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1. Lebesgue [3] proved that, among all orbiforms of given breadth,
the Reuleaux triangle has the least area and the circle, of course, the
greatest area. Further, these are the only extremal figures. This paper
is an elaboration of that result.

An orbiform is a convex body in the Euclidean plane which is such
that the distance between parallel support lines (breadth) is constant.
A Reuleaux polygon is an orbiform whose boundary consists of a finite
number (greater than one) of circular arcs (sides). Reuleaux polygons
necessarily have an odd number of sides. For details on these matters
see [1]. If the sides are of equal length, the Reuleaux polygon is
called regular. We shall prove that any two regular Reuleaux poly-
gons having the same number of sides are similar. All Reuleaux triangles
are regular. Our elaboration of Lebesgue’s result is contained in the
following three theorems.

THEORM 1. The isoperimetric ratio (ratio of area to squared
perimeter) of reqular Reuleauxr polygons strictly increases with the
number of sides.

THEOREM 2. Awmong all Reuleaux polygons having the same num-
ber of sides, the regular Reuleaux polygons (and only these) attain
the greatest isoperimetric ratio.

THEOREM 3. For any odd integer m > 3 and any ¢ > 0, there is
an n-sided Reuleaux polygon whose isoperimetric ratio exceeds that of
the Reuleaux triangle by an amount less than e.

As a matter of terminology, when reference is made in this paper
to an n-sided Reuleaux polygon, it will always be understood that » is
odd and that none of these sides is of zero length. As a matter of
notation, |PQ| means the length of segment PQ.

2. Being concerned only with isoperimetric ratios, we limit ourselve
to Reuleaux polygons of unit breadth without loss of generality. The
centre C from which a circular side of such a polygon is drawn must
lie on the boundary of the polygon if the polygon is to be of constant
breadth. Moreover, if C' and C"” are the end points of this side, then
C is the junction of those sides centred at ¢’ and C”. In proceeding
in a positive direction along the boundary arc strictly between C’ and
C”, the support lines of the polygon turn through an angle of measure
¢ equal to the length of arc from C’ to C"” which is the same as the
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measure of angle C'CC”. The chord C'C is perpendicular to one of the
extreme support lines at C; the chord C"C is perpendicular to the other
extreme support line at C. Therefore the interior vertex angle at C
has measure w—¢. For a regular Reuleaux polygon, it follows that
these vertex angles are all equal. Conversely, if these vertex angles
are all equal, the Reuleaux polygon is regular. Hence any two n-sided
regular Reuleaux polygons are similar. Since the total turning of the
support lines in one complete positive circuit of the boundary is 27w, we
have, if we observe that at C the turning from one extreme support
line to the other is ¢, 2 >'. ¢ = 2 where the summation is carried out
over all vertices C. This shows that the perimeter of any Reuleaux
polygon of unit breadth is 3, ¢ = © and so, in comparing isoperimetric
ratios of such figures, we need only to compare areas. It further shows
that the sum of the measures of angles C'CC" is .

For an mn-sided, regular Reuleaux polygon ¢ = z/n. By direct
calculation, one finds that the area of such a polygon is

n[l — <1 —cos%)/(%sin—%ﬂ/z

d 1 —cosd 1 1
L = -2 >0
dé " dsin @ sin @ 0 >

Since

for 0 < 6 < =, taking 6 = m/n, we see that the area is a strictly in-
creasing function of n as asserted in Theorem 1.

3. A Reuleaux polygon II, of unit breadth can be considered as
the intersection of all closed circular discs of radius one centred at the
vertices C of II,. Consider those convex bodies IT; which are the in-
tersection of all closed circular discs of radius 1 — &, (8 > 0), centred
at the vertices C, where & is sufficiently small. Alternatively, II; can
be described as the set of centres of circles of radius greater than
or equal to & which are covered by II,. Such a body is an inner
parallel of I1,. It is not a body of constant breadth. Let &, be the
least upper bound of the numbers & for which I/; is not degenerate,
(i.e. has a nonempty interior). Since the inner parallels II, are inter-
sections of closed circular discs, the degenerate parallel figure I, is a
point. In view of the second definition of inner parallels, this point is
the centre of the inseribed circle of I1,, which is of radius §,. In the
case of a regular Reuleaux polygon II;, the inscribed circle is tangent
to each side at its mid-point.

Consider a vertex C, of Il and the ends C/, C, of the side drawn
using C; as a centre. Let F"’ be the intersection of circular discs of
radius one centred at C/, C/, C,,. If I'" is the inscribed circle of II]
(of radius &), it is the inscribed circle of F”.
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From §2, we know that for any Reuleaux polygon S .¢ = 7.
Therefore, if I, is an n-sided Reuleaux polygon which is not regular,
at least one of the numbers ¢ must be greater than z/n. Let C, be
a vertex at which ¢ > z/n, and let C,, C,, F, [” have the same mean-
ing relative to 11, as did C/, C/, F', I'' relative to II|. If we move F
so that C, and C,/ as well as C, and C, coincide, then F' < F’ since
¢ > m/n. Now [I" must be covered by F' and so, plainly, is of radius
less than 8,. This gives

LemmA 1. If I} is a regular n-sided Reuleaux polygon, 1, is
any n-sided Reuleaux polygon, both being of the same breadth, and if
O, 18 the least upper bound of the numbers for which Iy is not de-
generate and &) that for which I} 1is not degenerate, then &, < o) with
equality only only if I, is also regular.

Next we shall construct a formula for estimating areas of Reuleaux
polygons I/,. In all the remaining discussion & < §,. For sufficiently
small & we will have equality with the estimate, but for larger 8 there
will, in general, be inequality.

Let the vertices be indexed in a counter-clockwise order C,, C,, +++,C,
and let ¢, be the length of the side drawn from centre C,. Consider
the set of points lying within the unit circle centred at C, and outside
the circle of radius 1 — & centred at C, and within the acute angular
region between the rays from C; through the ends of the side of I/,
which is drawn using C; as a centre. This region will be called R, (d)
or simply R,. The area of R, is d¢p, — &%,/2.

The points of II, which are not in at least one of these regions
R,(8) make up II;. Let A(S) denote the area of S. We have

A(ll) = A(IT5) + 21 AR) — %A(Rz n k)
+. ZEA(R’ n Rj n R") +oeee (—_ 1)n+1A(R1 N Rz AIEEENE Rn) .
1<Jj<
Empty intersections are assigned zero area. Since every intersection
of p of the sets R, is a subset of some intersection of p-1 of the sets R,

Z A(RriﬂRjﬂch)— > A(RiijmeﬂRc)+"'

i<J<k i<Jj<k<l

+(_1)n+1A(R1mR2ﬂ v ﬁRn)é 2 A(RszjﬂRlc)'

P<J<k

We next observe that
SAR N R) = AR N R)+ 8 AR N R + 3 AR 0 R)

where > means the summation is extended only over indices such that
1<j—1<mn—1. We finally note that any threefold intersection
R, N R, N R, must be a subset of the sets whose areas are counted in
STAR, N Ry).
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Hence we have
STAR, N R)-—[Z AR, N R; N Ry) + -
+(=1)"ARNR, N -+ N R,,,)J
= >V AR, N Ry —Kj%c AR, N R, NR)=0.
This gives, in place of equation (1), the inequality

A(I) £ A(IL) + 5. A(R) —[A(R N R+ S AR Rmﬂ

A last modification: the terms
2 AR) = 3 (8 — 8¢/2) = 78 — md*2
since the perimeter of /I, is 7. We have

LEMMA 2.
AIl) < AIly) + 76 — 782 — [A(Rl N R+ SAR 0 Rm)]

If 11, is a regular Reuleaux polygon, there is equality for all & < §,.

The final assertion of the lemma remains to be proved. In this
discussion, wherever indices greater than » appear, they are to be re-
duced modulo n. When we speak of consecutive regions R;, K., «--,
R;.,, we assume k < (n — 1)/2.

Let 11} be a regular n-sided Reuleaux polygon. We first observe
that if R, be rotated counterclockwise about the centre C, of I/{ in the
amount 2nk/n, it will coincide with R,,,. But we can say more. Let
R} be R;US,;, where S, is the region outside the unit circle centred at
C; and inside the circumscribing circle of ;. Further, let R(yr) be
the set obtained by rotating R} about C, through an angle of measure
. We reckon +r > 0 for counterclockwise rotation, +» < 0 for clock-
wise rotation. Our more extended result is R; N Ry € Bf(y) N Ry
for 0 =< 4 < 2mk/n. To see this, let P be a point in R, N R;;,. Then
P is in Rj(0) and Rj(2wk/n) which cover R, and R,,, respectively. If
P is not in R}(yn), (0 <+, < 27k/n), then there are two values of +,
say r, and 4, such that P is on the boundary of Rj(y,) and Rj(yr,)
and 0 <y < Y, < Yy < 27k[n. Let P(y) be the image of P after a
rotation about C, in the amount . Then P(— +») and P(— ;) are on
the boundary of R;(0) and P(—n,) is outside (). A circular arc centred
at C, is part of the circumscribing circle of 77}, for some &', from which
we conclude that if P(— +) is on a circular or rectilinear part of the
boundary, the same is true for P(—+J,) and consequently, for all y» between
—r, and —+r,, P(y) is in the interior of Rf(0). This contradicts the
supposition that P is not in R}(y).
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From this it follows that if P is a point of R, N R;,,, it is in R,
for 1 <j <k. For by the preceding discussion it is in Rf(y) N R,
which is R}, ,(0) N R; for v = 27j/n. Since S,., and R, are disjoint, P
must be in R, N R, as asserted.

We now consider a set S of points of /I{ which are covered by k
of the sets R;,. We have just shown that it must be covered by k
consecutive sets R,, R,.,, +++, R,;;. In this collection there are exactly
k — 1 intersection sets R, N R;,,, ¢ =0, p+ 1, :++, p+ k — 1) each of
which covers S. Thus in Y7, A(R,) the area of S is counted %k times,
while in

AR, 0 R) + S AR N R.,)

the area of S is counted k¥ — 1 times. Hence the area of S is counted
just once in

n n—1

S AR) — | AR N R)+ E AR 0Rw |
and so this last expression gives the area of the set of points covered
by at least one of the regions R,. The set of points of II) not covered
by at least one set R, forms II}. Therefore we have equality of areas
as stated in the lemma.

Let C be that common point of R, and R,., which is a vertex of

a Reuleaux polygon /I, and let ¢ be the measure of angle C,CC,...
For all 6§ >0, the sets R,(0) R;.,(6) have an intersection of positive
area. As a final preparation for Theorem 2, we shall prove

LEMMA 3. For fixed 6,
AR, N B) + S AR N i)

s @ minimum if and only if I, is regular.

Let @, be the point of intersection in /I, of the segment CC, with
the circle of radius 1 — & centred at C;. Let D be the point nearest
C at which circles of radius 1 — & centred at C, and C,,, intersect.
The set R, N R, is symmetric about the line through C and D. If
0(0) is the distance from C to a point @ on the circular arc of radius
1 — § centred at C, and ¢ the positive measure of angle QCQ,;, we have

AR R = [ 0000 = A9)

Since

0(0) = cos 6 — /(cos* 6 — 25 + &%) increases with @,

we have
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O L) r(g) =

with equality only if ¢ = 0. Therefore A is a strictly convex function
of ¢ in our considerations, since ¢ # 0. From §2, we know that
>e¢ =m. Applying Jensen’s inequality [2] gives

n—1
nA (%) < AR, N R, + g. A(R; N Ry11)

with equality if and only if each ¢ = xz/n.

The proof of Theorem 2 is now almost immediate. Let II, be a
Reuleaux polygon having 7n sides and of breadth one; let II, be a regu-

lar Reuleaux polygon of the same breadth and having the same number
of sides. By Lemma 2

A1) S 0% — ]2 — [ ARG) 01 Bufd)) + 5 ARG 0 Bes@) |
=< o — 8im[2 — nA(%) by Lemma 3.

From Lemma 1, A(Il}) = 0

and so we have further

A(IL) < A(IT3) + 8t — dinf2 — nA (Z) = A(T)

where the last equality is a consequence of Lemma 2. In the first of
this succession of inequalities, we can only assert there is equality if
II, is regular; but in the remaining inequalities, there is equality if and
only if 71, is regular. This completes the proof of Theorem 2.

We turn to the proof of Theorem 3. Let » >3 and ¢ satisfy
0 < e<m3. Assume for the moment that it is always possible to con-
struct a Reuleaux polygon of breadth one having one interior vertex
angle of measure 27/8 + ¢. Let C be such a vertex. Extend the sides
which join at C past their endpoints so as to meet the unit circle
centred at C in points P and Q. Consider the convex body 7T bounded
by the smaller unit circular arcs C/I\’, 1522 and Q%’. Let its area be A,.
If A, is the area of the Reuleaux triangle of unit breadth, a direct
computation shows A, — A, = ¢/2. By Lebesgue’s theorem, if A is the
area of the Reuleaux polygon, 4, < A. But the body T covers the
Reuleaux polygon and so 0 < A — 4, < e.

The preliminary assumption will be verified inductively. For this
purpose we first prove

LEMMA. If P and Q are points for which |PQ| <1, then 4t is
possible to determine points P’ and Q' such that |PP'| = |QQ'| = |P'Q'| =1,
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IPQ'| <1 and segments PQ and and P'Q are parallel.

Choose a Cartesian coordinate system with respect to which P and
@ have coordinates (— %+ 7,0) and (f — 7, 0) respectively. Here
0<n=010—1PQ))/2<1/2. Let 6§ = arc cos(1 — 7). From P draw a
unit segment terminating in the first quadrant at P’ such that the
slope of segment PP’ is tand. Let Q' be the image of P’ after re-
flection in the y-axis. P’ has coordinates (%,1/(27 —7’)) and Q' has
coordinates (— 4, V(27 — 7%)). The assertions of the lemma can be
verified directly.

To construct a Reuleaux pentagon of the desired character, let PC
and QC be segments of length one such that the measure of angle
PCQ is n/3 —e. Then |PQ| <1 and we apply the construction of the
lemma in such a way that points P’ and Q' are on the same side
of the line through P and @ as is C. The points P, C, Q, Q', P’ are
the vertices of a unit-edged star pentagon from which the desired
Reuleaux pentagon can be constructed in the usual way. We remark
that this Reuleaux pentagon is symmetric about the line bisecting angle
PCQ.

Suppose that n > 3 and Il is a Reuleaux #n-gon with an interior
vertex angle of measure 27/3 + ¢ at C. Further, suppose IT to be
symmetric about the line b bisecting this angle. Let P, and @, be the
ends of the chord of unit length which is perpendicular to b and @,
that vertex other that P, which is at a unit distance from @,. Re-
place @, by a point @ such that, if P is the symmetric image of @ with
respect to b, then angle PQQ, is of greater measure than angle P,Q,Q,.
The choice of @ is, however, restricted by requiring vertices of //
which were on opposite sides of the line through @, and @, to be on
opposite sides of the line through @, and Q. It is easily shown that
|PQ| < |P,Q,| = 1. With the construction of the lemma, two points P’
and @' are constructed lying on the same side of the line through
P and Q as Q,. The points P, Q, P, @ and vertices of /I other than
P, Q, from the vertices of a star polygon of n + 2 sides all of length
one. From this star an »n -+ 2 sided Reuleaux polygon /I’ can be con-
structed. The vertex angle at C appears unaltered in /I’ and b remains
a line of symmetry for /I’. By induction, the existence of #n-sided
Reuleaux polygons having an interior vertex angle of measure 27/3 + ¢
is established.
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