = 5 82 gt 0q)
nszx N pM<z

For a proof of (14), we know, by (10’), that

n ’I’b pmSn p /n n "
and
Loty M kofloagz)
n N pM<ain " n
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Thus, by (3), (11') and (12'),

slog-t=2 5i(3 RB2 . 5 lED gL 4o

nsx N nse W \ymg, P p™szln
=2 2 282, 5 L 5 1),
<z O™ pMsnse W nge/p™

=2. 5 8P pn. (log (alp™) + 0(1/p™) — log (a]p")

msx
— 4, — 0" [x)) + O(1)
= 0(1), by (10’) and (4). This proves (14).
Also

Lot b= Lop (5 B2 _10g % 4 4)
nsz N, n

nsz N pMsz/n P

(g B e ol)

m
nsz N pMszm P tsz/n

> lgp 5 1 51 S ~b,+ 0(1), by (8)

pMsz ™ nsz/p™ T igz 1 n=a

Il

[l

5 108D gt K loge — 3 lh,,,, — K,logz + O(1)

sz P i<w
(by (8, (1) and (4))
= > 8D 4wt 00), by (12).

™Sz

From (14) and (15) it follows that

Syt =2-Stmxe 3182, o),

nswx N nszx N P

and therefore

(16) sLip>
n

Y Pﬁf—m’l-hz,ym +0(1) .

Mz
PartT 11

In the following, we shall employ the inversion formula

Gz) =3 g( ) for all &> 03 g(@) = 5 y(n)-G(%) :

n=w

as well as

a7 ™) 106 & — 0q1) .
n

For a proof of (17), we make use of the fact that 3., x/n =
x.logx + Ax + O1); thus, by the inversion formula,
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z=3pn)-ZlogZ 4+ A, 3 pn) - Z + O@) .
nsz n n nsxz n

(17) follows now by (5).
If f(x) is defined for x > 0, then

2322

&x
N p™<e/n i n - p"
+

> 2. (1) Slgp (k=mn-p)

nsz N n sz k k p™/k

Thus, if we set
F)=x-logw- Zl-f<-'?—> )
n=zx N n

then, by the inversion formula,
z-log s f@) + o+ 3 PEL. fajpm) = 3 pew) - (L)
sz P nS3 n
In particular, if
S (5) =K +o(*2),
then
Sum)-F(2) = K- 3 pm)- £ 10g(£ )+ 0 S 10g(L)) = 0@),

;’; n=x n
by (17) and (3), and thus

(18) f@)-loga + 3 B2 sajpm) = 01),

i s Lr(z)=k s oflrs).

nzz N X

(Selberg’s asymptotic formula for () corresponds to f(x) = y(x)/x — 1.)
By (9') and (12'), f(x) = b, and f(x) = h, both satisfy the condition of
(18), and thus

(19) b,-logw+ X 1EP.p 0= 0(1)
pm§z p

(20) h,-loga+ 3 18P .p 0= 0(1).
pm<z D

1 Compare K. Iseki and T. Tatuzawa, ‘‘ On Selberg’s elementary proof of the prime
number theorem.’’ Proc. Jap. Acad. 27, 340-342 (1951).
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From (16) and (20) it follows that

(21) ;%-bzzlhxi-logwom.

If we add to (19)

m
pM=<z

(ogz — A)-logz + 3 l‘ff" - (log (x/p™) — AJ) ,

which by (1) and (6) is equal to 3/2-log*x — 3+ A,-log  + O(1), we obtain

log

n

o(x)-logx + >,

l;mgx

. pzp™) = % Jogiz — 3+ Ay log @ + O(1) .

If0<e<l, and ¢-x < y < 2, then it follows from the last equa-
tion that

o(x)-logx — o(y) -log y = = - (log’xz — log*y) + O(1)

Il

rofeo ofw

-log%-(log @+ logy) + 0Q1),
log z - (0(x) — 0(y)) + log % <o) = % - log % +(log z + log ) + 0(1) ,
or, since p(y) = logy + O(1),
log &+ (@) — p(y)) = log L+ log & + - +log y) + O(1)
Y 2 2
< 2.-log¥ logx + O(1) .
Y

Thus

o) — o) < 2-log £ 1 0 1),
Y log x
and, since p(v) =logx —A,+ b, it follows that b, — b, < log z/y +
O(1/log ). Also obviously b, — b, = — log #/y, because p(x) is non-
decreasing. Thus we obtain

1
log x

(22) |bx-—by{§10g—x—+0< )ifc-x<y<x,0<c<1.
Y

Part III

Let B =1 be an upper bound of |b,]|.
Since b, — b,-, is either —log [n/(n — 1)], or log p/n — log[n/(n — 1)],
it cannot happen that b, =b,_, = 0.
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Let the integers », 7, +++, 7,, -+- be the indices n for which the
b, change signs. Precisely :

rn=1;n=r, if b,:0,,;, =0, and b,., # 0;
(23) if r,<v=<w< ., then b,-b, > 0; and
lbnl < (log 7,)/r, for ¢t > 1.

Let {s.} be a sequence of integers, determined as follows: every
r, is an s; if log (r,../r,) <T7-B, and r, = s,, then 7, = 84, ; if
log (7;+,/7) = 7+ B, enough integers s,., are inserted between r, = s, and
Tie1 = Sp+m SUCh that 3B =< 10g (SyipeifSis0) < 7B, for v=0,1, «--,
m — 1. If there is a last r, = s,, a sequence {s,.,} is formed such
that 8B = 10g (Sgy+o+1/Sk+0) < 7+ B. Thus the s, form a sequence with
the following properties :

s, =1; log(sysfsy) < T+B; for k > 1, either
(24) log (sg+1/sx) = 3+ B, or |bs, | and Ibskﬂi are both

log s,
Sy

less than

3 byob, >0 for s, <v=w < Sy -

Assume now that a (0 < a < 1/2) is such that
(25) not h, = O(log=*x).

Then |h,|+log®x is unbounded. Let x be large, and such that
|h,|-log*x = |h,|-log®y for all y < x. Let ¢ and d be positive integers
such that

(26) S <logx <s,, and s; =2 < S44; -

It will be shown that

—;—°(1 —a—o(1))-S@) = |h,|-logx é%%l + o(1)) - S(x) ,

where
d
(@7) S@ = 3 1k, = by, | log(sufs.-.)
From this it will follow that a = 1/3.
Clearly

|h,|+logx = |h,]|log*x- Jllogl‘“ x — logt*s, + ’ﬁ‘, (log'-* s, — log'* sk_l)}
a

—% ) k > ( hslc |+ log® s, + | h’sk_l |+ log® s,-,) - (log'~* s, — 10g1—w37c—1)

1

2

a
« > ks, — hsk-l | +log® s;_, + (log'=® s, — log'~® 8;-,) .
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If y < 2, it is easily shown by the mean value theorem that

-y >t-a-Le-n>(1-a-"Ye-y).
? 2

With y = logs,_,, 2 =1logs,, and from the fact that s, > logx,
log (sy/s;-1) < T- B, it follows by (27) that

1 7-B
28 . —fl—a——=")-8() .
(28) | k|- log & > 5 ( « loglogx> (x)

For the next estimate, we need the following lemma.
LEMMA. Let v and w be positive' integers such that
(1) log 2 = 0(1);

2 5,>0 for v=n=w;

3) b, < logv
v

Then

<2, v 1y 4 0<log<w/v)) .
n 3 vV vsnsw N log v

VEN=W

Proof. If b, <1/3-logw/v for every n in [v, w], the lemma is
obviously correct. Otherwise, let n, be such that

bnlglologﬂ, b,,<L-logi”— for v=n<n,.
3 v 3 v

If log (n,/v) > 1/3 log (w/v), let z (v <2 <m,) be such that log (n,/z) =
1/3log (w/v); otherwise, let 2z =wv». Thus by (22), in every case,
log (n,/2) = 1/3 log (w/v) 4+ O(1/log v). Clearly b, — 2/3-log w/v < 0 for
v=mn =z2. Thus

= l-bf,-——z—-log—?ﬁ' _1‘ bn
vin=w N 3 vV vinsw N
B B
z=ns=w N v zsns=w N
1 1 w\ 1 . log (w/v)
< — . —_ —_ —_— . = Sl
r< 3 1 ( : logv) = log’ (w/v) log(w/z)+0< . )
By (22),
1 log v
bn———-l ,2 n— Un
5 log (o) = |b, — by, + O(<E2)
1 1
< |log (n, L) = J2) — 1
= og (/)| + O(32) = o (mf2) — log (nf2)| + 0 =)

and thus
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w'<‘log———log—|+ 10211)'
Thus
r = zsnE,‘sw n <log— - i IOg )2
b b )
= > 1 - log? (n/z) — log— zsnzsw; log + O(hﬁ)(gﬁfv))
=5l WM——lwWW>1«wmm+W%&@9,
og v

by (2'), and thus T < O(log (w/v)/log v). This completes the proof of
the lemma.

COROLLARY 1. If condition (3) is replaced by b, < log w/w, the
conclusion still holds; if b, <0 in v < n < w, the conclusion holds if
b, is replaced by |b,|.

COROLLARY 2. If instead of (3) it is known that b, < log vjv and
b, < log w/w then
> o<l 1og— > L., l+0(l°g(w/”)>
vin=w N 3 vSn=w N log v

For a proof, we split [v, w] into two intervals by a division point at
(v-w)"?, and apply the lemma separately to each subinterval.

COROLLARY 3.

(29) > 1. b, =< 1, log (84/Sk-1)* S —+|b,| + 0(10g (8w/85- 1))

Sp_1<nSs; N 3 8 _1<nss, N lo 0og S,

Proof. If log (sy/sy-) < 8+ B, this follows from (24) and Corollary
2; if log (sy/sx-1) = 3B, it is obvious, since |b,| < B.
By (26), Xinss, 1/n - b, = O(log log ), and stmg, 1/n- b2 = O(1); also

d

s k’g_(sk/i-i_g zd; ]og(M) <loglogx .
k=e+1  log s, k=c+1 log s,
It follows from (29) that

St 4 Slogfso)c N Le|b,]+0(logloga) .

nsz N k=c+1 Sp_1<n=S; N

By (8') X, _i<nss, n - |b,| = | By, + O(log s,/sx), and thus, by (21)
and (27),

S0y |
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(30) \h,|-log & < % . S(@) + O(log log ) .

It follows from (28) and (30) that

1_1.(1_ __'fi]. >
[3 5 <1 «a 1oglogx> S(xz) = O(log log x) ,

and since by (25) and (30) S(x) = K - log"*z, this implies that a = 1/3.
Thus h, = o(log="*+* ), for every & > 0, and therefore, by (8'),

(31) S Lib,] = oflog e s,)
sk_1<n§sk’n
In order to find a bound for |b,|, we consider now a particular
interval I, = (sy-y, 8;]; let us assume that b, > 0 in I,. Let n,el, be
such that b,, = b, for every nel,. Let n, (s,-, = n, <n,) be such that

1
bn1 = E‘ ¢ bnz < bnl-ﬂ .
Then
Los 50 Lop s Lop, log (nyn) — 0sy) .

nEEI,C n n=ni+l N 2

But by (22),
1 1 1

log (ny/n)) = b, — b, — O<log Sk) > 5 bn, — O<log Sk> .

Thus

It follows from (31) that bzz = o(log='**¢m,), and thus
(32) b, = o(log="*+* x) .
Finally,

Y(z) =n§1 n-(0(n) — p(n — 1)) = [x] - p([2]) —ngl o(n)
=ux-(logx — A, +b,) — > (logn — A, + b,) + O(log z)

n=x

=z-loge —Ay-x+b,cx—w-loge+a+ A,-x — 30, + O(log )

nsw

=2 + o(x - log="%+¢ x) + o(Z log—/6+¢ n) , by (32).

nsx

The last sum is easily seen to be o(x - log="*** ), and thus

(33) Yr(x) = 2 + o(x - log="**¢ x) ,
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