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COMPUTATIONS OF THE MULTIPLICITY FUNCTION

S. R. FOGUEL

l Introduction* Let H be a separable Hubert space. The follow-
ing two problems will be studied:

1. Given a bounded normal operator A, of multiplicity m, what
are the conditions, on the bounded measurable function /, so that the
multiplicity of S —/(A) is n, n < oo?

2. How to compute the multiplicity of a normal operator that com-
mutes with a given normal operator, of finite multiplicity?

NOTATION. Let S be a normal operator of multiplicity n, n < oo.
There exist a Borel measure μ and n Borel sets in the complex plane
eιZDe2i) ••• 3 e w , such that, up to unitary equivalence,

(1.1) H=±L&,e<)

This is the Multiplicity Theorem. (See Theorem X. 5.10) of | l j .
The operator S has uniform multiplicity if ex — β2 = = en

The resolution of the identity, of a normal operator A, will be
denoted by E(A; a). The Boolean algebra of projections, generated by
E(A; a) will be denoted by &A. Let E(a) stand for E(S; a) and @ for
®s. Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:
Let S be a normal operator of multiplicity n, and B a normal

operator that commutes with S. Let H and S be represented by 1.1.

THEOREM A. There exist k Borel measurable bounded complex
functions y1(X)y •• ,2/Λ(λ) and k matrices of Borel measurable bounded
complex functions ε^λ), •• ,eΛ(λ) such that:

For a fixed λ the matrices ε^λ) are disjoint self adjoint projec-
tions whose sum is the identity and

(1.2)

V.(λ>
Received October 21, 1958, and in revised form April 24, 1959. This work has been

partially supported by the National Science Foundation.

539



540 S. R. FOGUEL

Equivalently, if the self adjoint projections Eiy are defined by

EA

(1.3)

REMARK. In the above decomposition the numbers y^X) for a fixed
λ are different eigenvalues of a certain matrix. Thus for each λ there
is an integer k' < k such that

0i(λ) =£ ί/j(λ) i ^ j i,j < k', εt(λ) =^0 i < fc' ,

and

2/*'+i(λ) = = 2/fc(λ) = 0 ,

εfc+1(λ) = . . . = efc+1(λ) = 0 .

This is essential for the proof of Lemma 2.1. Also the matrices εέ(λ)
are n x n matrices.

THEOREM B. The number n is the largest integer such that there
exists a nilpotent operator, commuting with S, of order n. See [2]
Theorem 3.1 and its corollary.

2. The multiplicity of a function of an operator* The main re-
sult in this section is:

THEOREM 2.1. Let A be a normal operator of multiplicity m,
m < oo, and f a bounded measurable function. The operator S = f(A)
has finite multiplicity, if and only if, there exist k disjoint Borel
sets βlf •••,&; and k bounded measurable functions z^X), •• ,«fc(λ) such
that:

a. σ(A) = \Jβt.
ί = l

b. if X 6 βi then ^(/(λ)) = λ almost

everywhere, with respect to E(A; a).
Proof of sufficiency of conditions a and b. Let St and A% be the

restrictions of S and A to E(A β^H. Then
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= ( f(X)E(A;d\)
Jβi

hence

Now, it follows from Theorem B that

muAi > muSi (muT = multiplicity of T)

But the multiplicity function is subadditive:

muS <

To see this we have to observe that muS is the smallest number n
such that there exists a set of n elements, {x19 xn}, xi e H and span
{E{ά)xlJ a a Borel set} — H. (n generating elements.)

Thus

k k

ΎΠUA < Σ muSi < Σ wίuAi < mk < oo .
i=Ί ί=l

In order to prove necessity we need the following :

LEMMA 2.1. Let S = f(A) have finite multiplicity n and let

be the representation 1.3

Proof. For every Borel set α i?(α) e &A because S = /(^4). Let
£7(α) be maximal with respect to the property that E(a)E1 e QlA. Such
a maximal projection exists by Zorn's Lemma. Now if E(σ(S) — a) Φ 0
there exists, by the proof of 3.2 in [2] a set β such that:

β c σ(S) - α £7(/3) ̂  0

and for some Borel set γ

1 = E(β)E(A;y)e(£Λ.

This contradicts the maximality of a, hence E(a) = I.
Proof of necessity of conditions a and b. Let S hsve finite multi-

plicity n. By Lemma 2.1 there exist n sets βt such that E(A; βt) = Et.
Thus
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E(A;βi)E(A;βj) = 0 if i Φ j

and

±E(A;βt) = I.

Therefore the sets βt can be chosen to be disjoint and satisfy
condition a. Also

A = Σ US)Et = Σ *t(/(A))JE7(A; A) = Σ ( zί(f(X)E(A; dX) .
ί = i i = i i = i j β

Hence, if βczβi then

= ( XE(A; dX) = ( ^ ( / ( λ ) ) ^ ; dλ)
Jβ Jβ

or: on the set βtX — ̂ (/(λ)) almost everywhere with respect to the
measure E(A\a).

DEFINITION. The function / will be said to have k repetitions, with
respect to the measure E(A α), if conditions a and b of Theorem 2.1
are satisfied.

In the rest of this section we compute muS. It is enough to con-
sider the case where the operator A has uniform multiplicity m: other-
wise A can be written as direct sum of operators of uniform multiplicity
and one has to study each component of A separately.

The following Theorem is needed:

THEOREM 2.2 Let H be the direct sum of the orthogonal subspaces
Hlf •• ,Hk. Let Si be a normal operator, on Ήu of uniform, multi-
plicity mt and S be the direct sum of S,t.

if

E(S; a) = 0 whenever E(S,i] a) = 0 for some i

then

muS = Σ m% '
i = l

Proof. It is enough to prove that muS > ΣLi ^V Let σ = σ(S^) =
. . . = σ(Sk) = σ(S). By the Spectral Multiplicity Theorem each operator
Si can be described as follows: There exists a measure μ% on σ and
Hi is the direct sum of fmi spaces L2(μt). The operator Si is given by

γmι(
χy
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Now, the measures μt are equivalent, by the condition of the
Theorem. Thus there exist functions ^ , ^ 6 L(μi+1) 1 < i < k — 1 such
that

for every Borel set e. (Radon Nikodym Theorem, see [3], p. 128). Let
us define an operator on H:

If x 6 Hif

then

If

then

X =

Mx e Ht, Mx =

/-4-x(λ)

0

0 \

x e Hίf x —

e ί/"ί+1, Λfa? =

0

Where Hk+1 is the zero space.
It is easy to see that Mis a bounded operator and

= 0
but

k

Σ
M1'1
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Also MS = SM, hence muS > Σ i - i ^ i

REMARK. It was proved in Theorem 2.1 that if a function / has k
repetitions then

muf(A) < kmuA .

However the number of repetitions of a function is not uniquely
defined. In order to compute muf(A) we have to find the minimal
number of repetitions. This is what the next Theorem does.

THEOREM 2.3. Let A be a normal operator of uniform multiplicity
m. Let f be a bounded measurable function which has k repetitions
with respect to the measure E(A a). A necessary and sufficient con-
dition that muS = mk, where S = f{A), is:

There exists a Borel set aQ

(2.1) E(A;f-\aQ))Φθ

and

E(A)f-\a)) = 0 whenever £(A;/- !(a)nA) = 0 for some i and
acza0.

Proof. Assume condition 2.1. We may restrict A and S to
E(A;f-\aQ))H. Let

and Aiy St the restriction of A, S to Ht. Now

f(At) = S, zt(St) - A,

(See Theorem 2.1.). Thus the operators St have uniform multiplicity
m because the operators At do. It follows from Theorem 2.2 that the
multiplicity of S restricted to E{A\f~1(aQ))H is mk. But muS <mk,
hence muS = mk.

(Note that on aQ the operator S has uniform multiplicity mk). Con-
versely, let us assume that for each Borel set a0 with E(A\f~1{a^)) Φ 0,
there exists a subset a such that E(A;f-\a))Φθ but E(A;f-1(a)nβi)=G
for some i. Let E(A\f"\a^) be maximal with respect to the property

Let E(A)f-\a,)) be maximal, with respect to the property

a.Πa^φ and E(A;f-\a2))E(A;β2) = 0

and choose inductively α3 an, α4 Π α^ = ^
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There exist such maximal projections by Zorn's Lemma. Now if
E{A\ Uf-i/"1^*)) ^ I there will be a set a and an integer j such that

α Π ( ύ «*) = 0; E(A;f-\a) Π /?,) - 0

Thus a} will not be maximal. Let

βj = βji) (/"W n A), i > 2 .

Then UJ=2/3J — tfOA) and on β3 the function / possesses a bounded
measurable inverse. Thus / has k — 1 repetitions and m^S < m(k — 1).

3 The multiplicity of a matrix of functions. Let S be a normal
operator of uniform multiplicity n. Let B be a normal operator and
BS = &B. The operator i? is represented as the matrix of functions
Σ?-i2/ί(λ)εi(λ) a n d also 5 = ^LiVi(S)Ei (Equation 1.2 and 1.3). Let us
denote by Bt and St the restrictions of JB and S, respectively, to

THEOREM 3.1. ΓΛe operator B has finite multiplicity, if and only
if, the functions y% have ji(ji < CΌ ) repetitions with respect to the spec-
tral measure of St.

Also

i = l

k fc

max muBh < ^ mu BL < X jίmuSί .
I i

Proof. From the definition of multiplicity, as the smallest number
of generating elements, it follows that

max muBi < muB < Σ nhuBt .
i 4 = 1

Now, Bi=yi(St)f hence the rest of the Theorem follows from Theorem 2.1.
The problem of this section is reduced to the following

H = Σ #*# where £ ^ = 0 if i ^ i
i = i

and Bt = restriction 5 to ϋ^ϋ", where the multiplicity of B% is known.
Now by decomposing each operator Bt into sum of operators of uniform
multiplicity we will have H = ΣΓ=i ί̂ «, where the spaces Ht are mutually
orthogonal, and Ĉ  == restriction of B to iϊ^ is an operator of uniform
multiplicity. We shall show how to compute muB from muC% by
reducing this case to the one studied in Theorem 2.2,
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Denote the projection on £Γ4 by F%. Let E(B\ai) be the maximal
projection such that

Such a projection exists by Zorn's Lemma. Finally let βt =
σ(B) — at. On βt the spectral measure of C% can vanish only when
the spectral measure of B vanishes. Now E(B\ \JΐlJ3t) = I because

The set σ(B) can be decomposed into disjoint sets jj such that
a. Each jj is a subset of one of the sets βJQ.
b. If y} Π βι Φ ψ then γ̂  c βt.
Assuming, for a moment, that this decomposition is given then

muB = max mu (B restricted to E(B 7j)H) .

But the multiplicity of B restricted to E(B; yj)H is

V mu(Ci restricted to J5(B; γ̂ JEZ,)Δ-X

by Theorem 2.2.
We shall show how to choose the sets γ4 by an induction argument

on the number m. Let γx = βx — \Ji^2fiifii- This set (which might be
void) satisfies conditions a and b. The rest of σ(B) is

U β&) u (u (βi - β

In both sets there are only m — 1 subsets and by induction there exists
a decomposition.

BIBLIOGRAPHY

1. N. Dunford, and J. Schwartz, Linear Operators, Vol. II. to appear.
2. S. R. Foguel, Normal Operators of Finite Multiplicity. Communications on Pure and
Applied Mathematics, Vol. XI, (1958), p. 297.
3. P. R. Halmos, Measure Theory. Ό. Van Nostrand, New York, 1950.

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University
Stanford, California

F. H. BROWNELL

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7, California

L. J. PAIGE

University of California
Los Angeles 24, California

E. F. BECKENBACH
T. M. CHERRY
D. DERRY

ASSOCIATE EDITORS
E. HEWITT M. OHTSUKA
A. HORN H. L. ROYDEN
L. NACHBIN M. M. SCHIFFER

SUPPORTING INSTITUTIONS

E. SPANIER
E. G. STRAUS
F. WOLF

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may
be sent to any one of the four editors. All other communications to the editors should be addressed
to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be
obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6,
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 10, No. 2 October, 1960

Maynard G. Arsove, The Paley-Wiener theorem in metric linear spaces . . . . . . . . 365
Robert (Yisrael) John Aumann, Acceptable points in games of perfect

information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
A. V. Balakrishnan, Fractional powers of closed operators and the semigroups

generated by them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Dallas O. Banks, Bounds for the eigenvalues of some vibrating systems . . . . . . . . 439
Billy Joe Boyer, On the summability of derived Fourier series . . . . . . . . . . . . . . . . 475
Robert Breusch, An elementary proof of the prime number theorem with

remainder term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Edward David Callender, Jr., Hölder continuity of n-dimensional

quasi-conformal mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
L. Carlitz, Note on Alder’s polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
P. H. Doyle, III, Unions of cell pairs in E3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
James Eells, Jr., A class of smooth bundles over a manifold . . . . . . . . . . . . . . . . . . . 525
Shaul Foguel, Computations of the multiplicity function . . . . . . . . . . . . . . . . . . . . . . 539
James G. Glimm and Richard Vincent Kadison, Unitary operators in

C∗-algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Hugh Gordon, Measure defined by abstract L p spaces . . . . . . . . . . . . . . . . . . . . . . . 557
Robert Clarke James, Separable conjugate spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 563
William Elliott Jenner, On non-associative algebras associated with bilinear

forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Harold H. Johnson, Terminating prolongation procedures . . . . . . . . . . . . . . . . . . . . 577
John W. Milnor and Edwin Spanier, Two remarks on fiber homotopy type . . . . . . 585
Donald Alan Norton, A note on associativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Ronald John Nunke, On the extensions of a torsion module . . . . . . . . . . . . . . . . . . . 597
Joseph J. Rotman, Mixed modules over valuations rings . . . . . . . . . . . . . . . . . . . . . . 607
A. Sade, Théorie des systèmes demosiens de groupoï des . . . . . . . . . . . . . . . . . . . . . 625
Wolfgang M. Schmidt, On normal numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
Berthold Schweizer, Abe Sklar and Edward Oakley Thorp, The metrization of

statistical metric spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 673
John P. Shanahan, On uniqueness questions for hyperbolic differential

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 677
A. H. Stone, Sequences of coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 689
Edward Oakley Thorp, Projections onto the subspace of compact operators . . . . 693
L. Bruce Treybig, Concerning certain locally peripherally separable

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
Milo Wesley Weaver, On the commutativity of a correspondence and a

permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 705
David Van Vranken Wend, On the zeros of solutions of some linear complex

differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 713
Fred Boyer Wright, Jr., Polarity and duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 723

Pacific
JournalofM

athem
atics

1960
Vol.10,N

o.2


	
	
	

