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UNIONS OF CELL PAIRS IN E3

P. H. DOYLE

In [4] it is shown that there are pairs of cells of all dimensions
possible in euclidean 3-space, E3, which are tame separately, but which
have a wild set as their union. Such pairs can be constructed when
the individual cells intersect in a single point. The present paper gives
conditions that unions of some such pairs be tame sets as well as a
number of other results.

LEMMA 1. Let A be a disk which is polyhedral and which lies
on the boundary, dT, of a tetrahedron T in E3. If D2 is a disk in
E3 which has a polygonal boundary and is locally polyhedral mod
ΘD2 while D2 Π T = A Π A = dD2 Π 9 A = J, an arc, then A u A is
a tame disk.

Proof. Let Px and P2 be polyhedral disks in dT, Pλ Π P2 = D and

(Pi U P2) n A = D Then ΘT\(P1 U P2) is a polyhedral annulus, A,. If

Q is a polyhedral disk in D2\dD2, then D2\Q is an annulus A2 which is

locally polyhedral mod dD2. By applying Lemma 5.1 of [8] to Aλ and

A2 one obtains a space homeomorphism h carrying E3 onto E3 while

h(D1 U A) is a polyhedral set. This completes the proof of Lemma 1.

LEMMA 2. Let A be the disk of Lemma 1 while D2 is a tame disk

in E3 such that D2 f] Γ = ΰ 2 n A = 9 A Π dDλ = </, an arc. Then

dT U dA is ίαme.

Proof. By Theorem 2 of [3] dDλ U ^A is locally tame and hence
tame by [1] or [8]. Let a be a point of dJ and J' be an interval of
9A having a as an end point and J' Π dD2 = α. We choose a polygonal
disk M on ΘT with (J'/&/') in its interior while 3D, Π Λf = J ' . By a
swelling [5] of M toward the component of E\dT which meets ΘD2 we
obtain a disk M' which is locally polyhedral mod ΘM and Mr Π dT =
0M=dM'. The sphere S = ikP U (9Γ\M) is tame by [8] and S is pierced
at α by a tame arc lying on d(Dλ (j A ) Hence by [7] 9A U S is local-
ly tame at α. We select an arc P in (S\Mf) U α which is locally poly-
hedral except at the point a. There is an arc A on dD2 which lies in
the exterior of S except for its end point a. The arc A U P is tame
since S (j 9A is tame. Let the arc P be swollen into a 3-cell C3 with
P in its interior such that C3 is locally polyhedral mod α, C3 Π S is a
disk while C3 Π M = a. Then dC3 is pierced at a hy A \J P and so
A U P U 9C3 is tame by [7]. Evidently there is an arc P' on ΘC3 so
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that A {J P' pierces dT at a. Again by [7] dD2 U OT is locally tame at
a. A similar argument applies to the other end point of dJ. Hence
9 A U 9Γ is tame. This proves Lemma 2.

THEOREM 1. Let A and A be two tame disks in E3 such that
Dλ Π A = dD1 Π dD2 = J, an arc. Then A \J D2 is a tame disk.

Proof. Since A is tame there is a homeomorphism hτ of E3 onto
E3 such that /^(A) is a plane triangle. The disk /^(A) is to be swollen
so that a 3-cell e3 is formed such that

( i )

(ii) β3 is tame,

(iii) and e3 Π

That such a cell e3 exists follows from Lemma 5.1 of [5] and
Theorem 9.3 of [8].

There is a homeomorphism h2 of E3 onto E3 which carries de3 and
fei(A) o n t o the boundary of a tetrahedron and a polyhedral disk, re-
spectively. By Lemma 2 h2(e3) u hJi^dD^ is a tame set. By Theorem
2 of [6] we can insist that h2hλ{D2) be locally polyhedral mod hJi^dD*),
while h2hλ{dD2) is polygonal. Hence by Lemma 1 h2h1(D1 U A) is tame
and so A U A is tame.

The following result gives a characterization of tame 1-dimensional
complexes in E3. By a lw-star we mean a homeomorphic image of a
1-dimensional simplicial complex K with a vertex cc whose star is K
and x is the common end point of the n segments meeting only in x.

THEOREM 2. If N is a ln-star in E3 such that (n — 1) of the bran-
ches of N lie on a disk D which meets the remaining branch J at x
only and if each arc in N is tame, then N is tame.

Proof. By [2] we may assume that D is locally polyhedral mod N.
An application of the method in Theorem 1 of [3] makes it possible
to select a subset Dr of D which is a disk consisting of (n — 1) tame
disks which contain arcs with x as an end point of all branches of JV
except J. An argument almost identical with that of Theorem 2 of [3]
suffices to show that J U D' is tame and hence N is tame by [1] or [8].

COROLLARY 1. Let G be a graph in E3 such that the star of each
vertex of G meets the conditions of Theorem 2, then G is tame. The
conditions are evidently necessary as well.

COROLLARY 2. Let D be a tame disk and J a tame arc in E3. If
D ΓΊ J = dD Π J = p, an end point of J, and if dD \j J is tame, then
D U J is tame.

Proof. Since D is tame there is a space homeomorphism h which
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carries D onto a face of a tetrahedron T, [h(J)\h(p)] c E3\T. Let P
be a segment on h(dD) with fc(p) as an end point. We enclose P in a
polyhedral disk ikf in dT such that P spans M and &(&D) Π M = P. We
swell Λf as in Lemma 2 to obtain a tame disk M' such that dikf' = dM,
and M'\dM' c 2£8\Γ. Then Λ(J) U Λ(^) contains a tame arc which
pierces the tame sphere [8] S = ΛP U (dT\M) at Λ(p) and so S U /&(</)
is tame by [7]. The construction of an arc P ' as in Lemma 2 comple-
tes the proof.

In Example 1.4 of [4] an arc A which is the union of two tame
arcs is shown. Although A has an open 3-cell complement in compacti-
fied E3, it is nevertheless wild. A similar example can be obtained
from Example 1.4 of two tame disks which meet at a point on the
boundary of each and which have a wild union. In this connection we
give the following result.

THEOREM 3. Let A and D2 be disks in E3 such that each arc in
A and D2 is tame and A Π A = dDx Π dD2 = J, an arc. Then A U A
is a disk such that each arc in D1 U A is tame.

Proof. Let Jf be an arc in A U A If dJ' does not lie in dDx U
dA we extend J' so that this is the case, obtaining J " Z) J 7, dJ" c dA
U 0A and J " c A U A By [2] there is a disk J9 such that 3D =
d(D1 U A), J u e/" c D and D is locally polyhedral mod J U J" U &D.
The arc J in D is the intersection of two disks in D, D[ and Df

t, such
that D[ U A' = D. Consider any point x of J" in A\9A In [3] a
method is given for enclosing x in the interior of a tame subdisk of
D[. Hence D[ is locally tame at each of its interior points and dD[ is
tame. By [8] D[ is tame. A similar argument can be applied to D!2.
Hence D[ (j A' i s a tame disk by Theorem 2. Then J " is tame and so
J ' is tame. Since J' was arbitrarily chosen A U A is a disk in which
each arc is tame.

COROLLARY 1. Let Lλ and L2 be tame disks which intersect in a
single point on the boundary of each. If Lλ U L2 lies on a disk in
which each arc is tame, then L1 (j L2 is tame.

Proof. Let Lλ U L2 lie on a disk D such that each arc in D is
tame. By Theorem 2 dLλ U ®L2 is tame. There is a disk D' in D with
a tame boundary such that D' Π (A U L2) c 9LX U dL2 while fl' U A U A
is a disk. Then by [2] there is a disk D" such that dD" = &D', Z>" is
locally polyhedral mod dD" and &D" Π (Lx (J I/2) = 0JD' ΓΊ (Lλ U A). Now
.D" is tame by [8] and so D" U Lλ U L2 is tame by Theorem 2. It follows
that A U L2 is tame.
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