Pacific Journal of Mathematics # NOTE ON ALDER'S POLYNOMIALS L. CARLITZ Vol. 10, No. 2 October 1960 # NOTE ON ALDER'S POLYNOMIALS # L. CARLITZ 1. Alder's polynomial $G_{M,\iota}(x)$ may be defined by means of $$(1) 1 + \sum_{s=1}^{\infty} (-1)^{s} k^{Ms} x^{\frac{1}{2}s\{(2M+1)s-1\}} (1 - kx^{2s}) \frac{(kx)_{s-1}}{(x)_{s}}$$ $$= \prod_{n=1}^{\infty} (1 - kx^{n}) \sum_{t=0}^{\infty} \frac{k^{t} G_{M,t}(x)}{(x)_{t}},$$ where M is a fixed integer ≥ 2 and $$(a)_t = (1-a)(1-ax)\cdots(1-ax^{t-1}), (a)_0 = 1.$$ Alder [1] obtained the identities $$(2) \quad \prod_{n=1}^{\infty} \frac{(1-x^{(2M+1)n-M})(1-x^{(2M+1)n-M-1})(1-x^{(2M+1)n})}{1-x^n} = \sum_{t=1}^{\infty} \frac{G_{M,t}(x)}{(x)},$$ $$(3) \quad \prod_{n=1}^{\infty} \frac{(1-x^{(2M+1)n-1})(1-x^{(2M+1)n-2M})(1-x^{(2M+1)n})}{1-x^n} = \sum_{t=0}^{\infty} \frac{x^t G_{M,t}(x)}{(x)_t}$$ thus generalizing the well-known Rogers-Ramanujan identities. Singh [2, 3] has further generalized (2), (3); he showed that $$\prod_{n=1}^{\infty} \frac{(1-x^{(2M+1)n-s})(1-x^{(2M+1)n-2M-1+s})(1-x^{(2M+1)n})}{1-x^n} = \sum_{t=0}^{\infty} \frac{A_s(x, t)G_{m,t}(x)}{(x)_t} ,$$ where the $A_s(x, t)$ are polynomials in x. In a recent paper [4] Singh has proved that $$G_{M,t}(x) = x^t \qquad (t \leq M-1).$$ In the present note we give another proof of (4) and indeed obtain the explicit formula $$(5) G_{M,t}(x) = \sum_{\substack{M \le s \\ s > 0}} (-1)^s \frac{(x)_t}{(x)_s(x)_{t-Ms}} x^{\frac{1}{2}s(s-1)+st} (1-x^s+x^{t-Ms+s})$$ valid for all t. 2. Since $$(1 - kx^{2s})(kx)_{s-1} = (kx)_s + kx^s(1 - x^s)(kx)_{s-1}$$ the left member of (1) is equal to Received June 26, 1959. $$\begin{split} &1+\sum_{s=1}^{\infty}(-1)^{s}k^{Ms}x^{\frac{1}{2}s\{(2M+1)s-1\}}\Big\{\frac{(kx)_{s}}{(x)_{s}}+kx^{s}\frac{(kx)_{s-1}}{(x)_{s-1}}\Big\}\\ &=\sum_{s=0}^{\infty}(-1)^{s}k^{Ms}x^{\frac{1}{2}s\{(2M+1)s-1\}}\frac{(kx)_{s}}{(x)_{s}}\\ &-\sum_{s=0}^{\infty}(-1)^{s}k^{M(s+1)+1}x^{\frac{1}{2}(s+1)\{(2M+1)(s+1)-1\}+(s+1)}\frac{(kx)_{s}}{(x)_{s}}\\ &=\sum_{s=0}^{\infty}(-1)^{s}k^{Ms}x^{\frac{1}{2}s\{(2M+1)s-1\}}\frac{(kx)_{s}}{(x)_{s}}\{1-k^{M+1}x^{(M+1)(2s+1)}\} \ . \end{split}$$ Thus (1) becomes $$\sum_{t=0}^{\infty} \frac{k^{t} G_{M,t}(x)}{(x)_{t}} = \sum_{s=0}^{\infty} (-1)^{s} k^{M s} x^{\frac{1}{2} s \{(2M+1)s-1\}} \cdot \frac{1-k^{M 1} x^{(M+1)(2s+1)}}{(x)_{s}} \prod_{j=1}^{\infty} (1-k x^{s+j})^{-1}$$ $$= \sum_{s=0}^{\infty} (-1)^{s} k^{M s} x^{\frac{1}{2} s \{(2M+1)s-1\}} \cdot \frac{1-k^{M+1} x^{(M+1)(2s+1)}}{(x)_{s}} \sum_{j=0}^{\infty} \frac{k^{j} x^{sj+j}}{(x)_{j}}.$$ For t < M, it is clear that the coefficient of k^t on the right is simply $x^t/(x)_t$. This proves Singh's result (4). For t = M we get $$\frac{G_{M,M}(x)}{(x)_{M}} = -\frac{x^{M}}{1-x} + \frac{x^{M}}{(x)_{M}},$$ so that $$G_{M,M}(x) = x^{M} - x^{M} \frac{(x)_{M}}{1-x}$$, which also was found by Singh. For t = M + 1, similarly, we have $$\frac{G_{M,M+1}(x)}{(x)_{M+1}} = \frac{x^{M+1}}{(x)_{M+1}} - x^{M+1} - \frac{x^{M+2}}{(1-x)^2},$$ so that (7) $$G_{M,M+1}(x) = x^{M+1} \left\{ 1 - (x)_{M+1} - x \frac{(x)_{M+1}}{(1-x)^2} \right\}$$ $$= x^{M+1} \left\{ 1 - (1+x^3)(x^3)_{M-1} \right\}.$$ also due to Singh. 3. For arbitrary $t \geq M + 1$, it follows from (6) that $$G_{M,t}(x) = \sum_{Ms \le t} (-1)^s \frac{(x)_t}{(x)_s(x)_{t-Ms}} x^{\frac{1}{2}s\{(2M+1)s-1\}(s+1)(t-Ms)}$$ $$- \sum_{M(s+1) \le t} (-1)^s \frac{(x)_t}{(x)_s(x)_{t-M(s+1)-1}} x^e s ,$$ where $$e_s = \frac{1}{2}s\{(2M+1)s-1\} + (s+1)\{t-M(s+1)-1\}(M+1)(2s+1)$$. This simplifies to $$G_{M,t}(x) = x^{t} \sum_{Ms \le t} (-1)^{s} \frac{(x)_{t}}{(x)_{s}(x)_{t-Ms}} x^{\frac{1}{2}s(s-1)+s(t-M)} + \sum_{0 \le Ms \le t} (-1)^{s} \frac{(x)_{t}}{(x)_{s-1}(x)_{t-Ms-1}} x^{\frac{1}{2}s(s-1)+st} ,$$ (8) or if we prefer $$(9) G_{M,t}(x) = \sum_{\substack{M \leq t \\ s \geq 0}} (-1)^s \frac{(x)_t}{(x)_s(x)_{t-Ms}} x^{\frac{1}{2}s(s-1)+st} (1-x^s+x^{t-Ms+s}).$$ For example (9) reduces to (10) $$G_{M,t}(x) = x^{t} \left\{ 1 - \frac{(x)_{t}}{(x)_{t}(x)_{t-M}} (1 - x + x^{t-M+1}) \right\}$$ for $M+1 \le t \le 2M-1$. When t=M+1, it is easily verified that (9) reduces to (7). Singh [4] conjectured the truth of (10) for $t \le 2(M-1)$. ### REFERENCES - 1. H. L. Alder, Generalizations of the Rogers-Ramanujan identities, Pacific J. Math. 4 (1954), 161-168. - 2. V. N. Singh, Certain generalized hypergeometric identities of the Rogers-Ramanjan type, Pacific J. Math. 7 (1957), 1011-1014. - 3. ———, Certain generalized hypergeometric identities of the Rogers-Ramanujan type (II), Pacific J. Math. 7 (1957), 1691–1699. - 4. ——, A note on the computation of Alder's polynomials, Pacific J. Math. 9 (1959), 271–275. DUKE UNIVERSITY # PACIFIC JOURNAL OF MATHEMATICS # **EDITORS** DAVID GILBARG Stanford University Stanford, California F. H. Brownell University of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California Los Angeles 7, California L. J. PAIGE University of California Los Angeles 24, California # ASSOCIATE EDITORS E. F. BECKENBACH E. HEWITT A. HORN M. OHTSUKA E. SPANIER E. G. STRAUS T. M. CHERRY D. DERRY L. NACHBIN H. L. ROYDEN M. M. SCHIFFER F. WOLF ERRY L. NACHDI WI. WI. SCHIFFER ## SUPPORTING INSTITUTIONS UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California. 50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50. The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25. Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California. Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan. PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies. # **Pacific Journal of Mathematics** Vol. 10, No. 2 October, 1960 | Maynard G. Arsove, The Paley-Wiener theorem in metric linear spaces | 365 | |--|-----| | Robert (Yisrael) John Aumann, Acceptable points in games of perfect | | | information | 381 | | A. V. Balakrishnan, Fractional powers of closed operators and the semigroups | | | generated by them | 419 | | Dallas O. Banks, Bounds for the eigenvalues of some vibrating systems | 439 | | Billy Joe Boyer, On the summability of derived Fourier series | 475 | | Robert Breusch, An elementary proof of the prime number theorem with | | | remainder term | 487 | | Edward David Callender, Jr., Hölder continuity of n-dimensional | | | quasi-conformal mappings | 499 | | L. Carlitz, Note on Alder's polynomials | 517 | | P. H. Doyle, III, <i>Unions of cell pairs in</i> E^3 | 521 | | James Eells, Jr., A class of smooth bundles over a manifold | 525 | | Shaul Foguel, Computations of the multiplicity function | 539 | | James G. Glimm and Richard Vincent Kadison, Unitary operators in | | | C*-algebras | 547 | | Hugh Gordon, Measure defined by abstract L_p spaces | 557 | | Robert Clarke James, Separable conjugate spaces | 563 | | William Elliott Jenner, On non-associative algebras associated with bilinear | | | forms | 573 | | Harold H. Johnson, Terminating prolongation procedures | 577 | | John W. Milnor and Edwin Spanier, Two remarks on fiber homotopy type | 585 | | Donald Alan Norton, A note on associativity | 591 | | Ronald John Nunke, On the extensions of a torsion module | 597 | | Joseph J. Rotman, Mixed modules over valuations rings | 607 | | A. Sade, Théorie des systèmes demosiens de groupoï des | 625 | | Wolfgang M. Schmidt, On normal numbers | 661 | | Berthold Schweizer, Abe Sklar and Edward Oakley Thorp, <i>The metrization of</i> | | | statistical metric spaces | 673 | | John P. Shanahan, On uniqueness questions for hyperbolic differential | | | equations | 677 | | A. H. Stone, Sequences of coverings | 689 | | Edward Oakley Thorp, <i>Projections onto the subspace of compact operators</i> | 693 | | L. Bruce Treybig, Concerning certain locally peripherally separable | | | spaces | 697 | | NI W. 1 W. O. I. C. C | | | Milo Wesley Weaver, On the commutativity of a correspondence and a | | | Milo Wesley Weaver, On the commutativity of a correspondence and a permutation | 705 | | · · · · · · · · · · · · · · · · · · · | 705 | | permutation | 713 |