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1. Introduction* Games can be classified in terms of the number
of moves by each player—unimove or multimove—and in terms of the
number of choices—finite or infinite—available at each move. The original
work of von Neumann [2] on the existence and structure of solutions
of games was, in effect, restricted to unimove finite games. Later,
Ville [3] proved the existence of optimal strategies for unimove infinite
games with continuous payoff function.

Except for games with 'perfect information, multimove finite games
have been analyzed only very recently; and multimove infinite games
with an arbitrary number of moves have hardly been touched upon.

In this paper, we analyze a multimove infinite game with a linear
payoff function. The game is symmetric in every respect except that
the initial conditions of the two players are different. We prove that
one player has an optimal pure strategy and that the other player
must randomize on the strategies. The optimal strategies and game
value are derived.

Although this game had its origin in a military problem concerning
allocation of resources among several tasks, it is presented here solely
for its mathematical interest. A complete discussion of the military
problem and its solution is given in [1].

2 Description of game. We shall analyze the following multimove
zero-sum two-person game. At the nth move, or stage of the game,
Blue has resources given by the state variable pn and assigns a value
to each of two tactical variables under his control, xn and un, subject
to the constraints

(2.1) xn > 0, un> 0, xn + un < pn .

At the same time, Red has resources given by the state variable
qn and controls the values of the tactical variables yn and wn, subject
to the constraints

(2.2) yn > 0, wn> 0, yn + wn < qn .

Let us number the moves from the end of the game; i.e., the nth
move means n moves to the end of the game. The state variables at
the (n — l)-st move are defined by
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Vn-i = m a x [0, Vn - m a x (0, yn - wn)] ,

gw_x = max [0, qn - max (0, xn - wn)] .

The payoff to Blue is given by

N

(2.4) Σ [(Pn - %n- Un) - (qn -Vn- Wn)] ,

where N is the number of moves in the game.
The play of the game proceeds by first making the iVth move, then

the (N — l)-st move, , the second move, and the first move. An nth
move of the game consists of a choice by Blue of xn and un satisfying
(2.1) and simultaneously a choice by Red of yn and wn satisfying (2.2).
We assume that each player knows the manner in which the game
proceeds from stage to stage; namely, each player has the information
expressed by equations (2.3). We also assume that at each stage of the
game both players know the state variables and the entire past history
of the play; that is, at the nth move, both players know N, pN, qNi and
also know xiy uif yif

 fwi for i = N, N — 1, , n + 2, n + 1. It follows
that pt, qt, for i — N, N — 1, , n + 1, n, are known at the nth move.

The strategies of the game in normal form will be defined inducti-
vely on the number of moves. First, a strategy for Blue in a one-move
game is a point Xλ = (x19 u^), where xx > 0, ux > 0, and xλ + ux < pλ.
Similarly a strategy for Red in a one move game is a point Yx — (y19 wx)
where yλ > 0, wλ > 0, and yx + w1 < qx. Now let σN be a strategy for
Blue in an iV-move game. Of course, σN is a function of pN and qN.
Then, in a game of N + 1 moves, at the (N + l)-st move Blue chooses
a point XN = (xN+1, uN+1) in the triangle ΛN+1 defined by

(2.5) xN+1 > 0, uN+1 > 0, xN+1 + uN+1 < pN+1 ,

and simultaneously Red chooses a point YN+1 = (yN+i> WN+I) ίn the trian-
gle DN+1 defined by

(2.6) yN+1 > 0, wN+1 > 0, yN+1 + wN+1 < qN+1 .

These choices yield the state variables pN and qNy by equations (2.3).
A strategy σN+1 for Blue in the (N + 1) move game is then defined as
a choice XN+1 in ΔN+1 and a function ΦN that associates, with each point
0*Wi, uN+1, yN+1, wN+1) = (XN+1, YN+1) in the product space JN+1DN+1 a
strategy σN in the iV-move game. Thus σN+1 can be written as

σN+1 = (XN+1; ΦN) = (xN+1, uN+1; ΦN) ,

where ΦN assigns the strategy σN to the point (xN+u uN+lf yN+19 wN+1).

In a like manner, a strategy τN+1 for Red in the (N + l)-move game

is defined as a choice F^+x and a function ψy that associates, with each
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(XN+1, YN+1), a strategy τN in the iV-move game. Thus we have

3. Solution of game. The main result of this paper is the following:

THEOREM 1. If N = 1 or 2, the value of the game is given by

VN{pN, qN) = N{pN - qN) .

Blue has an optimal pure strategy:

&m = ΰm = 0 f or m < N .

ϋ!ecί /̂ αs cm optimal pure strategy:

Vm = ™̂ = 0 f or m < N.

If N > 3, the value of the game is given by the (N — 2)-piecewise-
linear function.

VN(pN, qN) = aι

NpN - bι

NqN, i = 1, 2, , N - 2 ,

where the constants aι

N and bι

N are positive and monotone decreasing in
i for fixed N; the value of the superscript i is determined by the ratio
VNIQN* The optimal strategies for the two players are as follows:

( i ) At move m — 1, 2{counting from the end) the players choose

%m = Um = ym=:Wm = 0.

(ii) At move m = 3, if, p$> qs, then Blue chooses xZJ ΰΆ such that

min (A±&, ψ) ,

Red chooses either y3 = g3 or ^ 3 = g3, each with probability 1/2.
(iii) At the (m + l)-sί move, where 3 < m < N — 1, ΐ/ pTO+1 > ^m + 1,

/̂ β ratio pm+Jqm+1 determines an integer i,l <i <m — 1, and

Blue chooses

x,'m+i
_ (2m - ajι)pm+1 - (m - 2bι

m)qm+1

m + bl

ΰm+i = pm+1 - 5OT+1, for i = 1, 2, , m - 2 ,

^m + l — ( 2 T^Z
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w T O + i = ( 1 )<2Wi, for i = m - 1 ,

where the constants aι

m and bι

m are those associated with a game of length
m and initial condition pm, qm. Red chooses either ym+1 or wm+1 = qm+1

with probabilities aι

m = bι

mj{m + b*m) and βι

m = m/(m + δ£>), respectively,
for i = 1, 2, , m — 2; however, if i — m — 1, Red chooses ym+1 = gm+1

wiίfe probability aι

m = 1/m, or wm+1 = gTO+1 wiίft probability βι

m — l/δχ~2,
o?1 3/TO+i = Wm+i = 0 wiίΛ, probability %τ = 1 — 1/m — l/(6^~2).

The proof of Theorem 1 will be carried out by induction on ΛΓ, the
number of moves of the game. In the course of this argument, recursive
definitions will be given for the constants a% and bι

N. As an illustration
of the theorem, Table 1 shows the solutions for games with eight or
less moves.

4 A three-part sufficiency condition with mixed strategies* From
the statement of the theorem, it is seen that mixed strategies will have
to be introduced, at least for Red. However, it is sufficient to introduce
a restricted class of mixed strategies in order to prove the theorem.

For a game of one move, a mixed strategy for Red is a probability
distribution Gx over Dλ. Now suppose GN is a mixed strategy for Red
in a game of N moves and state variables pN and qN. Then a probabi-
lity distribution gNV1 over DN+1 and a function ^ + 1 that associates
(xNn,uN+1,yN+1, wN+1) with GN is a mixed strategy GN+1 in the (N + 1)-
move game. Thus we may write the mixed strategy as

Mixed strategies FN+1 for Blue are defined similarly by a distribu-
tion function fN+1 and a function φN, and can be written as

Let FN+1 denote a mixed strategy for Blue in the (N + l)-move
game in which he selects XN+1 = (xN+1, uN+1) with probability 1 at the
(N + l)-st move. Let GN+1 denote a mixed strategy for Red in which
he selects YN+1 = (yN+1, wN+1) with probability 1 at the (N + l)-st move.

Suppose that Theorem 1 is valid for games of length N = n. Let
Fn and G* be optimal strategies for Blue and Red, respectively. Let
Φifψi denote the functions that associate (%n+1,un+1,yn+1,wn+1) with
Ft,G$, respectively. Suppose, further, that pn+1 > qn+1 (from symmetry,
it suffices to consider this case only).

The theorem asserts that at the (n + l)-st move Blue's optimal
choice is a point (xn+1, un hl) that is determined by the ratio pn+ilQn+i-
Denote this point by
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Xn + l — \%n+u ^w-j-l) = \%n+l\Pn+li Qn-\-l)f ̂ n+lxPn^-U Qn+l)) >

and let F*+1 = (Xi+1, φ*).
The theorem further asserts that Red chooses (yn+1, wn+1) to be

YΆi = (?, 0), Γ<« 2 EE (0, q), YSU = (0, 0) ,

with probabilities α n f l , /3n+1, and γw + 1 = (1 — an+ι — /3n+1), respectively,
the values of an+1 and βn+1 being determined by the ratio pn+Jqn+i-
Denote this distribution in Δn+ι by g%+ι{pn+i, qn+i)> &n<i set G*+1 =

(ffί+i(P»+i, Qn+l), Ψn)-

Define

^w+i(^w+i> •* w+i) ^ Pn+i %n+i ^ n + l ^w+i "1" 2/rafi "H ^w+l

and

where pn, gw are obtained from pn+19 qn+1 by means of (2.3) and the
choices xn+1, un+1, yn+1, wn+1. Let EN(FN, GN) denote the expected payoff
of the game of length N if Blue chooses a strategy FN and Red chooses
a strategy GN. Then

En+1(Fn+1J Gn+1) = Ln+1(Xn^u Yn+i) + En(Fn, Gn)

> Mn+1(XΪ+1, Yn+1), for all Yn+1 ,

where φn(X£+1, Yn+i) — Gn. Furthermore, we have

En+1{FnV1, G*+1) = an+1[Ln+1(Xn+1, Y21J + En(Fn, G*)]

+ βn+1[Lnil(Xn+ly YSU) + En(Fn, G*)]

+ (1 - α n f l - Λ+ 1)[Ln + 1(Xn + 1, Γi'lO + ^ ( ^ w , G*)]

+ ( 1 Oίnjrl βn+1)Mn+1(JCn+1, Y n+i) 9

for all Xn+1, where φn(Xn+1, F w f l ) = F n .
The validity of the following lemma is now apparent.

LEMMA 1. Given that Theorem 1 is true for N — n, to prove the
theorem for N — n + 1 with initial conditions pn+1 > qn+1, it suffices to
exhibit the X%+19 an+1, and βn+1 for which

(4.1) En+1{Ft+ί, G*+ 1) = Vn+1(pn+1, qn+1) ,

(4.2) Mn+1(X*+1, Yn+1) > V n + 1 (p n f l , qn+1)

for all Yn+1, and

(4.3) αn + 1Jlfn + 1(Xn + 1, Y^+1) + /3w+1ilίw+1(Xw+1, Y^)

+ (1 - α:w + 1 - βn+1)Mn+1(Xn+19 Ylϊli) < Vn+1(pn+1, qn+1)
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for all Xn+1.

5 Some special cases It will also be useful to tabulate the in-
formation given by equations (2.3). We may assume that pn> qn,
whence yn — un> pn is impossible and the equations (2.3) can be tabu-
lated as follows, where the subscript n is suppressed:

Table 2
Determination of Values of State Variables pn-i and qn-ι

Region in

y - u <

y - u <

y - u <

0 <y-u<

0 <y-u<

0 < y - u <

o,
0, 0

o,
P,

P) C

P,

Y) Space

X

< X

X

X

< X

X

— w <

— w <

— w >

- w <

— w <

— w >

0

q

Q

0

q

q

Region
Number

I

II

III

IV

V

VI

P

P

P

P-ι

P

P

P
— y -\-

—- y -f

- ¥ +

u

u

• u

Q-i

q
q — x + w

0

q — x + w

0

Games of length N = 1, 2, 3 will now be discussed. From the state-
ment of the theorem, it is clear that separate arguments are needed
for N = 1, 2, and for N > 3.

For N= 1, an examination of the payoff (2.4) shows that optimal
play for Blue is to choose χι = u1 = 0, and that optimal play for Red is
to choose yί — w1 = 0.

As a consequence of Lemma 1, for N — 2 it suffices to consider

M2(X2, Y2) = p2 - x2 u2 -

with p2 > q2. Using Table 2 and dropping the subscript 2, we may
write this

M(X, Y) -

2(p - q) - (x + u) + (y + w)

2(p — q) — u + w

2p — q — (x + u) + (y + w)

2(p — q) — x + w

2(p - q)

2p — q — x + w,

in region I,

in region II,

in region III,

in region IV,

in region V,

in region VI,

where the region in the (X, Y) space for which each expression on the
right is valid is that given in Table 2. It now follows that the optimal
choices at the second move are

(x, ΰ) - (0, 0) for Blue; (y, w) = (0, 0) for Red;

and that V2 = 2(p2 — q2). Thus the theorem is proved for N = 2.
For N — 3, it suffices to consider

Λf3(X3, Y3) = Ps - Xs - n3 - q, + yz + w, + 2(p2 - q2) ,
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where p3 > q3. It follows from Table 2 that, dropping the subscript 3,
we may write M3(X3, F3) as

(5.1) Ap — Bq + ελx + e2u + ε3y + ε 4 F ,

where the values of A, B, εt = ± 1, ί = 1, , 4 depend on the region
of the (X, Y) space. To prove the theorem for N = 3, we use (5.1) and
Lemma 1 to verify that the choices given for the third move are actually
optimal.

Games of length N — 3, and ΛΓ— 4, as can be seen from Table 1,
are somewhat transitional in character, and do not exhibit all the charac-
teristics of games of arbitrary length. For N = 5, however, all of the
characteristics of the game's structure become apparent. For the reader
who wishes to gain further insight into the structure of the game, as
well as to obtain a motivation for the general induction step, the com-
putation of the functions mt(x9 u)=minr Mt(Xi9 Y«), i = 3, 4, 5, is recom-
mended. By way of illustration we give mδ(x,u), valid for l<pjq<Ίβ.
The authors found the construction of a diagram quite instructive, and
also indicative of the form of mδ(x, u) for p\q > 7/3. We have that
mδ(x, u) is given as follows, (where the subscript 5 is omitted):

( i ) 5p — q — x - u9 if x > lΊq/10, u > 3g/4;
(ii) 5p - 20qβ + Ίxβ - u9 if 2q - 3p\Ί < x < 17g/10, 5x - 6u < 4q;
(iii) llp/2 -9q + Ίx/2 - u9 if q < x < 2q - 3p/7,

9x — 8u < lOq — p;
(iv) ll(p - q)j2 -u, if 0 < x < q9 9u + Ίx > Ίq,

Ikx + 24w > 3p + llq;
( v) llp/2 - 9q + Ί(x + u)/29 if x > 0, u > 0,

9u + Ίx < Ίq, Ίx + 3u < lOq - 3p;
(vi) 5p + 22qβ + Ίxβ + Su9 if x < q, u > 0,

Ίx + 3u > lOq — 3p, lAx + 24u < 3p + llq;
(vii) 5p — 4g — x + 3u if x > q, u > 0, 5x — 6u > 4g,

9x - 8u > lOq - p.

6 Definitions and properties of constants* The first step of the
proof of Theorem 1 is to define the sequences {α^}, {¥N}, {λy}. To this
end, consider the following sequences defined in the manner and order
indicated:

(6.1) a\ = 3 , a l z \ = an

n~
2 + l;n>3;

(6.2) ^ = 3, bl+l = i - - ί - - - ί - , n > 3

(6.3) bl = < - 0, n > 3
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(6.4)

(6.5)

(6.6)

(6.7)

, _ cbT\2Vn + α;)
bi + αr 2

, 4 _ Sa^Ψn

δi + αr 2

AJ3 — -L ,

i > 1; n = i + 2, i + 3,

nn-2

(6.8)

= bl+\ — 1, n = 3, 4, 5,

~ ? , w > 4; i = 1, 2, 3, , w — 3 .

The following properties of the foregoing sequences will be useful
in the proof of the theorem; indications of the derivations of the prop-
erties are given after the listing:

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

(6.15)

(6.16)

(6.17)

(6.18)

αΓ2 = n,

< = hi,

4 > δj l > δΓ2 > 3,

< > δί > 0,

TO < α*n < 2»,

w + 1 (2w — αj,)λ; + (n + bι

n

λ^+1 > K,

λi+1 < λi,

TO

i

n

i

n

n

n

n

n

>

>
IIV

=
=

=

=

>

>

>

>

>

3

3

3

1,

3,

1,

3,

3;

3;

3

3;

3;

>

2,

4,

4,

i

1 V

1

i

i

• ,
5,.

- , % •

5 , ••

Λ

- 1 ,

= 1,

= 1,

TO-:

1 *
y

- 2 ;

• ,

3,

2, ••

2, ••

•, n - 2

. w 9

n — 2.

Statements (6.9)-(6.11) follow from the definitions and from trivial
inductive arguments.

Inequalities (6.12) and (6.13) are proved by induction on n, n > i + 2,
for each fixed i.

The monotonicity properties in (6.14) are established as follows.
The monotonicity of {&JUJ, i = 1, , n — 2, follows, by induction on n,
from the monotonicity of {δjj, i = 1, , w — 2. To show that ί>̂ ;? > &K,
it suffices to show that 6;+J > 4. This inequality, however, is obvious
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from (6.5) and (6.11). When we compute αί,+\ — α4+1, i = 2, 3, , n — 2,
we obtain

^ - α«) - ¥(2n - a") + n(a" - α )] ,
(n + b'-^in + bι)

where the subscript n is omitted. From the inductive hypothesis that
{α£} is monotone decreasing in i, and from (6.13), the bracketed expres-
sion in turn is seen to be larger than the positive quantity

bι~\2n - a1'1) - bι(2n - a1'1) = (6'"1 - ¥)(2n - α'"1) .

Furthermore, for n > 3, by (6.1), (6.4), and (6.11) we have

1) - n 0

Thus the fact that {aι

n+1} is monotone decreasing in i is established.
To prove (6.15), we use (6.4) and (6.5) in the definition (6.8) of λ£+1.
Inequality (6.16) is obvious, and (6.17) is established inductively as

follows. Suppose λt+1 > λ^ for i = 1, , n — 1. Consider

- α')λ* + (n + 6')] i = i 2 . . . n - 3
ί + 1)λ ί + 1 + ( + 6ί+1)] ' ' ' '

where the subscript n is omitted. To prove that this ratio exceeds 1,
it therefore suffices to show that

n(Xί+1 - X1) + λi+16« - λ*δί+1 > Vλί+1(α* - α ί+1) .

Upon replacing λ ί+1 on the right by its definition (6.8), we see that this
last inequality is equivalent to (n + bι)(Xί+1 — X1) > 0, the validity of
which follows from the inductive hypothesis. The chain

n+1 ~ ( λ -

completes the proof of (6.17).
It is seen from (6.15) that to verify (6.18) it suffices to show that

(6.19) λ*w > l n ~ h \ t n > 3; i - 1, 2, . . . , n - 2 .
2n — aι

n

This inequality is shown to hold by induction on ΐ, as follows. For
i = 1, equality is obvious. Suppose that the inequality holds for i = k.
It is then seen to hold for i — k + l,l<i<n — 3, by writing (omitt-
ing the subscript n)

Xk+1(2n - ak+1) - (2n - bk+1) = Xk+1(2n - ak) - (2n - bk)

+ Xk+1(ak - α fc+1) - (bk - bk+1)

> Xk(2n - ak) - (2n - bk) > 0 .
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7 Miscellaneous preparations^ For N < 3, Theorem 1 has been
proved in § 5. The theorem will now be proved inductively for arbitrary
N > 3. Suppose then that it has been established for N — n > 3. It
is required to show that it holds for N = n + 1.

In order to simplify notation, for the remainder of the proof we
shall omit the subscript n. Thus the symbol aι

n, say, will be written
merely as α', the symbol λ̂ .\ as X{~\ &J,t\ as 6*_V, etc.

From the symmetry of Theorem 1, it is clear that it suffices to
consider the case pλ > qlm Define JSΓf = XHPJQI)

 a s follows:

X * γi . . (—% τ-.i\ *i? \ i / P i ^ Λ Ml
l — -Λ. i = \p"\i U\) I I AJI 2^ ^ AJ| ,

where

(7.1) 6 + n

\ — M —
\bn~21 \ n

Define aλ — oc^pjq^ and βx = βiipjqd thus:

(a) if λ* < -^- < λ*fl, 1 < i < w - 2 ,
Qi

then

(7.2) n
^ + 6 ^ + o

(b) if J l >
^ 1

then

n

Clearly, a\ > 0, β\ > 0 for all i satisfying i < 1 < w - 1; a* + β* = 1
for all i satisfying 1 < i < n — 2; and α* + /S* < 1 for i = w — 1. Thus
aλ and A are probabilities. Lemma 2 will show that Xf is an admis-
sible choice for Blue and will furnish some useful bounds for x\ and ΰ\.

LEMMA 2. The point Xf is an admissible choice of strategic
variable for Blue. Furthermore, for all i satisfying 1 < i < n — 1,
we have

(7.3) q ^ ~X{ < 2 g i '
0 < ΰ{ < qλ .
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Since X* is defined piece wise, the first step in showing that X* is
admissible is to show that the pieces come together—i.e., that Xf is
well defined. Substitution of pλ = XT~τQι into the definition (7.1) of
x?'2, and application of (6.7), show that if pλ = Xn

L~ιqλ, then xf2 = x?~\
Similarly, it is seen that ύf~2 = uT1 for pλ = λf"1^. Substitution of
Pi = X\Qi, i = 1, , w — 2, into the definition (7.1) of x\, and use of
Γ6.15), show that, for p± = X[qlf

Substitution of px = X\+1q19 and use of (6.15), show that, for pλ —
i — 1, , n — 3,

Thus Xf is well defined, and for λ{ < pjq1 < X{+\ i = 1, 2, , n — 3,

(7.4) (2 - ^ ) f f l < ά* < (2 - ^

with equality on the left occurring for pλ — X\q19 and on the right for
pλ — X\+1qlt Similarly, we obtain

O ^l \ n <* ™n-2 <-* τzn-1

\n-2 H1 — ι — x

Clearly, (7.3) implies x\ > 0, ΰ{ > 0 for all i satisfying 1 < i < n — 1.
By definition, x[ + ΰ[ — px for 1 < i < n — 2; and for i = n — 1, we
obtain f̂"1 + ΰf"1 = λf"1^! < pλ. Thus the proof of the lemma depends
on the proof of (7.3). For % — n — \, (7.3) is obvious. The inequality
(6.18) implies λ} < λ*, whence it follows that (2 - X\\Xl)qx >qλίoγ% = \,
2, , n — 2. Clearly, the inequality (2 — X\IXi)q1 < 2qx holds for i =
1, , n — 2. Hence, we obtain q1<x\<2qι for i = 1, , n — 2.

To verify 0 < ΰ{ < qλ for 1 < i < n — 2, we substitute from the
definition of x[ into the definition ΰ{ = pλ — 5} and obtain

^ g 1 <
(6* + n)

Hence, showing that %} < ^t is equivalent to showing that pjqί

a1 — n). Since pjtfx < X\+\ it clearly suffices to show that λj+1 < Wl(¥ +
a1 — n). If i = n — 2 this inequality is obvious. If i ^ w — 3, then by
using (6.15) and (6.8) this inequality becomes

6* - λί+1(α* - n) > 0 , ΐ = 1, 2, •, w - 3 .

Since αw"2 = w, it follows from (6.8) that for i = n — 3 the expression on
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the left of this inequality is positive. Further, the left hand member
is a monotone decreasing function of i, as can be seen by forming the
difference of the left-hand side for superscripts ί — 1 and ί and getting
(Xί+1 - λ*)(α* -n)>0. This inequality follows from (6.13) and (6.17).
Thus it follows that ΰ\ < qx. The inequality ΰ\ > 0, follows from

(6* + α* - n ) p x + (n - 2bi)q1 > (a1 - b ι ) q λ > 0 l < % < n - 2 ,

and the lemma is proved.
It follows from Lemma 1 and the definitions of X*9 a19 β19 and from

the inductive hypothesis to the effect that Theorem 1 is valid for N = n,
that the validity of Theorem 1 will be established if (4.1), (4.2), and
(4.3) of Lemma 1 are shown to hold for this X*9 al9 βλ. The next sec-
tions of the proof will be devoted to the verification of these three
statements.

In the course of this verification, it will be necessary to compute

(7.6) Mλ{X19 ΓO = LX{X19 YJ + V(p, q)

= L,(Xlf Y^ + a'p-Vq, j = 1, • • , n - 2 ,

explicitly in terms of p19 qlf X19 Y19 for certain choices of X19 Yx. For
any given fixed initial condition (p19 q^y an integer 1 < ί <n — 1 is
determined by the inequality X\ < px\qx < λj+1. Each choice (X19 Yλ) by
the players falls into one of the six regions enumerated in Table 21 and
determines p and q and hence an integer 1 < j < n — 2 via the inequ-
ality Xj < p\q < λj+1. It is this integer j that appears in (7.6). Clearly,
j is a function of p19 q19 X19 and Yλ. In computing MX(X19 Y^ explicitly
in terms of the initial conditions and choices X19 Y19 it will thus be
necessary to take into account the region of the (X19 Yx) space and the
superscript j . The statement "(X19 Yi) leads to case IIP 0 " will mean
that, for the initial condition being considered, the pair (X19 Yx) falls
into region III of the (X19 Yt) space and the ratio p\q is such that
j — io At first glance, it appears that there are 6(n — 2) cases. Actually,
not all of these cases are possible; and since some specialization of
X19 Yλ will occur, not all of the possible cases will be encountered.

8 Verification, first part of sufficiency condition. We divide the
discussion into two cases.

Case 1. p1jq1 > λ?"1.

For this initial condition, it is readily seen from Table 2 that
(XΓ, Y[1]) leads to case VP"2, (Xf, Y[2)) leads to case IP" 2, and (X*, Γ}3))
leads to case IIP"2. It then follows by straightforward computation

1 The table is given for passage from n to n — 1, whereas the present situation is for
passage from n -H 1 to n. The adjustment of subscripts is left to thej-eader.
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and the definition of §6 that

(8.1) M^X*, Y™) = MAX*, Yί2)) = MAX*, Γί8ϊ) - VAp19

The equality EAF*, G*) = VAPi, QI) now follows from

ft , G*)]
+ β1[LAXΪ,
+ (1 - aλ - β&LAXΪ, YD + E(F*, G*)]

= aJMAX*, YD + βiMAXΪ, YD
+ (1 - a, - βJMAXΐ, Y?]

Case 2. λj < p^ < X[+1 , i = 1, 2, , n - 2 .

For this initial condition, it is immediately seen from Table 2 that
(X*, Yi1]) leads to case VP~2, while (X*, Y{2)) leads to case IP for ap-
propriate j . To determine the value of j , we first observe that p\q —
Pi/(2ίi — 5}). It follows from (7.4) and (7.5) that j = i. Straightforward
computation and use of the definitions in §6 now show that

(8.2) MAXί, YD = MAX*, YD = VAp19 Q1) ,

and hence (4.1) follows as before.

9 Verification, second part of sufficiency condition* Again, as in
§8, we divide the discussion into two cases.

Case 1. pjg1 > λ?"1.

Since #f~2 > qlf (X*, Yλ) can never fall into region I or IV of the
(X19 YΊ) space. Since (X*, Yλ) lying in region V implies that

y1 + w1> xΓ2 + ΰΓ2 - q1 = (2 - - j ^ + Iλq, > qx ,

this event is also impossible.
For Yx such that (X*f Yj) falls in region II, we have

P_ = Pi > Pi = 5^-2^1 > χn-2

q qx - xΓ2 + wλ~ 2qλ - xΓ2 qx ~

the last inequality following from (6.11) and (6.16). Hence, the superscript
asociated with region II is n — 2, and

MAX*, Yd = (n + l)p1 - (bn~2 - 1 )2T - ΰΓ2 - (1 + b»-*)qt

- (6-» - l)Wl > MAX?, Y[2)) = VAPu qj ,

the last inequality following from (8.1).
The only superscript that can be associated with region III or VI
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is n — 2. Having noted this, we easily see that for (Xf, YΊ) in region
III, min^ik^Xί, Yλ) occurs for Y,= Y?\ and so (4.2) follows from
(8.1). Similarly, for Yx such that (Xf, Yx) is in VI,

I™) = V1(p19 9 l ) .

Case 2. X{ < pjq1 < λj+1 , i = 1, , w — 2 .

Since 5} > &, (X*, Y,) cannot fall in region I or IV. If (Xf, YΊ) is
in region II, then we have

+ l ) 9 l + (6' - 1)2} - S«

where j is determined by the ratio plq — pj(q1 — x[ + w±). Clearly, j is
a nonincreasing function of wx alone, i = j(w^. From (7.4), it follows
that j{q^) = i. For each i , the minimum of Mλ(X*9 YJ is achieved at
a point F x = (j/^ wj, where ^ — 0 and where Wi is the largest value of
w such that (Xf, Yi), F x = (0, w), leads to case IP. Hence, by the con-
tinuity of MX(X*9 YΊ), it follows that the minimum of Mλ(X*f FJ, over
all Yj such that (Xf, Ŷ ) is in region II, occurs at YΊ2). Thus, using
(8.2), we get

The only superscript possible for (Xlf Yλ) in region III is n — 2; thus
for Yx such that (Xf, Ŷ ) is in III, we have

Yi) - nPl - qx + ( ^ + wx) .

The minimum of this expression over region III is assumed at Yx = (0, 0)
and is npx — qx. Since we are considering the case pjqx < X\+1, the in-
equality

(9.1) (δ« - 1) - Xl+1(a[ -n)>0

implies the inequality np± — qλ > a\px — b\qly and so it suffices to establish
(9.1) in order to verify (4.2). With the aid of (6.8) and (6.13), it is
easy to see that the left-hand side of (9.1) is a decreasing function of
the superscript. Furthermore, for i = n — 2 it follows from (6.4), (6.5)^
and (6.7) that the left-hand side of (9.1) is zero, and so (9.1) is verified.

In the event that Yx is such that (Xf, Yi) is in region V, we have

(9.2) M^X*, Y,) = (α' + l ) P l - (6' + l)qx + {V - l)x\ -

+ (a> - l)(ΰ\ - yd ,

where j is determined by
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ftVi

q1 xx + wx

Since X* is fixed, all questions concerned with determining which points
in the (Xf, YJ plane lead to the different cases V3 are thus seen to
devolve upon questions concerning point sets in the Yx plane. Clearly,
the lines L3,

Vi = —λ%! + Xj(x[ — (ft) + ft + ΰ\ 9

in the (ylf wj plane form a finite pencil through the point yx — ft + u\9

wγ — x{ — qλ. From the monotonicity properties of the sequence {X1},
it follows that for any fixed yx = c with c < ft + ΰ{ (and so particularly
for yx < ĝ ), as one moves along yx — c in the direction of increasing
wlf the lines Lj are encountered in order of decreasing j , with the line
Ln~2 being intercepted at a value of wλ > 5} — ĝ . Thus, the sets in the
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Yλ plane giving rise to the various cases Vj are, in general, as indicated
by the hatched regions in Fig. 5.

From the fact that aj > b\ it follows that the minimum of M^Xf, Yx),
over each set Vj of Fig. 1, is assumed at the upper left-hand vertex
of V\ Hence, by the continuity of MX{X*, Yλ) in Y19 it follows that
the minimum of M^X*, YJ, over all Yτ such that (X*, Yτ) is in V, is
achieved at wλ = x\ — q17 y1 — 2qλ — x\. Substituting these values into
(9.2) and using x[ + ΰ[ = p19 we see that the value of the minimum is
2n(p1 — <2Ί). It remains to show that 2n(p1 — qj > a1^ — blq^ Since
PJQI > λ{, this inequality is implied by the inequality X\>(2n—b[)l(2n—a{)
which is established by induction in exactly the way that (6.19) was
established.

Finally, the case in which (Xf, Yλ) lies in region VI must be con-
sidered. Examination of Table 2 shows that the only superscript possible
is j = n — 2, and so

M(Xf, Y,) = (n - ft - x[ (n - l)n[ - (n -

The minimum of this expression is assumed at Yλ — Y[ι). Since
Y{iι)) = V19 the proof of (4.2) is now concluded.

10. Verification, third part of sufficiency condition. The proof of
(4.3) will clearly involve the computation of

(10.1) ,, IT) +
(1 - a, -

Thus, for each Xλ it is necessary to know the case to which we are led
by each of the points

J

2q

Q

A VΓ~2

B IIΓ" 2

CIlΓ" 2

A Vf " 2

C IlΓ" 2

AVj

Bl*

CIΫ

A IlΓ" 2

B llΓ"z

CIlΓ" 2

A IIΓ" 2

C IlΓ" 2

Bl*

CIΫ

A IIΓ" 2

B IIΓ""2

CΠf" 2

i4 III*"2

C IlΓ"2

5 I y

t!M

Fig. 2
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A: (Xlf Y"), B: (Xlf C: (X19

Part of this information is tabulated in Fig. 2. In this tabulation, a
symbol such as, say, AVj in a given region means that, for all Xx in
that region, (X19 Γ<1}) leads to case VJ. In some instances, the value
of j is indicated; in others, the determination of j will be made in the
discussions of Cases 1 and 2 below.

Case 1. λ™"1 < pjq^

First, the values assumed by the superscripts j will be determined.
In the case BP, Table 2 shows that pjq1 = p/q; and since, by (6.16),
λf"1 > λw~2, it follows that j = n — 2. Also, in the case BIP, we have
j = n — 2, because

V_ = Pi > — , q1<x1<2q1.
q 2qx - xx ~~ qλ ' i _ i _ i

Similarly, in AIP and CIP, we have j = n — 2, because the relation
PIQ = PIKQI — %i) > PilQi holds there. In the case AVj, the value of j
is determined by the ratio

The lines

form a finite pencil through the point xλ — qly uλ — —(j>\ — Qί) It follows
from the monotonicity of the λ's that if a line uλ — c with c > — (px — gx)
is traversed from xx = gx in the direction of decreasing x19 then the lines
of the pencil are encountered in order of decreasing j , with ln~2 being
the first line encountered. Thus, the lines V divide the square 0 < x1 < qlf

0 < ux < qλ into subregions over each of which a different superscript j

Table 3
Determination of Values of the coefficients R and S

Region of (xU'

Xί

2qί < Xί

Qfi < Xi < 2gfi

0 < χι < qί

2Qί < Xί

qί < Xί < 2qx

0 < Xί < qί

Mi) plane

Uί

Ui > qi

Ul > Ql

Uί > q\

Uί < qi

Uί < qί

Uί < qi

Region
Number

(1)

(2)

(3)

(4)

(5)

(6)

R

- 1

0

fcrc-2 _ 2

— 1

0

S

- i

- 1

- 1

0

0

0,5 1

IT
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is applicable. The number of subregions depends on the ratio pjq^
For sufficiently large values of this ratio, the entire square will have
the superscript value n — 2 associated with it. The important fact
to be noted is that the region with superscript n — 2 always exists and
contains the line segment x1 = q19 0 < uλ < qlm

Clearly, ^^(Xλ) is continuous and is of the form

^ ( X O - F(plf q1) + Rxx + Su, ,

where F(p9 qx) is a step function on the (x19 uλ) plane whose values are
expressions involving the constants aj, bj and the initial conditions p19 qλ.
Its exact form is of no concern here. The coefficients R and S are also
step functions on the (xlf uλ) plane whose values involve the constants
a\ bj. The information concerning R and S shown in Table 3 is easily
obtained from Fig. 2, the preceding discussion, Table 2, and the defini-
tions (7.2) of aλ and βλ.

The superscript j in the entries for region (6) varies as the super-
script in AVj, and assumes the same values as the superscript in AVj.

For each of the regions (1) through (6) of this table, the set of
points at which the maximum of ^ ( X J is achieved on that region is
easily determined from the tabulated values of R and S in the region.
It then follows from the continuity of ^//(X^) that the maximum of
^//(X^) is achieved at all points of the square qx < xx < 2q19 0 < uλ < q±

In particular, it is achieved at (xι~2, ΰ™~2), since by (7.3) this point is in
the square. It now follows from (8.1) that

Case 2. λ{ < pjq, < λj+1, i = 1, 2, , n - 2

Under these initial conditions, Fig. 2 is modified from the outset as
follows. Point C is eliminated since we have a[ + β[ = 1 for 1 < i < n — 2;
and the region xλ > 2qιy uλ > qx need not be considered since px\qλ < 3.
In determining the superscript j and the modifications of Fig. 2, it will
be convenient to distinguish two cases, namely Vιlqλ > 2 and pjqx < 2.

Suppose that pjq1 > 2. The superscript j in Bllj is determined by
the ratio

(10.2) P _ Pi

q 2qL - xx

where q1<x1< min [2q19 pL — uλ\. Thus j is a nondecreasing step func-
tion of xx alone whose value at xλ = 2q1 is n — q, and whose jumps
occur at

(10.3) Xl = 2 ? 1 - ^ ,
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where j is such that 2qλ — pjX3 > qλ. At the jump points, j is continuous
from the right. Let j 0 denote the lowest value of the superscript j .
This is clearly assumed at xλ — qιy and the defining relation for j 0 can
be taken as

(WΛ) λ," S: — Λ,υ .

Since, by assumption and (6.18), pjqx < X\+1 < λί+1, it follows that jQ<i.
It is also necessary to have some information concerning the superscript
at ux = qlf a?i = ί>i — Qi Substitution of this value of xx into (10.2) gives
the quantity 2>i/(3?i — Pi)- It can be shown that pj(3q1 — pj < Xί+\ and
hence it follows that j < i at the point xλ = pλ — q19 ux = qx.

A VIW 2 applies whenever x1>q1,u1>q1

A I I Γ " 2 „ „ x1>q1,u1>q1

Blj0 „ „ x1>q1

AV

Fig. 3

The superscript j in BV is determined by the ratio pjq^ and, in
view of (10.4), this makes j = j 0 . In AIV the superscript is determined
by p\q = pλl{qx — xλ). Thus j is an increasing step function of xx alone,
having value j 0 at xλ = 0, and n-2 at xx = qλ. The remarks made
under Case 1 concerning AΨ are applicable here, too. It is not difficult
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to see that the lines V split up the square 0 < x1 < qlf 0 < ux < qx as
indicated in Fig. 3, which summarizes the foregoing discussion.

Suppose now that pjqί < 2. Most of the remarks concerning the
superscript j in J3IP in the case pjq1 > 2 are also valid here. Now,
however, uλ cannot exceed qx when xx > qlf and so there is no need to
discuss the point ux — qu x1 = pλ — qλ. If j \ denotes the maximum value
of the superscript j , it no longer need be true that j \ = n — 2. However,
the relation j \ ^ ί does hold. For, the maximum value of pjq1 is
Pi/(2tfi — Pi), and so the assertion j \ > ί is equivalent to pj(2q1 — px) > λ*.
This relation, however, is easily established.

As before, the superscript in JSP" takes on the value j Q . In AIP,
it is readily seen that the superscript j is equal to jQ at xλ = 0 and
increases to the maximum value of j \ . In AYj, the remarks made in
the discussion of pjq± > 2 still hold, except that for xλ > px — qx the

ΛVI

BIjo
applies whenever Xί<qlf uί<q1

X1<qί

Fig. 4

regions are truncated by the line x1 + uΎ — pλ. Furthermore, the smal-
lest superscript involved in a truncated region is clearly j l f and. so is
greater than ί. This information is summarized in Fig. 4.

Regardless of whether pt > 2qly or p1 < 2qlf we may write

= H(p19 q,) Uu, ,
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where H> T, and U are step functions having values that depend on the
choice of Xx, but do not involve the variables x1 or ux. The functional
values of H, T, and U do involve the constants a\ b\ aj, bj, and those
of H involve px and qx in addition. The superscripts j , of course, are
determined by Xx. The values of T and U are shown in Table 4, and
the regions of constancy are indicated. Clearly, the regions of constancy
of F coincide with those of T and U.

Region of (x, u)
Plane

2gi < Xi

qi < Xi < 2qι

qί<Uί

qι<Xί< 2qi
Ui < QΊ

0 <Xi < qi

qί <Uί

0 < xL < qί
Uί 5-̂  QΊ

Determination of

Region
Number

(1)

(2)

(3)

(4)

(5)

T

- 1

¥ + n

nW
¥ 4- n

¥V
¥ + 71

¥W
¥ -H n

Table 4
Values of the

— 1

1

Ϊ7

n¥
¥ + n

\

n¥
¥ + n

¥aJ

¥ + n

coefficients T and £/

- 1

Remarks

Only applies if pi > 2QΊ

Only applies if pi > 2QΊ; exponent
j varies as superscript in BIV

Exponent j varies as
superscript in BIV

Exponent j varies as
superscript in AW

Exponent j varies as
superscript in AV ?

Suppose now that px > 2qx. Since nbι > n + b\ the maximum of
over region (1) of Table 4 occurs at xx = 2qXJ ux — px — 2qx. Then

the following four facts,
(a) nW > ¥ + n,
(b) the bps are decreasing in j ,
(c) the point xx — px> ux — qx lies in a set for which the superscript

j in BIV does not exceed i, and
(d) the continuity of ^{Xx), have the following implications: (a)

the maximum of ^£(XX) over region (2) and that part of region (3) ly-
ing below xx — px — qx is attained at xx— px — qx, ux = qx; (b) the maximum
of ^/έ(Xx) over that part of region (2) lying above xx = px — qx is at-
tained at all points of the line xx + ux = px that lie in the strip for
which the superscript in BIV assumes the value i. Denote this set of
points by i£ Again appealing to the continuity of ^/?{XX), we see that
the maximum of ^(X^ over all admissible Xx for which xx > qx is
achieved on i?.

It is now asserted that Xx lies in g7. In view of (10.3), this is
equivalent to showing that we have

i = 1, •• , n — 2 .

The right-hand inequality follows immediately from (7.4) and the initial
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conditions. The left-hand inequality follows from the definition (7.1) of
x[, (6.15), and the initial conditions.

Thus, it has been proved that

(10.6) ΛT{XΪ) < ^t(Xd

for all Xx such that xx > qx. Since ^ f (Xf) = Vi(2>i, ?i), to complete the
proof of (4.3) in the case λ* < pjq1 < X\+1, pjq1 > 2, it is sufficient to
show that (10.6) holds for all Xx such that xx < qλ. From the form of
S in region (5) of Table 4, it is clear that ^t(Xx) attains its maximum
along the line ux — qx whenever xx < qlt From the form of R in this
region, it is clear that if bιbn~2 > ¥ + n, then the maximum of ^£(X^)
is attained at (xlf ux) = (qlf g:). Hence, (10.6) follows for all Xλ in this
event. On the other hand, if ¥bn~2 <bι + n, then the maximum of
^{Xx) will be attained at one of the points xx — qλ — pJXj > 0, or xx = 0,
of the line ux — qx. In this event, it can be shown by lengthy com-
putation that (10.6) holds for such Xlm Thus (4.3) is established for
λ»ί < VilQi < ~K+\ Pi > 2QI- By similar methods, which will not be carried
out here, (4.3) can be established for px < 2qλ. Thus the validity of
(4.3), and hence that of the theorem, is established.
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