Pacific Journal of Mathematics

COMPUTATIONS OF THE MULTIPLICITY FUNCTION

SHAUL FOGUEL

Vol. 10, No. 2

October 1960

COMPUTATIONS OF THE MULTIPLICITY FUNCTION

S. R. FOGUEL

1. Introduction. Let H be a separable Hilbert space. The following two problems will be studied:

1. Given a bounded normal operator A, of multiplicity m, what are the conditions, on the bounded measurable function f, so that the multiplicity of S = f(A) is $n, n < \infty$?

2. How to compute the multiplicity of a normal operator that commutes with a given normal operator, of finite multiplicity?

NOTATION. Let S be a normal operator of multiplicity $n, n < \infty$. There exist a Borel measure μ and n Borel sets in the complex plane $e_1 \supset e_2 \supset \cdots \supset e_n$, such that, up to unitary equivalence,

(1.1)
$$H = \sum_{i=1}^{n} L_2(\mu, e_i)$$
 $S \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix} = \begin{pmatrix} \lambda f_1(\lambda) \\ \vdots \\ \lambda f_n(\lambda) \end{pmatrix}$

This is the Multiplicity Theorem. (See Theorem X. 5.10) of [1]. The operator S has uniform multiplicity if $e_1 = e_2 = \cdots = e_n$.

The resolution of the identity, of a normal operator A, will be denoted by $E(A; \alpha)$. The Boolean algebra of projections, generated by $E(A; \alpha)$ will be denoted by \mathfrak{E}_A . Let $E(\alpha)$ stand for $E(S; \alpha)$ and \mathfrak{E} for \mathfrak{E}_S . Throughout this note all operators are assumed to be bounded.

We shall use the following results from [2]:

Let S be a normal operator of multiplicity n, and B a normal operator that commutes with S. Let H and S be represented by 1.1.

THEOREM A. There exist k Borel measurable bounded complex functions $y_1(\lambda), \dots, y_k(\lambda)$ and k matrices of Borel measurable bounded complex functions $\varepsilon_1(\lambda), \dots, \varepsilon_k(\lambda)$ such that:

For a fixed λ the matrices $\varepsilon_i(\lambda)$ are disjoint self adjoint projections whose sum is the identity and

(1.2)
$$B\begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix} = \left(\sum_{i=1}^k y_i \varepsilon^i(\lambda)\right) \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_n(\lambda) \end{pmatrix}$$

Received October 21, 1958, and in revised form April 24, 1959. This work has been partially supported by the National Science Foundation.

Equivalently, if the self adjoint projections E_i , are defined by

$$E_i egin{pmatrix} f_1(\lambda) \ dots \ f_n(\lambda) \end{pmatrix} = arepsilon_i(\lambda) egin{pmatrix} f_1(\lambda) \ dots \ f_n(\lambda) \end{pmatrix}$$

then

(1.3)
$$\begin{cases} B = \sum_{i=1}^{k} y_i(S) E_i \\ E(B; \alpha) = \sum_{i=1}^{k} E(y_i^{-1}(\alpha)) E_i \end{cases}.$$

REMARK. In the above decomposition the numbers $y_i(\lambda)$ for a fixed λ are different eigenvalues of a certain matrix. Thus for each λ there is an integer $k' \leq k$ such that

$$y_i(\lambda)
eq y_j(\lambda) \qquad i
eq j \qquad i,j \leq k', \qquad arepsilon_i(\lambda)
eq 0 \qquad i \leq k' \; ,$$

and

$$egin{aligned} &y_{_{k'+1}}(\lambda)=\cdots=y_k(\lambda)=0\ ,\ &arepsilon_{_{k+1}}(\lambda)=\cdots=arepsilon_{_{k+1}}(\lambda)=0\ . \end{aligned}$$

This is essential for the proof of Lemma 2.1. Also the matrices $\varepsilon_i(\lambda)$ are $n \times n$ matrices.

THEOREM B. The number n is the largest integer such that there exists a nilpotent operator, commuting with S, of order n. See [2] Theorem 3.1 and its corollary.

2. The multiplicity of a function of an operator. The main result in this section is:

THEOREM 2.1. Let A be a normal operator of multiplicity m, $m < \infty$, and f a bounded measurable function. The operator S = f(A) has finite multiplicity, if and only if, there exist k disjoint Borel sets β_1, \dots, β_k and k bounded measurable functions $z_1(\lambda), \dots, z_k(\lambda)$ such that:

a.
$$\sigma(A) = \bigcup_{i=1}^k \beta_i$$
.

b. if $\lambda \in \beta_i$ then $z_i(f(\lambda)) = \lambda$ almost

everywhere, with respect to $E(A; \alpha)$.

Proof of sufficiency of conditions a and b. Let S_i and A_i be the restrictions of S and A to $E(A; \beta_i)H$. Then

$$S_i = \int_{\beta i} f(\lambda) E(A; d\lambda)$$

hence

 $z_i(S_i) = A_i .$

Now, it follows from Theorem B that

$$muA_i \ge muS_i$$
 ($muT =$ multiplicity of T)

But the multiplicity function is subadditive:

$$muS \leq \sum_{i=1}^k muS_i$$
.

To see this we have to observe that muS is the smallest number n such that there exists a set of n elements, $\{x_1, \dots, x_n\}$, $x_i \in H$ and span $\{E(\alpha)x_i, \alpha \text{ a Borel set}\} = H$. (n generating elements.)

Thus

$$muA \leq \sum_{i=1}^{k} muS_i \leq \sum_{i=1}^{k} muA_i \leq mk < \infty$$
 .

In order to prove necessity we need the following:

LEMMA 2.1. Let S = f(A) have finite multiplicity n and let

$$A = \sum_{i=1}^{k} z_i(S) E_i$$

be the representation 1.3 then $E_i \in \mathfrak{G}_A$.

Proof. For every Borel set $\alpha E(\alpha) \in \mathfrak{S}_{\mathcal{A}}$ because S = f(A). Let $E(\alpha)$ be maximal with respect to the property that $E(\alpha)E_1 \in \mathfrak{S}_{\mathcal{A}}$. Such a maximal projection exists by Zorn's Lemma. Now if $E(\sigma(S) - \alpha) \neq 0$ there exists, by the proof of 3.2 in [2] a set β such that:

$$\beta \subseteq \sigma(S) - \alpha \qquad \qquad E(\beta) \neq 0$$

and for some Borel set γ

$$E(\beta)E_1 = E(\beta)E(A;\gamma) \in \mathfrak{G}_A$$
.

This contradicts the maximality of α , hence $E(\alpha) = I$.

Proof of necessity of conditions a and b. Let S have finite multiplicity n. By Lemma 2.1 there exist n sets β_i such that $E(A; \beta_i) = E_i$. Thus

$$E(A; \beta_i)E(A; \beta_j) = 0 \text{ if } i \neq j$$

and

$$\sum_{i=1}^{k} E(A; \beta_i) = I$$
 .

Therefore the sets β_i can be chosen to be disjoint and satisfy condition a. Also

$$A = \sum_{i=1}^k z_i(S)E_i = \sum_{i=1}^k z_i(f(A))E(A;\beta_i) = \sum_{i=1}^k \int_\beta z_i(f(\lambda)E(A;d\lambda))$$

Hence, if $\beta \subset \beta_i$ then

$$E(A; \beta)A = \int_{\beta} \lambda E(A; d\lambda) = \int_{\beta} z_i(f(\lambda))E(A; d\lambda)$$

or: on the set $\beta_i \lambda = z_i(f(\lambda))$ almost everywhere with respect to the measure $E(A; \alpha)$.

DEFINITION. The function f will be said to have k repetitions, with respect to the measure $E(A; \alpha)$, if conditions a and b of Theorem 2.1 are satisfied.

In the rest of this section we compute muS. It is enough to consider the case where the operator A has uniform multiplicity m: otherwise A can be written as direct sum of operators of uniform multiplicity and one has to study each component of A separately.

The following Theorem is needed:

THEOREM 2.2 Let H be the direct sum of the orthogonal subspaces H_1, \dots, H_k . Let S_i be a normal operator, on H_i , of uniform multiplicity m_i and S be the direct sum of S_i .

$$E(S; \alpha) = 0$$
 whenever $E(S_i; \alpha) = 0$ for some i

then

$$muS = \sum_{i=1}^{k} m_i$$

Proof. It is enough to prove that $muS \ge \sum_{i=1}^{k} m_i$. Let $\sigma = \sigma(S_1) = \cdots = \sigma(S_k) = \sigma(S)$. By the Spectral Multiplicity Theorem each operator S_i can be described as follows: There exists a measure μ_i on σ and H_i is the direct sum of m_i spaces $L_2(\mu_i)$. The operator S_i is given by

$$S_i \begin{pmatrix} f_1(\lambda) \\ \vdots \\ f_{m_i}(\lambda) \end{pmatrix} = \begin{pmatrix} \lambda f_1(\lambda) \\ \vdots \\ \lambda f_{m_i}(\lambda) \end{pmatrix}.$$

Now, the measures μ_i are equivalent, by the condition of the Theorem. Thus there exist functions φ_i , $\varphi_i \in L(\mu_{i+1})$ $1 \le i \le k-1$ such that

$$\mu_i(e) = \int_e \varphi_i(\lambda) d\mu_{i+1}$$

for every Borel set e. (Radon Nikodym Theorem, see [3], p. 128). Let us define an operator on H:

If $x \in H_i$,

$$x=egin{pmatrix} f_1(\lambda)\dots\ f_1(\lambda)\dots\ f_m_i^{-1}(\lambda)\ 0 \end{pmatrix}$$

then

If

then

$$x \in H_i, \quad x = \left(egin{array}{c} 0 \ dots \ dots \ 0 \ f_{m_i}(\lambda) \end{array}
ight)$$

 $Mx \in H_i, \quad Mx = \begin{pmatrix} 0 \\ f_1(\lambda) \\ \vdots \\ f_{m-1}(\lambda) \end{pmatrix}.$

$$Mx \in H_{i+1}, Mx = \left(egin{array}{c} \sqrt{arphi_i(\lambda)} f_{m_i}(\lambda) \\ 0 \\ dots \\ dots \\ dots \\ dots \\ 0 \end{array}
ight)$$

Where
$$H_{k+1}$$
 is the zero space.

It is easy to see that M is a bounded operator and

$$M^{\sum\limits_{i=1}^k m_i} = 0$$

but

$$M^{\sum\limits_{i=1}^k m_i-1} \neq 0.$$

Also MS = SM, hence $muS \ge \sum_{i=1}^{k} m_i$.

REMARK. It was proved in Theorem 2.1 that if a function f has k repetitions then

$$muf(A) \leq kmuA$$
.

However the number of repetitions of a function is not uniquely defined. In order to compute muf(A) we have to find the minimal number of repetitions. This is what the next Theorem does.

THEOREM 2.3. Let A be a normal operator of uniform multiplicity m. Let f be a bounded measurable function which has k repetitions with respect to the measure $E(A; \alpha)$. A necessary and sufficient condition that muS = mk, where S = f(A), is:

There exists a Borel set α_0

(2.1)
$$E(A; f^{-1}(\alpha_0)) \neq 0$$

and

 $E(A; f^{-1}(\alpha)) = 0$ whenever $E(A; f^{-1}(\alpha) \cap \beta_i) = 0$ for some i and $\alpha \subset \alpha_0$.

Proof. Assume condition 2.1. We may restrict A and S to $E(A; f^{-1}(\alpha_0))H$. Let

$$H_i = E(A; f^{-1}(lpha_0) \cap eta_i)H$$
 ,

and A_i , S_i the restriction of A, S to H_i . Now

$$f(A_i) = S_i \qquad \qquad z_i(S_i) = A_i$$

(See Theorem 2.1.). Thus the operators S_i have uniform multiplicity m because the operators A_i do. It follows from Theorem 2.2 that the multiplicity of S restricted to $E(A; f^{-1}(\alpha_0))H$ is mk. But $muS \leq mk$, hence muS = mk.

(Note that on α_0 the operator S has uniform multiplicity mk). Conversely, let us assume that for each Borel set α_0 with $E(A; f^{-1}(\alpha_0)) \neq 0$, there exists a subset α such that $E(A; f^{-1}(\alpha)) \neq 0$ but $E(A; f^{-1}(\alpha) \cap \beta_i) = 0$ for some *i*. Let $E(A; f^{-1}(\alpha_1))$ be maximal with respect to the property

$$E(A; f^{-1}(\alpha_1))E(A; \beta_1) = 0$$

Let $E(A; f^{-1}(\alpha_2))$ be maximal, with respect to the property

$$lpha_{_2}\cap lpha_{_1}=arphi$$
 and $E(A\,;f^{-1}(lpha_{_2}))E(A\,;eta_{_2})=0$

and choose inductively $\alpha_3 \cdots \alpha_n, \alpha_i \cap \alpha_j = \varphi$

$$E(A;f^{-1}(lpha_j))E(A:eta_j)=0$$

There exist such maximal projections by Zorn's Lemma. Now if $E(A; \bigcup_{i=1}^{k} f^{-1}(\alpha_i)) \neq I$ there will be a set α and an integer j such that

$$lpha \cap \left(igcup_{i=1}^k lpha_i
ight) = 0; \qquad E(A\,;f^{-1}(lpha)\capeta_j) = 0$$

Thus α_j will not be maximal. Let

$$ar{eta}_{\jmath}=eta_{\jmath}\cup(f^{-\imath}(lpha_{\jmath})\capeta_{\imath}),\ \ j\geq 2$$
 .

Then $\bigcup_{j=2}^{u} \overline{\beta}_{j} = \sigma(A)$ and on $\overline{\beta}_{j}$ the function f possesses a bounded measurable inverse. Thus f has k-1 repetitions and $muS \leq m(k-1)$.

3. The multiplicity of a matrix of functions. Let S be a normal operator of uniform multiplicity n. Let B be a normal operator and BS = SB. The operator B is represented as the matrix of functions $\sum_{i=1}^{k} y_i(\lambda)\varepsilon_i(\lambda)$ and also $B = \sum_{i=1}^{k} y_i(S)E_i$ (Equation 1.2 and 1.3). Let us denote by B_i and S_i the restrictions of B and S, respectively, to $E_iH = H_i$.

THEOREM 3.1. The operator B has finite multiplicity, if and only if, the functions y_i have $j_i(j_i < \infty)$ repetitions with respect to the spectral measure of S_i .

Also

$$\max_i muB_i \leq \sum\limits_{i=1}^k mu \ B_i \leq \sum\limits_{i=1}^k j_i muS_i$$
 .

Proof. From the definition of multiplicity, as the smallest number of generating elements, it follows that

$$\max_{i} muB_{i} \leq muB \leq \sum_{i=1}^{k} muB_{i} .$$

Now, $B_i = y_i(S_i)$, hence the rest of the Theorem follows from Theorem 2.1. The problem of this section is reduced to the following

$$H = \sum_{i=1}^{k} E_i H$$
 where $E_i E_j = 0$ if $i \neq j$

and B_i = restriction B to E_iH , where the multiplicity of B_i is known. Now by decomposing each operator B_i into sum of operators of uniform multiplicity we will have $H = \sum_{i=1}^{m} H_i$, where the spaces H_i are mutually orthogonal, and C_i = restriction of B to H_i is an operator of uniform multiplicity. We shall show how to compute muB from muC_i by reducing this case to the one studied in Theorem 2.2, Denote the projection on H_i by F_i . Let $E(B; \alpha_i)$ be the maximal projection such that

$$E(C_i; \alpha_i) = E(B; \alpha_i)F_i = 0$$
.

Such a projection exists by Zorn's Lemma. Finally let $\beta_i = \sigma(B) - \alpha_i$. On β_i the spectral measure of C_i can vanish only when the spectral measure of B vanishes. Now $E(B; \bigcup_{i=1}^{m} \beta_i) = I$ because $\sum_{i=1}^{m} F_i = I$.

The set $\sigma(B)$ can be decomposed into disjoint sets γ_j such that

a. Each γ_j is a subset of one of the sets β_{j_0} .

b. If $\gamma_j \cap \beta_i \neq \varphi$ then $\gamma_j \subset \beta_i$.

Assuming, for a moment, that this decomposition is given then

 $muB = \max mu(B \text{ restricted to } E(B; \gamma_j)H)$.

But the multiplicity of B restricted to $E(B; \gamma_j)H$ is

$$\sum_{i \mid \gamma_j \subset \beta_i} mu \left(C_i \text{ restricted to } E(B; \gamma_j) H_i \right)$$

by Theorem 2.2.

We shall show how to choose the sets γ_i by an induction argument on the number *m*. Let $\gamma_1 = \beta_1 - \bigcup_{i \ge 2} \beta_i \beta_i$. This set (which might be view) void) satisfies conditions a and b. The rest of $\sigma(B)$ is

$$\left(igcup_{i\geq 2}eta_1eta_i
ight)\cup\left(igcup_{i\geq 2}\left(eta_i-eta_1
ight)
ight)$$

In both sets there are only m-1 subsets and by induction there exists a decomposition.

BIBLIOGRAPHY

1. N. Dunford, and J. Schwartz, Linear Operators, Vol. II. to appear.

2. S. R. Foguel, Normal Operators of Finite Multiplicity. Communications on Pure and Applied Mathematics, Vol. XI, (1958), p. 297.

3. P. R. Halmos, Measure Theory. D. Van Nostrand, New York, 1950.

UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

DAVID GILBARG

Stanford University Stanford, California

F. H. BROWNELL University of Washington Seattle 5, Washington A. L. WHITEMAN University of Southern California

Los Angeles 7, California

L. J. PAIGE University of California Los Angeles 24, California

ASSOCIATE EDITORS

E. F. BECKENBACH	E. HEWITT	M. OHTSUKA	E. SPANIER
T. M. CHERRY	A. HORN	H. L. ROYDEN	E. G. STRAUS
D. DERRY	L. NACHBIN	M. M. SCHIFFER	F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE COLLEGE UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE COLLEGE UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY CALIFORNIA RESEARCH CORPORATION HUGHES AIRCRAFT COMPANY SPACE TECHNOLOGY LABORATORIES NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may be sent to any one of the four editors. All other communications to the editors should be addressed to the managing editor, L. J. Paige at the University of California, Los Angeles 24, California.

50 reprints per author of each article are furnished free of charge; additional copies may be obtained at cost in multiples of 50.

The *Pacific Journal of Mathematics* is published quarterly, in March, June, September, and December. The price per volume (4 numbers) is \$12.00; single issues, \$3.50. Back numbers are available. Special price to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues, \$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6, 2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Pacific Journal of Mathematics Vol. 10, No. 2 October, 1960

Maynard G. Arsove, <i>The Paley-Wiener theorem in metric linear spaces</i>	365
Robert (Yisrael) John Aumann, Acceptable points in games of perfect	
information	381
A. V. Balakrishnan, Fractional powers of closed operators and the semigroups generated by them	419
Dallas O. Banks, <i>Bounds for the eigenvalues of some vibrating systems</i>	439
Billy Joe Boyer, On the summability of derived Fourier series	475
Robert Breusch, An elementary proof of the prime number theorem with remainder term	487
Edward David Callender, Jr., <i>Hölder continuity of n-dimensional</i> <i>quasi-conformal mappings</i>	499
L. Carlitz, <i>Note on Alder's polynomials</i>	517
P. H. Doyle, III, Unions of cell pairs in E^3	521
James Eells, Jr., A class of smooth bundles over a manifold	525
Shaul Foguel, <i>Computations of the multiplicity function</i>	539
James G. Glimm and Richard Vincent Kadison, Unitary operators in	
C*-algebras	547
Hugh Gordon, <i>Measure defined by abstract L_p spaces</i>	557
Robert Clarke James, <i>Separable conjugate spaces</i>	563
William Elliott Jenner, On non-associative algebras associated with bilinear	
<i>forms</i>	573
Harold H. Johnson, <i>Terminating prolongation procedures</i>	577
John W. Milnor and Edwin Spanier, <i>Two remarks on fiber homotopy type</i>	585
Donald Alan Norton, <i>A note on associativity</i>	591
Ronald John Nunke, On the extensions of a torsion module	597
Joseph J. Rotman, <i>Mixed modules over valuations rings</i>	607
A. Sade, <i>Théorie des systèmes demosiens de groupoï des</i>	625
Wolfgang M. Schmidt, <i>On normal numbers</i>	661
Berthold Schweizer, Abe Sklar and Edward Oakley Thorp, The metrization of	
statistical metric spaces	673
John P. Shanahan, On uniqueness questions for hyperbolic differential	
equations	677
A. H. Stone, <i>Sequences of coverings</i>	689
Edward Oakley Thorp, <i>Projections onto the subspace of compact operators</i>	693
L. Bruce Treybig, <i>Concerning certain locally peripherally separable</i> <i>spaces</i>	697
Milo Wesley Weaver, On the commutativity of a correspondence and a	
permutation	705
David Van Vranken Wend, On the zeros of solutions of some linear complex differential equations	713
Fred Boyer Wright, Jr., <i>Polarity and duality</i>	