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ON NORMAL NUMBERS

WOLFGANG SCHMIDT

l Introduction* A real number ξ, 0 ^ ξ < 1, is said to the normal
in the scale of r (or to base r), if in ξ = 0 aLa2 expanded in the
scale of r(1) every combination of digits occurs with the proper frequency.
If bj)2 bk is any combination of digits, and ZN the number of indices
i in 1 ^ ί ^ ΛΓ having

then the condition is that

(1) \\mZNN-λ ^ rk .

A number f is called simply normal in the scale of r if (1) holds
for k = 1. A number is said to be absolutely normal if it is normal to
every base r. It is well-known (see, for example, [6], Theorem 8.11)
that almost every number ξ is absolutely normal.

We write r ^ s, if there exist integers n, m with rn — sm. Other-
wise, we put r Φ s.

In this paper we solve the following problem. Under what condi-
tions on r, s is every number ξ which is normal to base r also normal
to base s ? The answer is given by

THEOREM 1. A Assume r ~ s. Then any number normal to base
r is normal to base s.

B If r o° s, then the set of numbers ξ which are normal to base
r but not even simply normal to base s has the power of the continuum.

The A-part of the Theorem is rather trivial, but I shall sketch a
proof of it, since I could not find one in the literature.

Next, let I be an interval of length | I\ contained in the unit-interval
U = [0, 1]. We write MN(ξ, r, I) for the number of indices i in lrgifg JV
such that the fractional part {rιξ} of r%ξ lies /. A sequence ξ, rξ, r2ξ,
has uniform distribution modulo 1 if

RN(ξ9 r, I) = MN(ξ, r,I)-N\I\= o(N)

for any J. It was proved by Wall | 8 | (the most accessible proof in [6|,
Theorem 8.15) that ξ is normal to base r if and only if ξ, rξ, r2ξ,
has uniform distribution modulo 1.

Write TStt, where 1 < t < s, for the following mapping in U: If
ξ = 0 aλa2 in the scale of t, then TSΛξ = 0*axa2 in the scale of s.

Received June 2, 1959.
1 In case of ambiguity we take the representation with an infinity of aι less then r — 1.

But this does not affect the property of £ to be normal or not.
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662 WOLFGANG SCHMIDT

THEOREM 2. Assume r φ s. Then there exists a constant aλ =
ax{r, s,t)>0 such that for almost every ξ there exists a N0(ξ) with

( 2 ) RN(TsJ,rfI)^N^

for every N ^ N0(ξ) and any I.
Thus TSttξ is normal to base r for almost all ξ. Since TSttξ is not

simply normal to base s part B of Theorem 1 follows. It does not follow
immediately for s = 2, but instead of T2tt, which does not exist, we
may take T4ιt.

We can interpret our results as follows. Write CSΛ for the image
set TSιtU of the unit-interval U under the mapping TStt. CStt is es-
sentially a Cantor set. In CSιt we define a measure μStt by

( 3 )

where f(ξ) is any real-valued function such that the integral on the
right hand side of (3) exists. Then it follows from Theorem 2 that
with respect to μStt almost every ξ in Cs>t is normal in the scale of r.

Throughout this paper, lower case italics stand for integers. aλ =
a^r, s, t)y a2, α3, will be positive constants depending on some or all
the variables r, s, t.

l The case r ~ s. First, it follows almost from the definition that
any number normal to base s11 is normal to base s.

Next, assume ξ is normal to base r, we shall show it is normal in
the scale of rm. If ξ = 0 aλa2 ••• in the scale of r, bλ bmk is any
combination of mk digits and Z(JP is the number of indices i in 1 ̂  i ^ N
with i == 1 (mod m) satisfying

b1 = aif , bmk = ttj+j^fc-! ,

then it was shown in [7] and in [3] that

lim

N-*oo

and hence

lim ^ ()
N->oe

Thus I is normal to base rm.
Combining the above remarks we obtain the A-part of Theorem 1.

2. The measure μSιt. We define numbers of order h to be the
number Q ax ah with 0 S α« < t in the scale of s. There are th

numbers of order h, we denote them in ascending order by θ[h\ •••, θ{%\
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LEMMA 1. Let f(ξ) be a step-function, having a finite number of
steps. Then

\ f(ξ)dμs,t - [f(TsJ)dξ = lim t~h Σ / ( ^ } ) .
JG<. I J o Λ,->oo fc = l

The integrals and the limit exist and are finite.

Proof. It will be sufficient to prove the lemma for f(ξ) = {1,7},
where 0 ^ 7 ^ 1 and

{ f f 7 } = j l , if if} < 7
0 otherwise.

ξ™ = I {Γs t^, ^Λ)}d^ is the least upper bound of numbers § having
Jo

Ts,tξ^Θ%ι). Thus if 0ί'° = 0 αL ••• αft in the scale of s, then |(fc

ft) =
O αi ah in the scale of t and therefore |&Λ) == (k — l)t~h.

Hence if θΐ] ^ 7 ^ *̂+\> o r if ^*Λ) ^ 7 with k = tΛ, then

Jo

where 0 <£ ε ^ ί"Λ. We can rewrite this in the form

and Lemma 1 follows.
Particularly, for

μ(Ύ,x) - [{xT8.tξ9y}dξ
Jo

μ(Ύ, x, y) = [{xTstξ, 7} {yTsJ,
Jo

we have

(4) μ(y, x) = l i m ί - Λ Σ

( 5 ) //(7, x, 1/) = lim t~h 2 {̂ f̂c713, 7} {y@ih), 7} .
Jl-*oo Jc — 1

3 Exponential sums. Write e(ξ) for β2πί?. There exist ([5], pp. 91-
92, 99) for any γ, 0 ^ γ g 1, and any η > 0 functions f1(ξ)ff2(t) periodic
in I with period 1, such that fx{ξ) ^ {£,7} ^/3(f), having Fourier ex-
pansions
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where the summation is over all u φ 0 and A^ is majorized by

1
( 6 ) I A u I ^

Applying this to (5) we obtain

U27]

μ(y, x, y) S (Ύ + Ψ + lim t- Z-4
u,υ

=7^0,0

where we put A[2) = γ + η and take the sum over all pairs u, v of
numbers not both being zero. Since

and since the double sum over u, v is uniformly convergent in h, we
may change the order of limit and summation and obtain

Vf Σ'
U, V

?> | lim t~h , e((ux + vy)θ(

k

h})

The numbers θίh) are the numbers

I _ ~Γ ' * * ~Γ . >

where 0 ^ α̂  < ί. Hence

n = ft

If we keep w fixed, and if j is large, then

t\w\

Therefore

(7) / , ( s ,

exists and

(8 ) μ(j, x, Vf + Σ ' I ̂  11 ̂ 2 ) I Π(s, t ux + v y ) .
u,v

The next three sections will be devoted to finding bounds for sums
like

Σ Π(s, t urn + vrm) .
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4«. Two lemmas on digits*

665

LEMMA 2. Write w = cg
m the scale of s. Assume there

are at least z pairs of digits clΛ.γci with

( 9 ) l^cί+ιcί^s2~

(Here ci+lct = sci+1 + c4).

uhere a2 = αa(s, ί), 0 < α2 < 1.

Proof. There are at least 2 numbers ΐ having

For such an i we have

- 2 = to2

and the Lemma is proved.
There exists an α3(s), 0 < α3 < 1/4, such that

LEMMA 3. If k is large, k > aj^s), then the number of combinations
of digits c]cck.1 cx in the scale of s with less than a3(s)k indices i
satisfying (9) is not greater than 2(3/4)fc.

Proof. It will be sufficient to show that the number of combinations
with less than a3(s)k indices i satisfying both (9) and i = 1 (mod 2) is
not greater than 2(3/4)fc. We first assume k is even. There exist

2 ](s 2 - 2y2 f c / 2 " ί

combinations ck cλ with exactly I indices i having both (9) and i = 1
(mod 2). Hence the number of combinations with less than a3(s)k
indices i satisfying (9) and i = 1 (mod 2) does not exceed
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Using Stirling's formula for the binomial coefficient we obtain for large
enough k the upper bound

/Q 3 ( ( / ) 3 )
5V ; ( 2 ) β * ( l 2 ) ( ( 1 / 2 ) ^ ) f c

Actually, the expression on the left hand side is < 2Λefc, where a6 < 3/4.
This permits us to extend the result to odd k.

5* The order of r modulo p* as a function of k.

LEMMA 4. Assume p is a prime with p \ r. Then the order o(r, pk),
of r modulo pk satisfies

o(r, pk) > a7(r, p)pJΰ .

COROLLARY. Let n run through a residue system modulo p*. Then
at most α8(r, p) of the numbers rn will fall into the same residue class
modulo p*.

Proof. Write

g = g i p ) = \P-l> if V is odd
(2 , if p = 2.

There exists an α9 = oc9(r, p) such that

(10) rg = 1 + qp"*'1 (mod p**) ,

where q Ξ£ 0 (mod p). We have necessarily α9 > 1 and even α9 > 2 if
p = 2. If follows from (10) by standard methods (see, for instance, [4],
§ 5.5) that

rop* = 1 + qp«<j-1+e (mod p^+e)

for a n y e ^ 0. T h u s for k >̂ α:9 w e h a v e

and

o(r, pk) ^ ^ p f c - ^ = aΊ{r, p)pk .

Assume r φ s. Write

where we may assume that never both dt = 0, β4 = 0. We also may
assume that the primes pl9 , ph are ordered in such a way that
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^1 ^> ^2 ^> . , , ^> fe

dλ ~ d2 ~ ~ dh

where we put (ejdt) = + oo if di = 0. Since r ^ s , we have
rβ l

r * = Ί Γ > X *

From now on, p = pL(r, s) is the prime defined above. We have p \ s
but p\rλ. For any x =£ 0, 7/ > 1 we define two new numbers x}J and
α j by x = #„#£, where α^ is a power of 2/ and 2/<|Ό;£.

LEMMA 5. A. Assume r φ s, v Φ 0. Let m run through a system
K(sk) of non-negative representatives modulo sk. Then at most

ί s Y
\ 2 / P

of the numbers

v(rmγs

are in the same residue class modulo sk.
B. Assume r Φ s, furthermore p\r. Suppose u Φ 0, v Φ 0, n are

fixed. Then, if m runs through K(sk), at most

of the numbers

urn + vrm

will fall into the same residue class modulo sfc.

Proof. A. Write m = m1e1 + m2, 0 ^ m 2 < eλ. Then rm = rTOlβl+w*2 ==

gί»idirmiri»2 a n ( j ^ ( r ^ ) ^ — 'yrf^r™2)^ The equation

rψι = α (mod pfc)

has for fixed α at most e^a^r^ p) solutions in m = mxex + m2, if m runs
through a system if(pfc) of residues modulo pk. This follows from the
corollary of Lemma 4. The equation

av(rm*ys == δ(mod pk)

has for fixed 6, m2 at most

g.c.d.(v(rm2Ys, pk) ^ vpr™2

solutions in α. Hence the number of solutions of
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vrΊllι(rm2)r

s = b (mod pk)

in m = m^i + m2 e if(pfc) does not exceed

But this implies that the number of solutions of

vr^r^Ys ΞΞΞ 6 (mod sk)

in m = ra^i + m2 e iί(sfc) is not greater than

<xlo(r, s)vp(—J ^ aw(r,

B. The equation

urn + vrm = 6 (mod £>fc)

has according to the corollary of Lemma 4 at most

solutions in 7neK(pk), The result follows as before.
The following conjecture seems related to our results: Assume

r q^ s. Then for any ε and k almost all the numbers r, r2, are
(ε, kynormal to the base s in the sense of Besicovitch |1] that is, the
number of n <̂  N for which rn is not (ε, k)-normal is o(N) as N—>oo
for fixed e and k.

6. Bounds for exponential sums.

LEMMA 6. A. Let r, s, v be as in Lemma 5A. Then

Σ #(s, t vrm) ^ a12vps
(ι~^)k

meκ(sk)

B. Let r, s, u, v, n be as in Lemma 5B. Then

Π(s, t; urn + vrm)

Proof. A. Write v(rm)'s = cff cΛ cλ in the scale of s. Lemma
5A implies that any digit combination c^k-i ' ci will occur at most
#io(Λ s)(s/2)fcvp times. According to Lemma 3, there are for large k not
more than 2(3/4)fc digit-combinations ck cλ with less than a^k indices i
satisfying (9). Thus of all the numbers v{rm)r

SJ meK(sk), and hence of
all the numbers vrm there will be at most

α lo(r, s)(sl2)kvp2
(^)k - α lo(r, s)^(s/21/4)fc - α lo(r, s)vps (1-" }*



ON NORMAL NUMBERS 669

having less than α3ft digits ct in their expansion in the scale of s satisfying
(9). Thus Lemma 2 yields

Π(s, t vrm) ^ αf 3

for all but at most

alo(r,

numbers meK{sk). This gives

Σ Π{s, t vrm) ^ sΛαf
m6Jf(/)

B is proved similarly, using Lemma 5B.

LEMMA 7. A. Assume r o6 s, v =£ 0.

(11) Σ /?(β, t w w ) ^ α17(ΛΓ2 - Ntf-uv, .

B. Assume r rh s, u Φ 0, v ^ 0. Then

(12) Σ Π(s9 t;urn + w m ) ^ α19(iV2 - Ntf-** max

Proof. A. There exists a ft having s2k ^ N2- N,< s

2(k+1\ hence
there exists a w satisfying skw ^N2 — N±< sk(w + 1), where sk ^ w < sfc+2.
Thus if m runs from JVi to N2, then m runs through w systems K(sk)
of residue classes modulo sk and at most sk other numbers. Hence by
Lemma 6A

Σ Π(s, t vrm) ^ II; a12vps
a~ai5)k + sfc ^ cCi7(N2 — N^'^Vp .

iV1<m^iV2

B. If p | r , then we proceed as in part A. We first take the sum
over m and use Lemma 6B.

If p/r, then our argument is as follows. Consider, for example,
the part of the sum with n ^ m. Changing the notation in n> m, we
see that this part of the sum (12) equals

77(s, t (urn + v)rm) .v̂
 = 0

v
m = N-.+l

Except for possibly one exceptional n we have (urn)p Φ vp and therefore
(urn + v)p ^ vp ^ max (up, vp). If n is not exceptional, then the al-
ready proved Lemma 7A can be applied to the inner sum and we obtain
the bound

^17(^2 — Nλ — ^)1-*i8 max (upf vp) .

Taking the sum over n we obtain (12).
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7 A fundamental lemma. Generalizing MN(ξ, r, I) we write

NιMN.β, r, I) for the number of indices i in JVi < i S N2 such that {rιξ}
lies in /. We put

NlRNβf r, I) = NιMN£ξ, r, I) - (N2 - NJ\ I\ .

Fundamental lemma. Assume r Φ s. Then

sJ, r, I)dξ ^ a2l(N2 - Ntf-*™ .

Proof. It is enough to prove this for intervals of the type / = [0, γ).

Then

and

(13)

δ γ T) — y !rnt yl
, , I y 1 ) 2-Λ \l b> / /

[ SlMN%(TtΛξ, r, I)dξ = Σ μ(Ύ, rn)
JO i ^ 1 < W ^ ^ 2

Γ 1

JO Λ r

1 <ίi ,w^i^ 2

Now we combine (8) and Lemma 7. We obtain, together with (6),

μ(γ, rn

f rm) ^ (γ -Σ

+ 2(γ +

+ Σ Σ

ηv

Since the sums

Ύ]UΎ]V

Σ— , Σ Σ
"9 φQ^

m a x

are convergent, and since η was arbitrary, we have

Σ μ(Ύ, r\ rm) - (N2 - Nrfy2 ^ a23(N2 -

In the same fashion we can prove

Σ μ(Ύ, r\ rm) - (N2 - Nlt

Σ μ(y, rn) - (N2 - Nx
a2b(N2 - NJ1-** .

These two inequalities, together with (13) and (14), give the Fundamental
Lemma.
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8. Proof of the theorems* Once the Fundamental Lemma is shown,
we can prove Theorem 2 by the standard method developed in [2].

By JB, B > 0, we denote the set of intervals [β,i), 0 ^ β < γ < 1
of the type β = a2r\ γ = (α + 1)2"\ where 0 ^ 6 ^ a22B\2. By P β we
denote the set of all pairs of integers Nlf N2 having 0 ^ Nx < N2 ^ 2B

of the type N± = α2&, iV2 = (α + l)2δ for integers a and & ̂  0.

LEMMA 8. Assume r + s. Then

Proof. Because of the Fundamental Lemma the left hand side is
not greater than

where 2*22BI2+1 is an upper bound for the number of intervals in JB and

(15) Σ= Σ (JSΓf

In (15) each value of N2 — Nx — 2b occurs 2B~b times, so that

B

& = 0

Hence Lemma 8 is true with a28 = α22/4.

LEMMA 9. For large B there exists a set EB of measure not greater
than 2-"™B such that

(16) RATsJ, r, I) ^ 2*<1-"*>

for all I, N <> 2B and all ξ in [0, 1) but not in EB.

Proof. We define EB to be the set consisting of all ξ in [0,1) for
which it is not true that

(17) Σ Σ Nβ2

N2(Ts,tξ, r, /) S
CNL,N2yePB iejB

Lemma 8 assures that the measure of EB does not exceed

for large B. We have to show that (16) is a consequence of (17).
We first assume / to be of the type / = [0, γ), γ = a2~h, where

0 g & ^ oc22B\2. Then the interval [0, γ), is the sum of at most b < B
intervals /, IeJB, as may be seen by expressing a in the binary scale.
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Expressing N in the binary scale we see that the interval [0, N) can
be expressed as a union of at most B intervals [N19 N2), where the pair
Nlf N2 € PB. Hence we can write RN(TSttξ, r, I) as a sum of NίRNt{TSttξ, r, I)
over at most B2 sets N19 N2,1, where N19 N2ePB, IeJB:

RN(TsJ, r, I) = ΣNlRN%(T,J, r, I) .

Hence by (17) and Cauchy's inequality,

RN(T,.£, r, I) ^

for large B.
Next, let 1 = [0, γ) be of the type α2~& ̂  γ S (a + 1)2"&, where

a22B/A < b ^ a22B/2. Then

I RAT.J, r, [0, γ))| = I MN(Ttttξ, r, [0, γ)) - jN\

£ I Λ^Γ.,tf, r, [0, (a + 1)2"&)) | + | RN(TSJ, r, [0, a2~»)) \ + 2'»N

The Lemma now follows from

I RN( , , [/3, γ)) I ̂  I RN( , , [0, β))\ + \ RN( , , [0, γ)) | .

Proo/ o/ Theorem 2. Since IE"* 3 0 8 is convergent, there exists for
almost all ξ a Bo = £<,(£) such that f 0 JS7Λ for J5 ̂  Bo. Iί N ^ 2B\ then
we can find a i? ^ Bo satisfying 2B~λ < N <; 2B and Lemma 9 yields

for large enough N.
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