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1. Introduction* The metrisable spaces S for which S' (the set of
limit points of S) is compact, can be characterized as those uniformisable
spaces for which the finest uniformity (compatible with the topology) is
metrisable (see [5], [1], where further characterizations are given). B.
T. Levshenko has shown [4] that they also coincide with the regular
spaces in which every point-finite covering1 can be refined by one of a
fixed sequence of point-finite coverings, and that ' 'point-finite'' can be
replaced throughout by "star-finite" or "locally finite". We shall extend
these results (Theorem 2) and obtain an analogue for uniform spaces
(Theorem 3). The proofs depend on a criterion for metrisability (Theorem
1) which may be of independent interest since, though not really new in
content, it is particularly simple in form.

NOTATION. If ^ is a covering of a space S, and A c S, the star
St(A, ^) of A in ^/ is U [U\ U e <%s, A Π U Φ φ}. When A is a 1-point
set (a?), we abbreviate St((x), W) to St(x, <&). The covering by the sets
St(U,^/)y Ue <%s, is denoted by St(^/). A covering ^/ will be called
"almost discrete" if only finitely many pairs U, V of sets of ^/ inter-
sect; such a covering is clearly star-finite (in fact star-bounded) and so
locally finite.

2 Metrisation criterion*

THEOREM 1. A necessary and sufficient condition that a To space
S be metrisable is that S have a sequence of coverings ^ , n = 1, 2, ,
such that, for each x e S, the stars St(G, ^ζ) of the open sets G 3 x
form a basis for the neighborhoods of x.

The condition is trivially necessary. To prove it sufficient, we observe
first that S is developable—i.e., the stars St(x, %ζ) form a basis for the
neighborhoods of each x e S. It follows that S is TΊ; for if x,y are
distinct points of S, one of them, say x, has a neighborhood St(x, %ζ)
not containing y, and then St(y, ^/n) does not contain x. We next show
that S is collectionwise normal (see [2]). We may assume that ^ + 1

refines ^ (by replacing each ^/n by the "intersection" of the coverings
α̂> •", ^ ) . Let ^4λ (λ e A) be a discrete collection of closed subsets

of S, and for each n and λ put

Hnλ = U {U\ U e <%£, St(U, %ζ) meets Aλ but not Aμ if μ ψ λ} ,

Received June 8, 1959.
1 Throughout this paper, ''covering" means "open covering."
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Let Pnλ = U {Hmμ I m^n, μ^X}, Knλ = Hnλ-Pnλ, Hλ = \J{Hnλ \ n = l, 2,...},
K>< = U {̂ nλ I n = 1, 2, •} these sets are all open. It is easy to verify
that Kλ Γ) Kμ = φ it X Φ μ, that Aλ c Hλ, and that Aλ Π J°wλ = φ; hence
Aλ c J?λ where the sets Kλ are disjoint and open, as required.

As Bing has proved [2, Th. 10] that every developable collectionwise
normal ϊ\ space is metrisable, the theorem follows. Alternatively
Theorem 1 could be deduced from a general theorem of Nagata [6], or
from a theorem of F. B. Jones [3].

3. THEOREM 2. The following statements about a regular Tλ space
S are equivalent:

( 1 ) S is metrisable and S' is compact,
( 2 ) S has a sequence of coverings ^n (n = 1, 2, •) such that each

finite covering of S is refined by some &n,
( 3 ) S has a sequence of almost discrete coverings 5^ (n = 1, 2, •)

such that each covering of S is refined by some g^w.
The implication (3) —• (2) is trivial. To prove (2) —»(1), we first show

that, assuming (2), S is metrisable. Given x e U where U is open in S,
there is an open set V such that x e V and VaU. The finite covering
^r — {V,U — (x), S — V} of S has a refinement 2^, and a; e some
G° e ^ then G° c F, the only set of ^ which contains x. If G1 e 5fn

and meets G°, it follows that G1 c F U (17 - (a?)) = U. Thus Sί(G°, ^ ) c 17,
so Theorem 1 applies and S is metrisable. Let p be a metric for S; we
construct another, σ, for which each ^n is uniform. We do this by
successively constructing coverings ^ , ^ , •••, such that St(^n+1) re-
fines Ψ/n, ^/n refines ^ , and ^ ζ consists of sets of ^-diameters < ljn.
By [7, p. 51] there is a corresponding pseudo-metric σ for which each
f/n9 and so each ^ , is uniform; and as σ{x, y) = 0 implies jθ(#, ̂ /) = 0
here, σ is a metric. Condition (2) shows that every finite covering of S
is uniform in the metric σ; it follows ([5]; see also [1, Th. 1, (4) —>(3)]
that S' is compact (and every covering of S is uniform).

Finally, (1) —* (3) by the argument in [4], which we sketch for com-
pleteness. For each n = 1, 2, •••, cover Sf by a finite system of open
sets Gni (i = 1, 2, , fcw) of diameters < 1/n, all meeting S', and adjoin
the 1-point sets (x) for each x e S — \J {Gnί \ i = 1, , fcj to produce
an almost discrete covering &n of S. It is easy to see that every
covering <zs of S is refined by 5^ when n is large enough.

REMARK. TO require that S be separable, in (1), would be equivalent
to requiring that the coverings 5fn be countable, in (2) and (3).

THEOREM 3. The following statements about a completely regular
Tλ space S are equivalent:

( 1 ) S is metrisable,
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(2) S has a uniformity in which every finite uniform covering
is refined by some member of a fixed sequence of (not necessarily uni-
form) coverings &n of S,

(3) S has a uniformity in which every uniform covering is re-
fined by some member of a fixed sequence of locally finite uniform
coverings 5^ of S.

To prove (1) —> (3), we use the fact that S is paracompact to take
^n — a locally finite refinement of the covering of S by "spheres" of
radius 1/n. As (3) —> (2) trivially, it remains to deduce (1) from (2).
Given a neighborhood N of x e S, there exists a uniform covering <%/
such that St(x, 9/) c N, and there exist uniform coverings ψ\y/^ such
that St(^) refines ^/ and St(W) refines ψ\ Let x e Wo e W~ and
St(W0, 5T~)c V e 3^. Write X = St(W0, <W\ Y = U {W\ W e <W,
x$ W, W meets V}, Z=\J {W\ W e<W", WnV=φ}. Then JT =
{X, Y, Z}, being refined by ^ ^ , is a uniform covering of S. Some &n

refines ^ say x e G° e 5fn. Because X Γ) Z = φ, it follows by an argu-
ment similar to one used in the proof of Theorem 2 that St(G°, S )̂ c
l U Γ c St(V, <%r) c St(V, <?')c St(x, %/) c N; hence S is metrisable, by
Theorem 1.

REMARK. The uniformities in (2) and (3) of Theorem 3 will be dif-
ferent in general; that in (3) will be metrisable, while that in (2) need
not be. By Theorem 2, not every uniformity on S can arise in (2) or
(3) (unless S' is compact), but I have not found any satisfactory de-
scription of those which do.
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