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PROJECTIONS ONTO THE SUBSPACE OF
COMPACT OPERATORS

E. 0. THORP

Introduction. The purpose of this paper is to establish the follow-
ing theorem.

THEOREM. Suppose U and V are Banach spaces and that there are
bounded projections Px from U onto X and P2 from V onto Y. Then
there are no bounded projections from the space of bounded operators
on U into V onto the closed subspace of compact operators, in the fol-
lowing cases:

1. X is isomorphic [1] to /p, 1 < p < oo Y is isomorphic to /q,
1 < P < Q < °o or cQ or c.

2. X is isomorphic to co; Y is isomorphic to /*>, c0 or c.
3. X is isomorphic to c; Y is isomorphic to /°°.

NOTATION. If X and Y are Banach spaces, [X, Y] is the set of
bounded linear operators from X into Y. /°° is the set of bounded
sequences with the sup norm.

A space X is said to have a countable basis if there is a countable
subset of elements of X, called a basis, such that each x e X is uni-
quely expressible as

oo

α = Σ ξiΨi
ί = l

in the sense that

α-Σ£i?>«ll = 0-

If X and Y are spaces with countable bases (<Pa) and (ψj) respectively
and A is a bounded linear transformation from X into Y, then A can
be represented by an infinite matrix (aυ), with

ΣsυΨi

[2]. In what follows, the basis used for sp will be given by φ3 =
(0, 0, , 0,1, 0, 0, •) where there is a 1 in the jth place and 0 else-
where. Similarly for ψt. The matrix representations of operators will
all be with respect to these bases.

Received April 29, 1959. The author thanks Professor Angus Taylor for proposing
this problem and thanks both him and Professor Richard Arens for helpful discussions.
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Proof of the theorem. The details of the proof are given below
only for X = /*, 1 < p < oo, and Y = /q, 1 <p <q < oo. The proof
for the remaining pairs is similar and is indicated in a remark at the
end.

DEFINITION. Let E be the function on [/p, /% 1 < p < q < oo,
which sends an operator whose matrix is (aυ) into the operator whose
matrix is (α^δ^), i.e. the non-diagonal matrix elements are replaced by
zero and the diagonal elements are unaltered.

LEMMA 1. E is a projection with \\E\\ = 1, range the diagonal
operators, and null-space the operators with au = 0, all i.

Proof. E is additive and homogeneous as easily follows from [2].
E2 = E, and the characterization of the range and null-spaces are ap-
parent.

From the chain

o o > | | A | | = sup || Ax \\q > sup| | Aφ3 \\q
\\χ\\p£i J

= s u p | | Σ ^ ^ l l q > sup || ajjψj \\q = sup|α^|
) i j J

> sup {Σi\auξi\Ύp> sup

where the last > is by Jensen's inequality, we see that E sends bound-
ed operators into bounded operators and, further, ||2£|| = 1. Also

|| EA || < sup I a331 .

In fact,

USA || =Bxip\a33\
j

because

|| EA || > sup || EAφ3 \\ = sup | a33 \ .

LEMMA 2. The mapping γ from the set of diagonal operators onto
/°° defined by γ(α«) = (αn, α22, •••) is an isometry which carries the
compact diagonal operators onto c0.

Proof. That γ is an isometry from the diagonal operators onto /~
follows from the previous observation that | |SA| | ^ s u p j α ^ l . Hence
it suffices to show that the compact diagonal operators are exactly those
with the additional condition lim^ | aH \ = 0. This condition is necessary;
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otherwise for some ε > 0 there is an infinite index set I such that
I au I > ε whenever i e I. Then the bounded sequence {φ^)iel would be
carried into the sequence (auψϊ)ieI, which has no convergent subsequence,
showing (au) is not compact. The condition is sufficient because, if
| | a ; | L < l then

I « W^ <T ί s m n \ n... \\ \\ v.W <T s u p | α i 4 |

and [2; Th. 2] applies. The last inequality follows from Jensen's ine-
quality and our assumptions p < q,\\x\\p < 1.

LEMMA 3. Suppose X is a Banach space with a closed subspace
3Ji onto which there is a bounded projection E. Let sJi be the null-space
of E. Let Sβ be any closed linear manifold of X such that ίffety then
f = g + h, with g e β̂ Π 2JΪ and h e ty Π ϊϊ. Then, given any bounded
projection F onto Sβ, EF is a bounded projection onto ty Π 9JΪ such that
II TPTP I ^ II ΊP \\ II TP \\

II stir | \ | | - C / | | II JΓ | | .

The proof is an obvious modification of [3; Lemma 1.2.1],

Let %*> be the set of compact operators, 9JΪ the set of diagonal opera-
tors, E the projection of Lemma 1, and ϊϊ its null-space. In order to
apply Lemma 3 it remains to show: given any compact operator /, Ef
and / — Ef are compact. Ef is compact because, if / is compact,

lim y , α 4 < ψ . = l i m ( Σ α 4 ( l
β = 0

uniformly in j . This implies l im M |α w w | = 0 , which shows that Ef is
compact. Hence / — Ef is compact.

To prove the theorem for [/*, / β ] , 1 < p < q < oo, assume there
is a bounded projection F from [/p, /α] onto Sβ. By Lemma 3, the
restriction of E'ί7 to 3Jί is a bounded projection from 9Ji onto 3JI n s^β. By
Lemma 2 there must be a corresponding bounded projection from /°°
onto c0. This contradicts [4; Cor. 7.5]. For the remaining X and Y
pairs of the main theorem, the proof is similar except that the ex-
istence of expressions for | |A | | in terms of the matrix coefficients (e.g.,
see [5]) makes some of the work simpler.

Next we extend the theorem to [U, V]. Let E be the function on

[U, V] defined by Ef = PJP1 for all / in [U, V], E is linear and

homogeneous and bounded. E2f = P^PJP^P, = PJPλ = Ef so E is

a projection. The range of E is the set of operators g such that P2gPλ =

# and is isomorphic with [X, Y], The null-space of i? is the set of

operators h such that P2hPλ = 0. If Q4 is the projection I — Pt, the



696 E. O. THORP

decomposition / == g + h is given by

/ = (P, + Q2)f(Pι + Oi) = PJPi + (PJQi + QJPi +

9 h

If / is compact, so are g and h. We apply Lemma 3 with X =
[Z7, F], aJi the range of Ef E acting as the projection E of that lemma,
and Sβ the set of compact operators from U to V. The conclusion is
that if there were a bounded projection F from X to Sβ, the restriction
of j^ί7 to 2Jί would be a bounded projection from 3Jί onto Sβ n 2ft, con-
tradicting our result for [X, Y].

REMARK. The problem of finding a bounded projection onto the
compact operators is trivial when all the bounded operators are compact.
This happens, for example, for [/p, /% 00 > p > q > 1, [2, p. 700],
or p = 00, q = 1, and for [c0, / α ] , [c, / e ] , 00 > q > 1. Whether there exists
a pair of normed spaces with a bounded proper projection from the
bounded operators onto the compact operators seems to be unknown.
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