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A CHARACTERISTIC SUBGROUP OF A p-GROVP

CHARLES HOBBY

If x, y are elements and H, K subsets of the p-group G, we shall
denote by [x, y] the element y~px~p(xy)p of G, and by [H, K] the sub-
group of G generated by the set of all [h, k] for h in H and k in K.
We call a p-group G p-abelίan if (xy)p = xpyp for all elements x, y of
G. If we let Θ(G) — [G, G] then #(G) is a characteristic subgroup of G
and Gjθ{G) is p-abelian. In fact, Θ(G) is the minimal normal subgroup
N of G for which G/AΓ is p-abelian. It is clear that Θ(G) is contained
in the derived group of G, and G/Θ(G) is regular in the sense of
P. Hall [3]

Theorem 1 lists some elementary properties of p-abelian groups.
These properties are used to obtain a characterization of p-groups G (for
p > 3) in which the subgroup generated by the pth powers of elements
of G coincides with the Frattini subgroup of G (Theorems 2 and 3).
A group G is said to be metacyclic if there exists a cyclic normal sub-
group N with G/N cyclic. Theorem 4 states that a p-group G, for
p > 2, is metacyclic if and only if Gjθ(G) is metacyclic. Theorems on
metacyclic p-groups due to Blackburn and Huppert are obtained as co-
rollaries of Theorems 3 and 4.

The following notation is used: G is a p-group; G{n) is the nth
derived group of G;Gn is the nth element in the descending central
series of G; P{G) is the subgroup of G generated by the set of all xp for
x belonging to G; Φ(G) is the Frattini subgroup of G;ζx,y, •••> is the
subgroup generated by the elements x, y, •; Z(G) is the center of
G; (h, k) = h-ιk~λhk\ if H, K are subsets of G, then (H, K) is the sub-
group generated by the set of all (h, k) for he H and k e K.

THEOREM 1. If G is p-abelian, then

(1.1) P(G{1)) - P(G){1) ,

(1.2) P(G) c Z(G) ,

(1.3) 0(G ( 1 )) = 0(G) ( 1 ) - G(2) .

Proof of (1.1). 0(G) = <1> implies that (xyx-'y-ψ - xpypx~py~p for
all a;, 2/ in G. (1.1) follows immediately.

Proof of (1.2). Let a? be ah arbitrary element of G, and suppose
the order of x is pn. Let % = #1+*?+ +ί)W~1. Then, for any y in G,

Received July 30, 1959. This work was supported by a National Science Foundation
pre-doctaral fellowship.

853



854 CHARLES HOBBY

uyvu~ι = {uyu~ι)p — upypu~p ,

where the last equality follows from Θ(G) — <1)>. Therefore ux~pypup~ι =
yv. But uι~v = a1-*'1 = x, hence cπ/3^"1 = yp, and (1.2) follows.

Proof of (1.3). It is easy to see that Φ(G) = P(G)G{1), hence Φ(G){1) Ώ
P(G)(1)G(2). Thus, by (1.1), Φ(G){1) 3 P(G{1))G{2) = Φ(G{1)) Ώ G{2). It re-
mains to show t h a t G{2) 2 0(G) ( 1 ) . But if x,y belong to <P(G), we can

write x = αs'%, # = #'t; for xf, yf in P(G) and u, v in G(1) (since Φ(G) =

P(G)G{1)). By (1.2), x' and 2/' belong to Z(G), hence xyx^y-1 = uvu^v-1

is an element of G(2). Thus Φ(G){1) c G(2), and the proof is complete.

COROLLARY 1.1. P(G{1)) c β(G).

Proo/. It suffices to show that Θ(G) = <1> implies P(G(1)) - <1>.
But, if ί(G) - <1>, it follows from (1.1) and (1.2) that P(Gω) = P{G){1)

and P(G) c Z(G). Thus P(G(1)) =

REMARK 1. P. Hall [3] has shown that

(xy)p = xpypcd

whenever x, y belong to a p-group G, where c is a product of pth powers
of elements of (%, yyil} and d is a product of elements contained in the
pth element of the descending central series of (x, yy. We have, as
an immediate consequence, Θ(G) c P(Gω)Gp.

We shall now investigate p-groups G for which P(G) — Φ(G). The
following lemma will be useful.

LEMMA 1. Suppose p Φ 2. If P{G) - Φ(G) and P(Gω) = <1>, then

Proof. If x,y eG, then

OΛ ») = y~p{x~lypx) = y^x

= y-p{y(y,χ)}p

= (v, %)p[y, (y, χ)\ = [2/, (2/,»)],

where the last equality follows from P(G(1)) = <1>. Therefore G3 c
(G, P{G)) c [G, G(1)] c [G, P(G)J. We complete the proof by showing that
[G, P(G)] c G4.

We first observe that (x, yp) e G3, hence

^ = χ*yp\χ, ypyp-vι*z

f o r s o m e « 6 G 4 . S i n c e p ^ 2 a n d P(G{1)) = <1>, w e h a v e [x, 2/p] e G 4 fo r
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every x,yeG. It follows that [G, P(G)] c G4.

T H E O R E M 2 . 1 / P ( G ) = Φ(G), t h e n P ( G { k ) ) = Φ(G{k)) f o r k = 1 , 2 , ---.

Proof. Suppose G is a group of minimal order for which P(G) =
Φ(G) but P(G{k)) Φ Φ(G{k)) for some k > 1. If P(G(1)) = Φ(G{1)), then we
must have P(G{k)) = Φ(G{k)) for all k > 1 since the order of G(1) is less
than the order of G. Thus P(G{1)) Φ Φ(Gω). We assert that P(G{1))
must be <1>. For, if P(G(1)) Φ <1>, we let if = G/P(G{1)). Then it is easy
to see that P(ίf) = Φ(H). Thus, since if has smaller order than
G, P(Hω) = Φ(HW). Also, P(H{1)) = <1>. Therefore

<1> = Φ(H{1)) = Φ(GωIP(G{1))) = Φ(Gω)P(Gω)IP(G{ι)) .

That is, P(GW) 3 <£(G(1)), and hence P(G(ι)) = Φ(G(λ)), which contradicts
our assumption.

If p = 2 it follows from P(G(1)) = <1> that G(1) is abelian. If p φ
2, then by Lemma 1, G3 = <1> and G(1) is again abelian. Therefore
P(G{1)) = Φ(GU)), contrary to our choice of G.

COROLLARY 2.1. If p Φ 2 and P(G) = Φ(G), then P(Giι)) -=• Φ(G{1}) =
Θ(G) Ώ G3.

Proof. By Corollary 1.1, P(G(1)) c β(G). By Lemma 1, G3 c P(G(1)).
Therefore P(G{ι))Gp = P(G ( υ) since p ^ 2. It follows from Remark 1
that P(G{1)) = ί(G). By Theorem 2, P(G(1)) = Φ(Gω), and the proof is
complete.

COROLLARY 2.2. Let p Φ 2 and P(G) - Φ(G). Then P(Ga)) c G(2)

implies G3 = <1>, ancί Zience G(2) =

Proo/. By Corollary 2.1, G3 c P(Gm), thus G3 c G(2). It is known
[3, Theorem 2.54] that G(2) cz G4. Therefore G3 = G4 = G(2) = <1>.

THEOREM 3. Suppose p Φ 2 and let xlf x2, , xk be coset represen-

tatives of a minimal basis of the abelian group GjG{l). Then P(G) =

Φ(G) if, and only if, there exist integers n(i) such that
(1) = <xί , xξ , ",xί > .

Proof. If such integers w(i) exist, then Gw Q P(G) and it follows
that P(G) = Φ(G).

Suppose P(G) = Φ(G), and let H= G/Θ(G). Then ^(ϋ") = <1>, and
H = ζjji, y%, •', yky where y.t is the image of xt under the homomorphism
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mapping G onto G/Θ(G). Since Θ(H) = <1>, P(H) = <yf, j/f, , yt>, and
P{H) e Z(tf). Also, P(i ί) = Φ(H) 3 iϊ ( 1 ), hence every element of if(1)

can be expressed in the form yfuyξΌ VT for suitable integers u,v, ,
w. Since the ^ are independent generators of H modulo H{1), it follows
that there exist integers nlfn2, •• 9nk such that H{1) — ζy?"1, yξn2, •••,
y?*>. By Corollary 2.1, 0(G(1)) = Θ(G), thus if(1) = G(1)/#(G) - G(1)/0(G(1)).
Thus we can use the Burnside Basis Theorem [6, page 111] to obtain
G{1) = <&?% ̂ Γ2, xΓ*). The proof follows if we let n(i) be the largest
positive integer n for which pn divides

COROLLARY 3.1. Suppose p Φ 2 and P(G) = Φ(G). If G can be
generated by k elements, then G{r) can be generated by k elements for
r = 1,2, 3, . . . .

Proof Follows immediately from Theorems 2 and 3.

LEMMA 2. If p Φ 2 and GjΦ{G{1))Gz is metacyclic, then

)G, = Θ(G) .

Proof. Since p > 2 it follows from Remark 1 that Θ(G) c P(Ga))G,
and hence Θ(G) c Φ(G{1))G3. The lemma will follow if it is shown that
Φ(G{1))GB e β(G). We may assume Θ(G) = <1>. Then, by Corollary 1.1,
P(GW) - <1>, thus Φ(G{1))G3 = G3. If G3 ^ <1> we may assume G3 - <z>,
where « is an element of order p in Z(G). Since G/G3 is metacyclic,
there exist elements α, 6 such that G = <(a,by and G(1) is generated
modulo G3 by apk for some integer k > 0. By (1.2), αpfc belongs to Z{G).
But then G(1) = <α*fc, ^> c Z(G) and G3 - <1>.

Blackburn [1] showed that a p-group G is metacyclic if, and only
if, GIΦ(G{1))G3 is metacyclic. Our next theorem follows immediately from
Lemma 2 and this result of Blackburn. We shall give a simple direct
proof of Theorem 4, and obtain Blackburn's result for p > 2 as Corol-
lary 4.2.

THEOREM 4. Suppose p > 2. T%ew G is metacyclic if, and only
if, Gjθ{G) is metacyclic.

Proof. Since any factor group of a metacyclic group is again
metacyclic, we need only show that G/Θ(G) metacyclic implies G is
matacyclic.

Suppose G is a non-metacyclic group of minimal order for which
Gjθ(G) is metacyclic. Then Θ(G) Φ <1> and hence we can find an ele-
ment z in Θ(G) such that z has order p and belongs to Z(G). If we let
H = Gl<z), then H/Θ(H) = (G/<z»/(6>(G)/<z» = Gjθ{G) is metacyclic, and
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consequently H is itself metacyclic since H has smaller order than G.
Thus we can find α, b in H such that H = <α, δ> and iϊ ( 1 ) = <άp*> for
some k > 0. If we let a, 6 be coset representatives in G of <z, 5, then
it follows from the Burnside Basis Theorem that G = <α, δ> and hence
G(1) = <αpfc, s>. In particular, if we let c = a~ιb~ιab, there exist integers,
n and m such that c — anpkzm. Since 2 belongs to Z(G), it is clear that
a~Ύc~λac = 1, and

b-'cb = b~1anpkbzm = (b~1ab)npkzm = ( α 1 + n * V ) n l > V

thus

where the last equality follows from zp = 1. Similarly, fe-^δ = αpfc+Wί)2\
Thus G3, which is generated by c^b^cb, a^c^ac, and the various con-
jugates of these elements, is contained in <αpfc)>. Since P(G{1)) <Ξ <(apkyy,
it follows from Remark 1 that Θ(G) c <αpfc>. But « belongs to 6>(G),
hence G{1) = <αpfc> and G is metacyclic.

REMARK 2. If p = 2, it follows from Θ(G) = <1> that
and hence x^yxy1 = 1 for all a?, 2/ in G. Thus Θ(G) = G(1) and G/Θ(G)
is metacyclic whenever G can be generated by two elements. Since
there exist non-metacyclic 2-groups having two generators we see that
Theorem 4 is false for p = 2.

The following result was established by Huppert [5, Hauptsatz 1].

COROLLARY 4.1. Suppose p Φ 2 and G can be generated by two ele-
ments. Then G is metacyclic if, and only if, P(G) = Φ(G).

Proof. It is clear that P(G) = Φ(G) if G is metacyclic. Suppose
P(G) = Φ(G). Since G can be generated by two elements, G(1) is cyclic
modulo G3 [3, Theorem 2.81]. We see from Theorem 3 that, if G =
(a, by, then G(1) = (ap7t, bp7ϊly for some integers m and n. It follows that
one of apU, bp™ is mapped on a generator of G{1)IG3 by the natural
homomorphism. Thus G/G3 is metacyclic. By Corollary 2.1, Θ{G) Ώ. G3,
hence G/Θ(G) is metacyclic. It follows from Theorem 4 that G is meta-
cyclic.

The next corollary is an immediate consequence of Lemma 2 and
Theorem 4.

COROLLARY 4.2. If p Φ 2, then G is metacyclic if, and only if,
GIΦ(G{1))GS is metacyclic.

REMARK 3. We define Θ^G) = Θ(G) and ΘJβ) = θ{θn_x{G)) for n > 1.
The series θλ(G) ID Θ2(G) D . D θk(G) = <1> can be considered a generali-
zation of the derived series of G. Corresponding generalizations of the
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ascending and descending central series of G can be obtained as follows:
let Γλ(G) be the subgroup of G generated by the set of all x in G such
that (xy)p — xpyp for every element y of G, and define Γn(G) for n > 1
as the subgroup of G mapped onto Γ1(G/ΓW_1(G)) by the natural homo-
morphism; let ΨΎ{G) - G, and ΨJβ) = [G, Ψn^(G)] for n > 1. These
series have an important property in common with the ascending and
descending central series. Namely, if we define the lengths l(Γ) and
l(Ψ) of the Γ and Ψ series as, respectively, the smallest integers m and
n for which Γm(G) = G and Ψn+1(G) = <1>, it is easy to see that l(Γ) =

The group Γ\(G) has been studied by Grun [2]. The groups ΘJβ)
and Ψm{G) have not appeared in the literature, however the following
result is an immediate consequence of earlier work [4, Remark 1].

THEOREM 5. A non-abelian group with cyclic center cannot be one
of the subgroups θn(G) or Ψm(G) (for m > 1) of a p-group G.
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