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Summary. General existence conditions for an n x n zero-one matrix
having given row and column sums and zero trace consist of a set of
2" — 1 inequalities. These are shown to simplify to the following set of
n inequalities in case the row sums a; and column sums b, satisfy
Q> o 20y by > e > b,

k
Zbiﬁzaf* (k=1,"',7l/),
i=1 i=1
where af* is the number of a, such that ¢+ < j and @, > j — 1 plus the
number of a, such that ¢+ > Jj and a, > j.

Introduction. Ryser [5] and Gale [3] have established simple arithme-
tic conditions that are necessary and sufficient for the existence of a
matrix of zeros and ones having prescribed row and column sums. Here
we vary the problem slightly and look for conditions under which there
will be an n x n matrix of zeros and ones having given row and column
sums and zero trace. While it is not difficult to derive such conditions
from known feasibility theorems for network flows, they appear not to
simplify greatly except under special circumstances.

One motivation for considering this problem lies in a graph theo-
retical interpretation. The existence problem for a directed, loopless
graph on 7 nodes having given local degrees (i.e., for each node two
non-negative integers are given, the first specifying the number of issu-
ing arcs, the second the number of entering arcs, and arcs leading from
a node to itself are not allowed) is equivalent to that for a zero-one
matrix having given row and column sums and zero trace.

1. General existence conditions. Let

Qyy Qgy =0y Ay
bl) bzy "',bn

be given non-negative integers. We seek conditions under which the
constraints

(1a) Zn]xi,gai (t=1,--+,n)

n
(1b) Z,x”Zb} (J:l’n-o'n)
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0, 1=7
(1c) Xy = . .

Oor 1,7+
have a solution x,. Thus if 3 a, = 3.b,, we are looking for an n x n
matrix having row sums a;, column sums b;,, and zero trace.

Feasibility conditions for the constraints (1) can be deduced, for
example, either from known results on the subgraph problem for directed
graghs [4, 2], or from the supply-demand theorem [3] for network flows.
We shall use the latter.

Applied to our problem, the supply-demand theorem and the in-
tegrity theorem for network flows [1, 2] assert that the constraints (1)
are feasible if and only if, corresponding to each non-empty subset
Ic {1,.--,n} of columns, the ‘‘aggregate demand” >\,b, of I can be
fulfilled without violating the ‘‘supply’’ limitations (1a) on individual
rows, or the ‘‘capacity’’ constraints (1c) on individual cells of the matrix.
Thus, for each I we need to determine the maximal number of ones
that can be placed in the columns corresponding to I (ignoring all other
columns), subject to the restrictions that at most @, ones can be used
from the ith row, and no ones can be put along the main diagonal. It
follows that the maximal number of ones that can be put in the 7-
columns is given by

>imin (a, [1] — 1) + 3 min (a;, | T])

where |I| denotes the number of indices in I and I is the complement
of I'in {1,--+,m}. Consequently feasibility conditions for (1) are

(2) 2.6 < Simin (@, [I] — 1) + X min (a,, [1]),

for all non-empty I C {1, -+, n}, a set of 2 — 1 inequalities.
If welet N= {1, ---,n} and define, for I € Nand each k=1, ..-,u,

(3) a;(I) = [{tliel and a; > k}|,

then (2) may be written as
|I]—1 —
(4) 2.6 < 2 af(N) + aln(I) .

(A convenient way to see this is to represent the integers a, by rows
of dots. For example, if in Figure 1 we take I = {2,4,5}, then the
right side of (2) is given by the number of dots lying to the left of the
indicated line. On the other hand, since af(I) is the number of dots in
the kth column that also lie in the I-rows, the first term on the right
of (4) counts all dots in the first |I| — 1 =2 columns, and the second
term counts the remaining dots that lie to the left of the line.)
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a, - __[
a, - - \ . .
@ -« - -]
a, - Nl
a; - -
a, - - |
Fig. 1
Henceforth we shall let
a; = a;(N),

retaining the functional notation only when proper subsets of N are
being considered. The sequence (a;) is called the conjugate sequence to
(a;); it does not depend on the ordering of the a,. In the next section
we shall make use of another sequence (a;f*) that will depend on the
ordering of the a,.

2. Simplification of existence conditions for @¢’s and b’s that are
monotone together. The inequalities (4) simplify considerably if we as-
sume that

(5) =02 20,20,
b12b22’°'2bn ZO’

or, what is the same thing, if there is some common renumbering for
which (5) holds.
For if (5) holds, and if we rewrite (4) as

1I]—1

(6) Sb—aiD < X af,

i=1

it is apparent that the left side of (6) is maximized, over all I with
|I| =k, by selecting I = {1, .-+, k}, because this I simultaneously max-
imizes 3, b, and minimizes a;(I). Since the right side of (6) depends
only on |I|, it follows that the 2" — 1 inequalities (6) are equivalent,
under the assumption (5), to the » inequalities

(7) b < Sar +ai(fk 1, ), k=1,m.

i=1

The right side of (7) has a convenient and natural interpretation,
again in terms of rows of dots, except that this time no dots are placed
in the main diagonal of the schema. (See Figure 2.)
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Fig. 2
If we define, for k=1, ..., n, the sets of indices
(8) I.= {ili<kand a;, >k — 1}
J.={i|i >k and a, >k} ,
and let
(9) ar* = |L| + |Jil ,

so that a}* is the number of dots in the kth column of the diagonally
restricted array of dots, we see that the right side of (7) is just 3, a;*.
Consequently feasibility conditions are simply that the partial sums of
the sequence (b;) be dominated by those of the sequence (ai*), and we
have conditions analogous to those found by Ryser and Gale for the case
in which ones can be placed along the main diagonal.

We shall refer to the sequence (a;}*) defined by (8) and (9) as the
diagonally restricted conjugate of (a;) in the statement of the following
theorem.

THEOREM. Let a,,b, (1 =1, -+, n) be monotone non-increasing sequ-
ences of mon-negative integers. Then the following are equivalent:

(i) There is an n x n matric of zeros and ones with zero trace
whose ith row [column] sum is bounded above [below] by a,[b,];

() >F.b < Skiaf*, (=1, ---,m), where the sequence (af*) is
the diagonally restricted comjugate of (a,).

Particular cases under which the rows and columns of the matrix
can be rearranged so that the theorem applies are if the row sum upper
bounds are constant, or if the column sum lower bounds are constant.
In each of these cases, the obvious necessary conditions for feasibility
turn out to be sufficient.

3. Constant row or column sum bounds. Unlike the sequence
(af), the sequence (af*) is not necessarily monotone (see Figure 2), but,
as we shall prove in the following lemma, it is almost so, provided the
a, are monotone. Here the phrase ‘‘almost monotone’’ means that the
sequence is either monotone or else it has at most one point of increase,
and that increase is one. We shall make use of this fact in the proof
of Corollary 1 below. First we state and prove the lemma.
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LEMMA. Ifa,>a,> +-+ > a,, then the diagonally restricted con-
Jjugate sequence (a;*) 1is either monotome mom-increasing or else, for
some k=1,---,mn—1,

af* > e o=t F 1zl > e 207"

Proof. It follows from (8) that
‘Ikl = IIlc-H] -1

[Jel = el
and hence from (9) that

ar* e — 1

equality holding if and only if || = |Iyx| — 1, |J| = |Jxs1|- Moreover,
since ¢, > -+ > a,, we have

a*=aili—1

if and only if a;, > k and a,., < k. Thus, if there were two points of
increase in the sequence (a}*), say k and ! with k£ <[, then we should
have

a12l>k>ak+1r

contradicting a,., > a,. This completes the proof of the lemma.

COROLLARY 1. There is an n X n zero-one matrix with zero trace
whose column sums are bounded below by b, and whose i™® row sum is
bounded above by a;, if and only if nb < SPar*, where (af*) is the
diagonally restricted conjugate of a monotone non-increasing rearrange-
ment of (a,).

Proof. By effecting a rearrangement of rows and the same rear-
rangement of columns, we may assume @, >a,> --- > a, and hence
apply the theorem. Thus, necessity being obvious, we need to show
that the inequalities

kb < S ar* (k=1,--+,m)

follow from nb < 37 af*. This can be established by induction on =, as
follows. For n = 1, there is nothing to prove. Assume the proposition
for n — 1 and consider the case for n. If b < a}*, then the lemma,
together with the fact that we are dealing with integers, implies that
b < af* for all i. Consequently
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k
kb < Sar* .
i=1
If, on the other hand, b > a}*, then
n—1
m—1b < X af*,
i=1
and the induction hypothesis applies.
COROLLARY 2. There is an n X n zero-one matrix with zero trace
whose row sums are bounded above by a, and whose 1™ column sum

18 bounded below by b,, if and only if 2. b, <ma, b, <n —1.

Proof. Again necessity is obvious. To prove sufficiency, we need
to show that 37,5, <na and b, <n — 1 imply

M=

k
Ebig a’;k* ’
=1

i

1

where b, > -+ >0b,. If k<a, then a})* =n —1 for 7 <k, and hence
Sb < k(n— 1) = Sa* .
i=1 1

If, on the other hand, k£ > a, then

n—1 for 1 <a
af* = da fori=a+1
0 fort>a+1,

and hence
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