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ON THE COMMUTATIVITY OF A CORRESPONDENCE

AND A PERMUTATION

MILO W. WEAVER

Foreword* A permutation is a one-to-one mapping of a finite set
onto itself. The necessary and sufficient conditions for two permuta-
tions Sλ and S2 to satisfy

(0.1) s^ = s2£i

are known1: Sλ and S2 satisfy (0.1) if and only if S2 is a product PQ
of a permutation P which is a product of powers of cycles of S1 and a
permutation Q which permutes cycles of S1 with equal numbers of
symbols. For example if Sx ~ (1 2 3 4) (5 6 7 8), P = (1 3) (2 4), and Q ~
(1 5) (2 6) (3 7) (4 8), then PQ commutes with S1# A correspondence is a
mapping of a finite set into itself. Hence a permutation is a special
case of a correspondence. It is our major object in this paper to find
the necessary and sufficient conditions for a permutation to commute
with a correspondence. These conditions are stated in Theorem 3.15
below.

As the literature2 has very little on "correspondences/' all the
fundamental definitions needed in this paper and pertaining to corre-
spondences are given.

It is assumed that the reader knows a little about groups of
permutations.

1. Fundamental definitions*3 A correspondence relates each symbol
of a finite set 5ft to exactly one symbol of SJL A permutation is a corre-
spondence such that each image symbol is the image of exactly one
symbol of 5JL The statement, m is the image of n under the cor re-

Received April 27, 1959. The work on this paper was done under National Science
Foundation Grant 8238. The writer wishes to express his appreciation to his 1958 Univer-
sity of Texas class, and particularly to Robert R. Bunten, for suggestions concerning
terminology and explanations. He also wishes to thank the referee for a valuable sugges-
tion relating to the definition at the beginning of Section 3.

1 Burnside, Theory of Groups of Finite Order, Cambridge University Press, 1897, pp.
215, 216.

2 Two papers on correspondences are: R. R. Stoll, ''Representations of Finite Simple
Semigroups," Duke Math J., vol. 11, no. 2 (1944), 251-265; Milo Weaver, 'On the Imbed-
ding of a Finite Commutative Semigroup of Idempotents in a Uniquely Factorable Semi-
group, "Proc. Nat. Acad. Sei., vol. 42, no. 10 (1956), 772-775.

3 Most of the definitions in this section and Theorem 1.5 were given: H. S. Vandiver
and M. W. Weaver, " A Development of Associative Algebra and an Algebraic Theory
of Numbers, III," Math. Mag., vol. 29 (1956), 135-149.
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spondence D is abbreviated nD = m.
The notation for a correspondence D:

is interpreted: "the α's are distinct symbols of %l and aj) = bu

i = 1, 2, , r . " If n e Jί and %Z) = % and xD — n has no solution
x, a? Φ n, x e sJί, n may be omitted from both lines of (1.1). The single-
lined notation for a cycle C:

(1.2) {dA •••<*.)

means that the d's are distinct symbols of 5R, dsC = <Z<+1, i — 1, 2, • ••,
s — 1, but dsC = c ;̂ and that nC = n if n e W and w is not one of
the cϊ's. If s = l, (1.2) becomes (d^) and means that this cycle is the
identity permutation, E, defined by nE = n, for each n of ?ί. The
example (233) suggests that some correspondence cannot be described
either by (1.2) or by a "product" of cycles. We describe the particular
correspondence Df by the notation

(1.3) (dA-.-d . }

and interpret this exactly as we did (1.2), except here s > 1 and
dsD

f = ds. A correspondence of the type (1.3) is called a 1-1-excycle,
or just a 1-excycle.

The correspondences A and Da are said to be equivalent if wZΛ =
nD2, for each w e 9̂ . We describe this by A = A

The product A = A A is defined by nDs = {nDι)D2 = %AA for
each n e 5ft. We illustrate: if P =* (5ϊSSSϊ5Sl> and S ^ GίϊϊJJSS) then

PS~SP= (3) (1 2 3} (4 2} (5 6 3} (7 6} (8 9) . (1 5 4 7) (8 9) (2 6)

^ (3) (1 6 3} (4 6} (5 2 3} (7 2} .

Positive integral exponents will be interpreted exactly as in permuta-
tion theory. If it is convenient, m e 9Ϊ, and A is a correspondence,
mA° may be used to denote m. Only non-negative exponents will be
used for correspondences which are not permutations.

In (1.3) above, the set of dys are elements of a set called $>(D'); dι

is the only element of a set called &(Df); and ds is the only element
of a set called Sϊ(D'). These sets get their notations, respectively,
from the words: involved, end, and core, spelled k-o-r-e. We now de-
fine these sets, formally.

If D is a correspondence, the set $(D) is defined by i e ^(D) if
and only if i e N and either iD Φ i or %,Ό = i has a solution x, x e 5ft,
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x Φ i. If i e Zs(D), we notice that iDr e $(D) also, for each positive
integer r.

The set gf(D) is defined by j e gf(Z>) if and only if xD = j , j e 31,
has no solution x, x e 31. Clearly, jD Φ j and gf (Z>) c $(D).

The set S(D) is defined by k e ®(D) if and only if k e %(D) and
kDs = fc for some non-negative integer s. We note that Z> acts either
as a cycle or as a product of cycles on Sΐ(D). lί k e ®(D), &Dr e S(D)
also, for each positive integer r. The d's of (1.3) exemplify the fact
that it is not necessarily true that 5Ϊ(D) U g?(D) = 3(D).

Let ΰ be a correspondence and A; e ί?(Z)). If each symbol of ®(D)
is one of the symbols k, kD, kD\ , then D is called an excycle. Ap-
parently, if i 6 $(D), there exists a non-negative integer r such that
ΐD r e &{D). If J5 is an excycle and gf (£>) and fl(D) contain exactly r
and s symbols, respectively, then D is called an rs-excycle. This explains
the term, 1-1-excycle. A 0-s-excycle is a cycle with s symbols. The
product PS of (1.4) is a 4-1-excycle.

THEOREM 1.5 (known). Each correspondence is either an excycle or
a product of excycles with disjoint $-sets.

The proof is not given here as it is very similar to that for the
well-known theorem: Each permutation, not a cycle, is a product
of cycles with disjoint $j-sets. The excycles (cycles) of Theorem 1.5 are
called excycles (cycles) of the given correspondence. The excycles of P
of (1.4) are (3) (1 2 3} (4 2} (5 6 3} (7 6} and (8 9).

If j 6 %f(D), clearly, for some u and v, the operation of D on a
subset of 8(D) is described by D, = (jDυjDυ+1 jDu) (j jD jDυ}.
We call Ό5 a \-(u — v+l)-subexcycle of D determined by j and the first
factor of Dj a subcycle of D. D} may also be called simply a 1-subex-
cycle.

2. Some properties of a correspondence and a permutation which
commute* We next make three simple remarks about commutativity
of correspondences. The usual proofs of the corresponding remarks about
permutations are valid here.

The identity E commutes with each correspondence.
If L is a correspondence, then LaLb = LbLa.
If L and ikf are correspondences and $>(L) Π 3»(Af) = 0, then LM = ML.
The relation (1.4) illustrates Theorem 2.1 and Theorem 2.4 below.

THEOREM 2.1. If S is a permutation on 31 and P is a correspon-
dence, not a substitution on 31 such that SP = PS, then S maps $(P)
onto itself and S?(P) onto itself.

Suppose that the hypothesis of the theorem is satisfied and that
n e $(P), but that nS $ 8(P). Then if nP = m, we have
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(2.2) nS = nSP = nPS = mS .

Whence m = n. Since n e $(P) and nP = n, there exists an α, α e
such that αP = n Φ α. And since wS 0 3>(-P), it follows from the
equation

(2.3) aSP = αPS = wS

that aS = wS and α = w, a contradiction to a Φ n. Hence nS e 3(P),
and since S is a permutation S maps 3>(P) onto itself. Also if we as-
sume n e I?(P) and wP = m in (2.2), the conclusion nP = w contradicts
the hypothesis, w e ^ ( P ) . Whence S maps g"(P) onto itself.

The following is also a theorem, but we shall not prove it as it is
not needed in this paper.

THEOREM 2.4. If P is a correspondence with j e ^ (P) and P}

is a l-(u — v + l)-subexcycle of P, determined by j , and if S is a
permutation such that SP = PS and jSbPm = jPn, for b > 0, m < u,
n <uy and either m < v or n < v, then m — n.

3. Products of cycles which permute l-(u — v + l)-excycles We
shall first generalize the idea of a permution permuting cyclically a
set of cycles of equal numbers of symbols. Let u, v, and t be any
integers such that u > v > 0 and t > 1, and Fo, F19 •••, Ft be
l-(u — v + l)-excycles whose g'-symobols are, respectively, the distinct
symbols, jQ,j19 , j t such that if c is an integer, 0 < c < u, and d is
the least nonnegative residue of the positive integer e, e < t, modulo
tc + 1, with tc + 1, defined below, then

(3.1) jeFt - jaFi .

Let Co, Clf , Cu be cycles of a permutation S such that

(3.2) C^

with ί0 = t and the order *„, + 1 of C^ dividing that ίβ + 1 of Cz

whenever 0 < z < w < u. Then S is said to permute cyclically the
1-excycles Fo, F19 Ft.

We give examples here. The permutation (1 4) (2 5) (3 6) permutes
cyclically each of the pairs: (2 3) (1 2}, (5 6) (4 5} (1 2 3}, (4 5 6} (1 2 3 7},
(4567} . Also (1467) (2 5) permutes cyclically the set (1 2 3}, (4 5 3},
(6 2 3}, (7 5 3} and (5 6) (1 3) (2 4) permutes cyclically the set (12 3 4)
(5 1}, (3 4 1 2) (6 3}. The reader should study each of these examples
and refer to them, frequently, while studying the rest of this paper.

We shall use the above terminology for the .F's and C's, hereafter.

LEMMA 3.3. If Cx = E and 0 <x <y <u9 then Cy ^ E, also.



ON THE COMMUTATIVITY OF A CORRESPONDENCE AND A PERMUTATION 709

This is true, since ty + 1 divides tx + 1.
Let r be the largest integer x such that x < u and Cz ^ E. We im-

pose the added restriction on r, that it be the smallest integer x such
that Cu i = 0,1, , x gives all the distinct (Vs.

THEOREM 3.4. Let P be a correspondence and R be a permutation
such that:

( i ) 3(P) = > $ ( # ) .
(ii) R is a product of the distinct cycles of a set of permutations,

each of which permutes cyclically 1-subexcycles of P.
(iii) If F is a 1-subexcycle of P, then ,^(F) Π ?s(R) = 0, unless F

is one of a set permuted cyclically by R.
Then

(3.5) RP-PR.

If n 0 ^s(R), then neither is wP, by (iii); and

(3.6) nPR = nP = nRP .

If n e $(P). Let w e 3(Πϊ-iC<), where Π?-i C* permutes cyclically the
1-subexcycles Fly I = 0, 1, , t; further let n e $(Cq) and n — jpF

q

p,
for 0 < q < r, and j p e cg(P). Then from (3.2), for 0 < p < tq,

nPR =, nP(U C,) = JPFl+1Cq+1 = i P + 1 Fί:i

(3.7)

while if p = tQ, both the leftmost and rightmost members of (3.7) yield
joE$+1. Hence, by (3.6) and (3.7), we have (3.5).

THEOREM 3.8. Let P be a correspondence and S be a permutation
such that SP ~ PS, with j e if (P) and jPs e ^(S) for some non-nega-
tive s; further let t + 1 be the least positive integer such that jSt+1 — j
and Flf I — 0, 1, , t be the 1-subexcycle of P whose if -symbol is jS1.
Then S permutes the set Fo, Flf , Ft cyclically.

Let g be the largest value, if there is one, of x such that jPx e $(S),
with 0 < x < u, u + 1 the order of the subexcycle Pj9 and u — v + 1 the
order of its subcycle. Let Ct,ί = 0fl, ,g be the cycle of S, pos-
sibly the identity, such that

(3.9) Ct =

for some non-negative integer tt. Certainly t = ί0. The order of Ct is
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ί, + 1. By Theorem 2.1, jPιSι e 9f(P) and i S ι 6 ξ?(P), for i < g,
0 < £ < tt. Since S is a permutation, we have cancellation by Sι and
both equations in each of the pairs of equations hold simultaneously:

l _ jυ0 ^ jSiPU0 + 1 = jSi

(3.10)

jPuι+1 = jp»z, jSιPuι+1 =

Hence, ^ = ^ 0 and vz = v0. We notice that for 0 < z < w < g, and
h + z = w, we have

(3.11) jPw = jP'SΊ+Ψ* = jPz+hSιz+1 = jPwSιz+1 .

Therefore, since tw + 1 is the order of Cw, it follows from group theory
that tw + 1 divides tz + 1. Also if e = d(mod ίc + 1), we have
β — m(ίc + 1) + d, m a non-negative integer and

(3.12) jSeFc

e = jSm(tc+v+dPc = jPcSd = i S d P c = iS d^S ,

which gives (3.1), since here j e = i*Se and jd = i*Sd. Hence S permutes
the F's cyclically.

Let S be a permutation and P be a correspondence, which is not
a permutation. Clearly, P is expressible in the form

(3.13) P ^ 7\T2 ,

where either Tλ = E or 2\ is a product of cycles of P, and T2 is pro-
duct of those excycles of P which are not cycles. And S is expressible
in the form

(3.14) S = Sβ2 ,

where S1 is either a product of those cycles C of S such that I(C) Π
7(!Γ2) = 0 or S1 = Ey depending on whether or not such C's exist, and
S2 is either a product of those cycles D of S such that $(!>) Π I(T2) Φ 0
or S2 = £7, depending on whether or not such D's exist.

THEOREM 3.15. If S is a permutation and P is a correspondence,
not a permutation, and S19 S29 Tlf and T2 satisfy (3.13) and (3.14),
then SP = PS if and only if:

(i) S^sΓA;
(ii) Whenever j e &(T2) such that for some non-negative integer

s, jPs e S(S), then S2 permutes cyclically the set of 1-excycles of T2

whose &-symbols are the distinct symbols obtained by applying all
powers of S to j.

Suppose that PS = SP. By Theorem 3.8, if j e gf (P) and jPs e 3(S),
a product π defined as in (3.2) of cycles of S permutes cyclically a set
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of 1-subexcycles of P, and therefore of Γ2, having powers of S applied
to j as their gf -symbols. By (3.2) I(π) is contained in the union of the
$-sets of the subexcycles which it permutes. Clearly, S2 is a product
of the distinct cycles of all such TΓ'S, or S2 = E, depending on whether
or not such TΓ'S exist, and S2 satisfies (ii) of Theorem 3.15. From (3.13)
and (3.14)

(3.16) 3(?\) n 3(Ta) - m ) n 3(Ta) = o

Since 3f(Sa) c £(T2), we have

(3.17) 3(2*0 n 3KS0 = o .

Hence ^(T,) U 3(<Si) n 3(Γa) U 3(Sa) = 0, and S ^ and Γ A operate on
9KS0 U SίΓO exactly as ST and ΓS do; and for n 0 ^(TO U S(S2),
wSjTi = WΓLSJ = n. Whence S^ = Tβlf and (i) is satisfied. Now as-
sume that (i) and (ii) of Theorem 3.15 are satisfied by S and P. From
Theorem 3.4, we have S2T2 ^ T2S2. By (i), S& = T&. From (3.16)
and (3.17), S,T2 = T2Sly T,T2 ^ TJΓlf and S2T, = Tβt. Hence

(3.18) SP ^ S1S2TiTΛ = S^SJΓ, = T&T& = Ttf&S, = PS .

This completes the proof of Theorem 3.15 which was the major objec-
tive of this paper.

The necessary and sufficient conditions for (i) to hold were stated
in the foreword. In each of the examples below (3.2), if S is taken
to be the permutation and P to be the correspondence whose 1-subex-
cycles are permuted by S, then S and P obey (i) and (ii) of Theorem
3.15. A more complicated example of such a P and S is: P = (4) (1 2 3}
(2 3} (8) (5 7 8} (6 7}, S = (1 5) (2 6) (3 7) (4 8). On the other hand if
S = (146)(25) and P = (1 2 3} (45 3} (6 5}, then SP £ PS, since the
order of (2 5) fails to divide that of (14 6) and S2 fails to permute
cyclically the 1-1-subexcycles (12 3}, (4 5 3}, and (6 5 3} of P.
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