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Let A= {a,<a, < ---} be a set of integers and let A(n) be the
number of integers in A not exceeding n. If A, B are two such sets,
we put A + B = {a + b}, where a denotes generically an element of A,
b an element of B. It should be noted that A and B may contain
negative numbers or zero and that these are counted in A(n) and B(n).

Erdoes in an unpublished paper proved:

If lim,,_..(A(m)/m) = lim,,_..(B(m)/m) = 0, then for every ¢ > 0 there
are infinitely many « such that if C = A + B then

C(x) > A(x)(1 — ¢) + B(x) .
Clearly there are then also infinitely many ¥ such that
Cly) = A(y) + By)(1 —¢) .

Erdoes conjectured that it is possible to choose infinitely many
x =Y.

At the Number Theory Conference in Boulder, Colorado, Erdoes pro-
posed this problem to the author. It is clear that the Fundamental
Theorem [3] is inadequate to deal with this problem, because it fails if
1¢ C. The search for a stronger theorem finally led the author to
Theorem 2. Theorem 3 is a consequence of Theorem 2 and is consider-
ably stronger than Erdoes conjecture.

THEOREM 1. Let a, =b,=0. If n > 0,n¢C then there isan m¢C,
m=n or m < (n/2), such that
(1)

C(n) A(m) + B(m) — 1 e 1y Cm)
n+1; po + (C(n —m — 1) n+1(n m))

1
m+1"

For the proof of Theorem 1, we consider the following transforma-
tion: Let m, < %, <:+--<n, =n be the gaps in C. Form d, =n — n,.
Choose, if possible, a fixed number e < B such that an equation

(2) a+e+d, =mn
holds for some 1. Let the set B’ consist of all numbers ¢ + d, for which
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an equation a + e + d, = n, holds with some value of a. Form B* =
B*(e) = BUB',C* = A + B*. The following propositions are easily seen
to hold.

PROPOSITION 1. n¢ C*.

Proof. The equation a + e + d, = n implies a + ¢ = n,, which is
impossible since e € B.

ProPoSITION 2. B’'NB is empty.
Proof. The equation a + e + d, = n, shows that e¢ + d. ¢ B.
ProPOSITION 8. C*(n) — C(n) = B*(n) — B(n).

Proof. The equation @ + ¢ + d, = n, implies @ + ¢ + d, = n,. Hence
if n,e C* then e 4+ d,e B* and vice versa.

PROPOSITION 4. All numbers of B’ are larger than e.

Proof. B’ consists of numbers of the form e + d,, d, > 0.

B*(e) is called the fundamental e transform of B.

We now construet numbers e,, -+, ¢, and sets B = B,, B,,---, B,,
c=¢,0C,---,C, by the following rules:

Rule 1. B, is the fundamental e, transform of B,_,.

Rule 2. A+ B, =C,.

Rule 3. e, is the smallest number in B, , such that an equation

a+e+d,=n,, acA, n, n,¢&C,,
holds.
Rule 4. a + ¢+ d,+ n, for any ae A, ee B, n,, n, ¢ C,.
We then have

PROPOSITION 5. e, < e e <oy

Proof. We have a+e+d,=mn,;aeA n,n&¢C,_,,eeB,,. If
e;¢ B, , then e, > e, ,(Prop. 4). If e;eB,, then since C, ,DC,., the
inequality e, < e, , contradicts rule 3, while ¢, = ¢, , implies n,, n, € C,_,.

For any set A put
(3) A(m,n) = A(n) — A(m — 1) .

LEMMA 1. Let n, be the least gap in C,, then
(4) B.(n,) — B(n,) = C,(d,, n) — C(d,, n)

=MN; — C(dsyn) .
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Proof. Let d. .,»+-,d, ., <%, d,,,>mn, where we formally set
dy=n+1. Ilf d, < n,thenn, —d,eCy,n, —d, = a+b* b"e B,. Hence
by rule 4 we have n,e C,. But d, < n, implies d, < n, hence

(5) Cuds, m) — Clds, m) = q .

Moreover C, contains all numbers x for which d, < x < n, but does not
contain »n so that C(d,,n) =n — (d, — 1) — 1 = n,.

On the other hand if n,e C,, n,¢ C,_, then ¢,+d,e B,, ¢, + d;€ B,_,,
(Prop. 2). If d;, < mn, and e, + d, > n, then

e, >n,—d,=a+ b*b*eB,.
By Prop. 4 and 5,5*e B,_, and ¢, > b* contradicts rule 8. Hence
(6) By(n;) — B(n,) = q .

This completes the proof of Lemma 1.
We are now prepared for the proof of Theorem 1. Since 7, is not
in C, no number of the form n, — @ is in B, and therefore

(7) n, + 1> A(n,) + Bi(n,) .
Subtracting 4 from 7 we get
C(’)’L) = C(ds - 1) + A(’IL;) + B(n’c) -1

which after some simple algebra gives

C(n) > A(ny) + B(ny) — 1 —{—<C(d —1) — C(n) d‘) 1
n+1" n, + 1 ? n+1 Ju,+1°

Finally if =, < # then because of rule 4 we must have n, < d, =
n — n,, n, < n/2. This completes the proof of Theorem 1.

THEOREM II. Let A+ B=C,a,=b,=0,n > 0. Then either C(n)=
n + 1 or there exist numbers m, m, satisfying the conditions

C(n) > A(m) + B(m) — 1 Cn) _ C(m,)
n+1 " m+ 1 n 41 m, + 1

meC,m<nme&C,m <max(m,n—m —1).
Proof. The theorem is true if » = 0. Hence we can apply induc-

tion on n. If for any mé¢ C, m<n we have Cn)/(n+1)>C(m)/(m+1)
then by induction
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Cw) _| Cw) _ Cm) |, C(m)

n+1 n+ 1 m 4+ 1 m+ 1
> | Cm) | Cm) |, A(m) + B(m,) — 1
T in+1 m+ 1 m, + 1
Cm) _ C(my)
m+ 1 m, + 1

S| Cm) _ Cemy | A(m)+ Bm)— 1
Tin41 m, + 1 m, + 1

’

where m,¢ C, m, ¢ C, m, < max(m,, m — m, — 1) < max(m,, n — m, — 1).
Now assume C(n) + n + 1 and

C(n) _ C(m)
(9) n+1 <m+1

forall m <m,m¢C. If neC then C(n)/(n + 1) > C(n — 1)/n hence (9)
implies n¢ C. We apply Theorem 1. If in Theorem 1 m = n then Theo-
rem 2 holds with n=m=m,. If m<n/2 in Theorem1,thenn—m—1 > m,
hence there is a largest m, <n — m — 1, m; ¢ C. We then have

Cn—m—1)_ C(my)
%—m —m1+1.

Moreover since (n — m)/(m + 1) > 1 we get from Theorem 1

C(n) - Clm) _ Cm) . A(m)+ Bim)—1
n+1  m +1 n+ 1 m+ 1

_| Cm) _ C(m,) n A(m) + B(m) — 1
n+1 m, + 1 m + 1

and Theorem 2 is proved.

Theorems 1 and 2 can easily be generalized for arbitrary a,, b,. One
simply applies the two theorems to the set A’ = (4 — a,), B' = (B—b,).
If a,+b,=¢, then C'(n) = C(n + ¢,), A'(m)=A(m+a,), B'(m) = B(m + b,).
After some fairly obvious transformation Theorem 2 then reads

THEOREM 2a. Let A= {a,<a, < +++}, B={b<b < --+}, A+B=
C={c,<e, < --}. Letn>c,. Either C(n)=mn — c,+ 1 or there exist
m, m, satisfying the conditions:

C(n) > A(m — b)) + B(m —a,) — 1
n—c+1" m—c¢,+ 1

Cn) _  C(my)
n—ec,+1 m—co+11"
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<m<nméC, mécC, c,<m <max(m,n — m + ¢, — 1).
It is worth noting that Theorem 2 implies the Fundamental theorem
proved in [3]. We shall prove the following

COROLLARY TO THEOREM 2. Let a,=b,=0,n & C,v(n) = C(n) — 1,
og(m) = A(m) + B(m) — 2. Then either v(n) > a(n) or y(n)/n > o(m)/m
for someméC,0 < m < n.

Proof. Let m be the integer of Theorem 2. If n=m then Theorem
2 reads y(n) > d(n). If v(n) < o(n) then Theorem 2 yields

y(m)m + v(n) + m > a(m)n + o(m) + n .

If y(n)ym < o(m)n then we obtain from this v(n) + m > a(m) + =,
ag(m)n + m* > g(m)ym+nm and therefore o(m) > (m). Hence C(n)>n+1,
which is impossible since n ¢ C. This proves the corollary.

We shall now prove Theorem 3. If lim ((A(m) + B(m))/m = 0, then
there are infinitely many m such that

(10) C(m) = A(m — b)) + B(m —a,) — 1.

If C has only finitely many gaps above ¢,, then Theorem 3 is ob-
vious. There is an infinite sequence of m,; such that
A(m; — b,) + B(m; —a,) — 1 A(m — b)) + B(m — a,) — 1

m; — ¢ + 1 < m—c, + 1

for ¢, < m < m,. It follows from Theorem 2a that
Cim;) > A(m; — b)) + B(m; —a,) — 1.

(If m, ¢ C this follows directly from Theorem 2a. If m;eC take the
next gap in C below m;.)

THEOREM 4. If A + B = C and lim (C(n)/n = 0, then

li_mmegw =0
m

and 10 holds for infinitely many m ¢ C.

Proof. Without loss of generality we may assume a,=b,=0. There
is an infinite sequence {n;} such that C(n;)/(n;+1) < C(m)/(m + 1) for
m < n;. Clearly n;€C. Let m; be the value of m of Theorem 1
corresponding to n;. From Theorem 1 we see that the values m, also
form an infinite sequence, since A(m) + B(m) — 1 cannot vanish and since
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by assumption C(n, — m — 1) — C(n;)(n; — m)/(m + 1) > 0 for m < n,.
Now

Cm) o Cn) Cony—m—=1)  C(ny)
m+1 n,+1° n, — m n, + 1

for 0 < m < m; implies C(m) + C(n, — m — 1) > C(n;) for 0 < m < n, and
this together with (1) implies

C(m;) =z A(m;) + B(m,) — 1.

Modifications analogous to those applied in the present paper to the
proof of the authors Fundamental Theorem [3] can also be applied to
Dyson’s [1] proof of its generalization to more than two sets. The
special case of Dyson’s Theorem considered here then reads:

IfC=A4,+ --- +A4, and if ¢, a, are the smallest elements in C
and A, respectively, then for » > ¢,, there is an-m such that

1) Cm) o SAm — ¢+ ay) = (0 = 1)
n—c +1 m—c +1
GE<m<n.

This inequality with a, = b, = 0 was first obtained by Kneser [4,
Theorem VII]. Inequality (11) for ¢ = 2 already known to van der Cor-
put [5] is somewhat weaker than Theorem 2, because the minimum is
not restricted to m¢ C. This weakening is necessary if g > 2. The re-
lation (11) with g > 3 becomes false, if m is not restricted to elements
not in C. It is not known to the author if C(n)/(n + 1) # C(m)/(m + 1)
for ¢, <m < n and

Cn) < ;Aj(n — ¢+ ay) —(g—1)

implies strict inequality in (11) when g > 3.
Clearly on account of (11), Theorems 3 and 4, the latter without the
condition m ¢ C, carry over to the sum of an arbitrary number of sets.
The author takes the opportunity to refute Khintchine’s [2] assertion
that the methods used in his exposition are altogether different from
those introduced in [3]. Anybody acquainted with the authors first proof
must see that the basic ideas are exactly the same.
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