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1. Introduction. Let S, be the space of n-square skew symmetric
matrices over the field F of real numbers. Let K,,(4) denote the sum
of all 2k-square principal subdeterminants of A € S, (the elementary
symmetric function of degree 2k of the eigenvalues of A). It is clas-
sical that if U is an m-square real orthogonal matrix and 4 € S, then
UAU’ € S, and moreover for each k

(1.1) E, (UAU') = E,(A) .
The correspondence

1.2) A — UAU’

for a fixed orthogonal U can then be regarded as a linear transforma-
tion on S, onto itself that holds E,,(A4) invariant. The question we
consider here is the following: to what extent does the fact that (1.1)
holds for some k& characterize the map (1.2). In other words, we obtain
{(Theorem 3) the complete structure of those linear maps 7' of S, into
itself that for some k > 1 satisfy E,.(T(A)) = E,(A) for each A e S,.
Our results are made to depend on the structure of linear maps of the
second Grassmann product space AU of a vector space U over F into
itself.

K. Morita [2] examined the structure of those maps T of S, into
itself that hold invariant the dominant singular value @(A4) of each
A e S,. We recall that a(A) is the largest eigenvalue of the non-negative
Hermitian square root of A*A. Morita shows that if a(T(A)) = a(4)
for each A e S, then T has essentially the form given in our Theorem 3.

2. Some definitions and preliminary results. Let U be a finite
dimensional vector space of dimension n over F. Let G,(U) denote the
space of all alternating bilinear functionals on the cartesian product
Ux U to F. Then the dual space A*U of Gy(U) is called the second
Grassmann product space of U. If x, and x, are any two vectors in U
then f =2, A 2, € A’U is defined by the equation

f(W) = w(ml, xz) y, W e G2(U) .
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Some elementary properties of x, A %, are:
(i) x, A x, =0 if and only if x, and x, are linearly dependent.
(ii) if @ A @ =y Ay, # 0 then <&y, @) = {yy, ¥,y where {x,, x,) is
the space spanned by 2z, and =z,.
If A is a linear map of U into itself we define Cy,(A), the second com-
pound of A, as a linear map of AU into AU by

(2.1) CyA)x, A\ x, = Ax, N\ Az, .

We remark that if »,, -+-, x, is a basis of U then #, Az, 1 <t <j<n
is a basis of A’U and hence (2.1) defines C,(A) by linear extension.
We first show that A®*U is isomorphic in a natural way to S, and under
this isomorphism second compounds correspond to congruence transfor-
mations in S,.

Specifically, let a;, --+, @, be a basis of U and define ¢ by

(2.2) pla, N ay) = Ey — Ej; € S,

where E,, is the m-square matrix with 1 in position ¢, j and 0 elsewhere
and extend @ linearly to all of A’U. It is obvious that ¢ is an isomor.
phism since F;; — E,;,, 1 <1 <j <mn is a basis of S,. Let T be a linear
map of A2U into itself and define S, a linear map of S, into itself, by

(2.3) S(A) = pTp(A), A e S, .

Let B be a linear map of U into itself. Then

THEOREM 1. T = CyB) if and only if S(A) = B,AB; where B, 1is
the matrixz of B with respect to the ordered basis «, +++, a,.

Proof. Suppose T = Cy(B). Then for i < j

S(Eu — E,) = pTp™(E,; — E})
= ¢(Ba; N\ Ba))

= (35 bucte A bt
k=1 k=1

- % bsibtj (Est - Ets)

- Bl(E“ — EjL)B{ .

The implication in the other direction is similar.
Let L,. denote the set of rank 2r matrices in S, and let 2,. denote the
set of vectors >.7_, #; A y; in A?U where dim < 2,,+++,%,, Yy,***, Yr > = 27.

THEOREM 2. @(2,,) = L,
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Proof. Let

e

R = T N\ Y € Dy .
i=1

3

Choose a non-singular map B of U onto U such that B, , =z, and
Ba,, =y,5=1,---,7. Then

2z = CyB) iaw,l A oy,
J—1

SO
(2.4) #(2) = 9CAB) Kty A

Let S(A) = B.AB] for A € S, where B, is the matrix of B with respect
to the ordered basis ay, «++, @,. Then by Theorem 1, ¢C(B)p' = S and
from (2.4) we have

P(z) = Se ;Ziazjﬂ N Gy
= S<Z(E2j—1.2j — E2j,2j—1)>
J=1
= Bl(jgll (E2j—1,2j - zj,zj—1)>31' € L27' .

The implication in the other direction is a reversal of this argument.

We see then that a map T of A*U into itself is a second compound
of some linear map of U into itself if and only if Ty is a congruence
map of S,; and T(£,,) € 2, if and only if @Te ' (L,) < L,,.

3. E,, preservers. Let S be a linear map of S, into itself such that

E.(S(A)) = E,(A) for all A e S,, where k is a fixed integer, k > 2.
Then

LEMMA 1. S is non-singular.

Proof. Suppose S(A) = 0. Then

(3.1) E.(A+ X) = E,(S(4 + X)) = E,(5(X)) = E,(X)
for all X e S,.

Obtain a real orthogonal P such that

(3.2) pap =37 (%, Gy 4o,

where 0,_,, is an (n — 2r)-square matrix of zeros and p(A) = rank A = 2r.
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Here 37 and -+ indicate direct sum. Now if p(A) > 2k simply set
X =0 and from (3.1) and (3.2) we see that

0< Egk(A) = Ek(9%9 ctty 93) = Ezlc(o) =0

a contradiction. On the other hand, if 0(A) < 2k select X € S, such
that

PXP' = Ozr + (kzilr')(Em - E‘.’l) ’}“ On—zic
where £, is a 2-square matrix. Then
E,(A + X) = E,(PAP’ + PXP') =[] ¢;.
J=1

But E,(PXP') = E,(X) =0, since k¥ — r < k. Hence the proof is com-
plete.

LEmMA 2. If A e S, and deg E,.(xA + B) < 2 for all B e S, and
A # 0 then p(A) = 2.

Proof. Suppose p(A) = 2» and select a real orthogonal P such that
PAP’ has the form given in (3.2). Select B such that

PBP’' =0, + 3. (B, — E,)+C
2

—
ol
it

where if n is even C doesn’t appear and if = is odd C is a 1-square zero
matrix,
Now if k< »r
B, (xA + B) = «*KE (0}, «--, 62) + lower
order terms in z.
Hre>r

E,(xA + B) = Gcnf?]qf T)H? «oe 022" + lower order terms in x. Thus

deg K, (xA + B) is either 2k or 2r.
But this implies 27 = 2 and p(A) = 2.

LeEMMA 3. If En(S(A)) = Ew(A) for all A e S, then S(Ly) S L.

Proof. Let p(x) be the polynomial E,.(xA -+ B). Then if p(4)=2 it is
easy to check that deg p(x) < 2 for all Be S,. Hence deg E,(xS(A) + S(B))<
2 for all Be S,. But S is non-singular by Lemma 1 and thus by Lemma 2,
©(S(A4)) = 2.



LINEAR MAPS ON SKEW SYMMETRIC MATRICES 971

THEOREM 3. If E,(S(A)) = E,,(A) for all A e S,, where k 1is a
JSized integer satisfying 4 < 2k < n and n > 5 then there exists a real
matrixz P such that

(3.3) S(A) = aPAP’ for all A € S,

where aPP’ = Iif 2k < n and aPP’as unimodular if 2k = n. If 2k =
n = 4 then either S has the form (3.3) or

0 a’34 a’m aQS

— 0 a .

(3.4) S(A) = «aP oz u Gy pr
— Qo — O a,,
— Ay — Oy — Qg 0
0 a’l‘l a18 a14
— 0y Ay @ . .
where A = 12 0 BT agnd PP’ s untmodular.

— Oy Oy 0 Q34

—Qyy Wy — Oy 0

Proof. By Lemma 1, S™ exists and we check that
E(S7(A)) = En(SS7(A)) = E(4) ,
for any A € S,. Hence by Lemma 3
SL,) € L, and thus S(L,) = L, .
Now define T, a mapping of AU into itself, by (2.3)
T=g¢'Sp .

By Theorem 2

T(0,) = 9~ Sp(2)
= 9S(Ly)
= @7 (Lsy)
=0,.

At this point we invoke a theorem of Chow [1, pp. 38]. Let 7" be
the mapping of 2-dimensional subspaces of U into themselves induced by
T, that is, let T"({x, ¥>) = <{u, v> whenever T(x A y) =u A v, (assum-
ing of course that x and y are linearly independent). Then T is well
defined and it follows from the above that it is a one-to-one onto ad-
jacence preserving transformation: if two 2-dimensional subspaces of U
intersect in a subspace of dimension 1 then their images under 7" in-
tersect in a subspace of dimension 1. Therefore 7" is induced either
by a correlation or a collineation of the subspaces of U. If dimU > 5
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T" is induced by a collineation. If dim U =4 and if T" is induced by
a correlation then (7'T})” is induced by a collineation. Here T, maps AU
into itself and satisfies

(8.5) Tz, A x;) =0 N\ Ty
{,7, L, m} = {1,2,3,4} and i < j,l <m .
Now, assuming 7" is induced by a collineation we show that
(3.6) T = aC(P)

for some a € F and some linear transformation P: U — U. The funda-
mental theorem of projective geometry states that there is a one-to-one
semi-linear transformation Q: U — U such that

3.7 Tz, ¥)) = {Qx, Qy)> .
Let z, -+, x, be a basis of U and let Qx;, = y,. Then
T(x, A xy) = ays NY; a; € F.
1<4, j<n, 1+7.
Then for s, k, ¢t distinct integers in 1, ---,n and K € F.
T((xs +a) A xk) = K(Q(xs + xz) AN ka)
=K@s +9) A\ Yy »
But
T((xs + ®) A ) = T(xs A ) + T2, A @)
= (ask?/s + a’tkye) AN/P

Hence a,, = «a,, and thus «,, = «@,, = a,, = «,, = a for any four distinct
integers s, k, r,t. Hence

T(x, A 2)) = ay, Ay, = aC(P)x; A z,,

where P: U— U is a linear transformation with Px, =y,. Since {x,A2,|1<
1< j<n} is a basis of AU, T = aCy(P).
Now by Theorem 1,

S(A) = aPAP’ for all A e S,

for » > 5 where P is an n-square non-singular matrix. If 2k = n then
clearly PP’ is unimodular. Hence assume 2k < 7.
We next show that

aPP’' =1T.

From the hypothesis,
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E,(aPAP') = E,(A), A € S,
and hence
atr {Cy(PP")Cy(A)} = trCyu(4) .

By the polar factorization theorem let P = UB, where U is real or-
thogonal and B is positive definite symmetric. Let B = VDV', D
diagonal with positive entries and V real orthogonal. Then since V'AV
runs through all of S, as A does we have

3.9) atr {Co(D")Cou(A)} = trCu(4) .

We assert that any diagonal (gk>-square matrix is a linear combina-

tion of matrices C,,(A) for Ae S,. For, let 1 <14, < ++» <1y < n. Let
A e S, and consider the 2k-square principal submatrix B of A where

B = Aiwiﬁ ;
and suppose A has 0 entries outside of B. Then define B as follows:

B2k—w.m+1=—17 CY:O,"°,]C—1
BZk—m,m+1:1 ’ Qf:k, cty 2k
and B;, = 0 elsewhere. Then C,(4A) = =+ E; .., , where E; ., is the

<gk>—square matrix with the single non-zero entry 1 in the ((¢y, *++, t),

(i1, **+, 13)) position ordered doubly lexicographically in the indices of
the rows and columns of A. Returning to (3.9) we have

tr{Cop(aD)X} = trX
for all (g’k)-square diagonal matrices X and hence C,(aD?) = I, aD’ =
4+ I. From this we easily see that
aPP' =1,

and (3.3) follows. The mapping 7, on AU induces the map S' on S,
where

0 Q12 A1z Qg 0 A3y Ay Qg

St Ay 0 Aoz Azy | _ | — 0Oy 0 Qg Oy

— 0y — Ay 0 ay 0y 0y 0 ap
—Qu —0y —ay 0 —Qyp —Qy —a 0

This completes the proof.

We remark that Theorem 3 is no longer valid if & = 1: for consider the
transformation which interchanges positions (,7) and (4,7) in A for
a fixed pair of integers 1 < ¢ < j < m. This clearly preserves E(A) but
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does not have the form in Theorem 3. For example

0 1 01
—1 0 1 0
0 —1 01
—1 0 -1 0

is non-singular but interchanging the 1, 2 and 2, 1 entries results in
a singular matrix.
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