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SYMMETRIC FUNCTIONS
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1. Introduction* Let Sn be the space of ^-square skew symmetric
matrices over the field F of real numbers. Let E2k(A) denote the sum
of all 2&-square principal subdeterminants of A e Sn (the elementary
symmetric function of degree 2k of the eigenvalues of A). It is clas-
sical that if U is an ^-square real orthogonal matrix and A e Sn then
UAU' e Sn and moreover for each k

(1.1) EJJJAU') = EM(A) .

The correspondence

(1.2) A->UAU'

for a fixed orthogonal U can then be regarded as a linear transforma-
tion on Sn onto itself that holds E2k(A) invariant. The question we
consider here is the following: to what extent does the fact that (1.1)
holds for some k characterize the map (1.2). In other words, we obtain
(Theorem 3) the complete structure of those linear maps T of Sn into
itself that for some k > 1 satisfy E2k(T(A)) = E2k{A) for each A e Sn.
Our results are made to depend on the structure of linear maps of the
second Grassmann product space /\2U of a vector space U over F into
itself.

K. Morita [2] examined the structure of those maps T of Sn into
itself that hold invariant the dominant singular value a(A) of each
A e Sn. We recall that a(A) is the largest eigenvalue of the non-negative
Hermitian square root of A*A. Morita shows that if a(T(A)) = a(A)
for each A e Sn then T has essentially the form given in our Theorem 3.

2* Some definitions and preliminary results* Let U be a finite
dimensional vector space of dimension n over F. Let G2(U) denote the
space of all alternating bilinear functionals on the cartesian product
U x U to F. Then the dual space h2U of G2(U) is called the second
Grassmann product space of U. If x1 and x2 are any two vectors in U
then f = x1 A x2 ^ A2U is defined by the equation

f(w) = w(x19 x2) , we GJJJ) .
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918 MARVIN MARCUS AND ROY WEST WICK

Some elementary properties of xx A x2 are:
( i ) xx A x2 = 0 if and only if xx and x2 are linearly dependent.
(ii) if xx A x2 = Vi A y2 Φ 0 then <&„ £2> = ζylf y2y where <#!, #2> is

the space spanned by x1 and x2.
If A is a linear map of U into itself we define C2(A), the second com-
pound of A, as a linear map of f\2U into tfU by

(2.1) C2(A)^ Λ £2 = Aα?! Λ Ax2 .

We remark that if x19 , $w is a basis of ί7 then x% A xj9I < i < j *<n
is a basis of A 2 ^ a n d hence (2.1) defines C2(A) by linear extension.
We first show that /\2U is isomorphic in a natural way to Sn and under
this isomorphism second compounds correspond to congruence transfor-
mations in Sn.
Specifically, let a19 , an be a basis of U and define φ by

(2.2) φ{μ% A aό) = Ei3 - En e Sn

where Ei5 is the ^-square matrix with 1 in position i, j and 0 elsewhere
and extend ψ linearly to all of /\2U. It is obvious that φ is an isomor-
phism since Eυ — EJt, 1 < i < j < n is a basis of Sn. Let T be a linear
map of A 2 ^ i n to itself and define S, a linear map of Sn into itself, by

(2.3) S(A) = φTφ-\A), Ae Sn.

Let B be a linear map of U into itself. Then

THEOREM 1. T = C2(B) i/ and owẐ / i/ S(A) = i^AI?! ^feβrβ Bi is
matrix of B with respect to the ordered basis au •••, an.

Proof. Suppose T = C2(B). Then for i <j

S(Eυ - En) - φTφ-\Eυ - En)

= ψ{Ba% A Bcέj)

δ**«fc Λ Σ bk1

t1(Est — Et8)

The implication in the other direction is similar.
Let L2r denote the set of rank 2r matrices in Sn and let Ω2r denote the

set of vectors Σϊ=i χι Λ yt in A2U where dim < x19 , xr, ylf , yr > = 2r.

THEOREM 2. 9^(β2r) = L2r
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Proof. Let

T

1 = 1

Choose a non-singular map B of U onto Z7 such that Ba2)-X = Xj and
Bα2 j = yj9j = l, . . . , r. Then

s = C2(B) Σ nr2J_! Λ o:2; ,

SO

(2.4) ?>(«) = ΨCIB) Σ α w - ! Λ α2 j .

Let S(A) = BλAB[ for A e S , where B1 is the matrix of B with respect
to the ordered basis al9 , αw. Then by Theorem 1, φC2(B)φ~ι = S and
from (2.4) we have

?>(s) = S^ Σ α2j_! Λ α2 j
J l

The implication in the other direction is a reversal of this argument.
We see then that a map T of A 2 ^ ίn^o itself is a second compound

of some linear map of U into itself if and only if φTφ~λ is a congruence
map of Sn; and T(Ω2r) c β2 r if and only if φTφ'\L2r) c L2r.

3 E'sfc preservers. Let S be a linear map of Sw into itself such that
E2k(S(A)) = S2fc(A) for all A e Sn, where A; is a fixed integer, k > 2.
Then

LEMMA 1. S ΐs non-singular.

Proof. Suppose S(A) = 0. Then

(3.1) E2k(A + X) - #2&(S(A + X)) - E2k(S(X)) -

for all X e Sn .

Obtain a real orthogonal P such that

(3.2)

where 0w_2r is an (n — 2r)-square matrix of zeros and p(A) — rank A = 2r.
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Here Σ a n d + indicate direct sum. Now if p(A) > 2k simply set
X = 0 and from (3.1) and (3.2) we see that

0 < E2k{A) = Ek{θ\, , θl) = E2k(0) = 0

a contradiction. On the other hand, if p(A) < 2& select X e Sn such
that

PXP' = 02, + Σ V i * - #*) + 0n_ΪJt
1

where Eu is a 2-square matrix. Then

E2k(A + X) = E2k{PAP> + PXPf) = Π θ) .
7

But E2k{PXPf) = ^ ( Z ) = 0, since k - r < k. Hence the proof is com-
plete.

LEMMA 2. If A e Sn and deg E2k(xA + B) < 2 /or αZZ JB € Sn

A Φ 0 ίfeew |O(A) = 2.

Proof. Suppose ρ(A) — 2r and select a real orthogonal P such that
' has the form given in (3.2). Select B such that

[j]~r

PBPf - 02, + Σ {En - En) + C
2

where if n is even C doesn't appear and if n is odd C is a 1-square zero
matrix.

Now if k < r

E2k(xA + B) - x*kEk(θl, , θl) + lower

order terms in x.

If k>r
ί\nl2] r\

E2k(xA + B) — [\ ' J

/v, )θ\ θ2

rx
2r + lower order terms in x. Thus

degE2k(xA + B) is either 2/c or 2r.

But this implies 2r = 2 and p(A) = 2.

LEMMA 3. If E2k(S(A)) = #2fc(A) /or αZί A e Sn then S(L2) c L2.

Proo/. Let p(ίc) be the polynomial E2k(xA + B). Then if ρ{A) = 2 it is
easy to check that degp(^) < 2 for all B e Sn. Hence degΐ;2&(^S(A) + S(B))<
2 for all B e Sn. But S is non-singular by Lemma 1 and thus by Lemma 2,
p(S(A)) - 2.
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THEOREM 3. If E21c(S(A)) = E21c{A) for all A e Sn, where k is a
fixed integer satisfying 4 < 2k < n and n > 5 then there exists a real
matrix P such that

(3.3) S(A) = aPAP' for all A e Sn

where aPP' — I if 2k < n and aPPf is unimodular if 2k — n. If 2k —
n = 4 then either S has the form (3.3) or

(3.4) S(A) - aP — α34 0 α u α13

#24 #14 0 #12

_α23 _αi3 _αi2 o /

where A —

/ 0 α 1 2 α 1 3 α 1 4 \

— a 1 2 0 α 2 3 α 2 4

#13 —#23 0 #34

\ — α 1 4 — α 2 4 — α 3 4 0 /

and aPP' is unimodular.

Proof. By Lemma 1, *S-1 exists and we check that

En{S-\A)) - En(SS-\A)) = E2k(A) ,

for any A e Sn. Hence by Lemma 3

S-!(L2) c L2 and thus S(L2) = L2 .

Now define T, a mapping of A 2 ^ into itself, by (2.3)

T = φ-'Sφ .

By Theorem 2

= Ω2.

At this point we invoke a theorem of Chow [1, pp. 38]. Let T" be
the mapping of 2-dimensional subspaces of U into themselves induced by
T; that is, let T"(ζx, y}) — ζu, v) whenever T(x Λ y) = u Λ v, (assum-
ing of course that x and ?/ are linearly independent). Then T" is well
defined and it follows from the above that it is a one-to-one onto ad-
jacence preserving transformation: if two 2-dimensional subspaces of U
intersect in a subspace of dimension 1 then their images under T" in-
tersect in a subspace of dimension 1. Therefore V is induced either
by a correlation or a collineation of the subspaces of U. If dim U > 5
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T" is induced by a collineation. If dim U — 4 and if T" is induced by
a correlation then (TTΊ)" is induced by a collineation. Here Tλ maps A 2 ^
into itself and satisfies

(3.5) Tl(Xί Λ Xjϊ = ®ι Λ ^m '

{i, i , Z, m} = {1, 2, 3,4} and i <j,l <m .

Now, assuming T" is induced by a collineation we show that

(3.6) T = αC2(P)

for some a e F and some linear transformation P: U—> U. The funda-
mental theorem of projective geometry states that there is a one-to-one
semi-linear transformation Q: U—+ U such that

(3.7) T"«x, »» = <Qx, Qy> .

Let xιt * ,xn be a basis of U and let Qxt — yt. Then

T(a?i Λ Xj) = α ^ , Λ % α υ e F .

1 < if j < n, ί Φ j .

Then for s, A:, ^ distinct integers in 1, , n and K e F.

T((xs + xt) A xk) = K(Q(xs + xt) Λ Qxk)

= K(ys + yt) A yk ,

But

T((xs + xt) A xk) = T(xs A xk) + T(xt A xk)

= {pLΛky9 + atkyt) A yk .

Hence ask = atk and thus ask = αtfc = akt — an — a for any four distinct
integers s, fc, r, ί. Hence

Γ(aj4 Λ Xj) = αj/ί Λ % = aC2(P)Xt A x, ,

where P: ί7—> Z7 is a linear transformation with Px3 — yt. Since {xtAXj 11 <
i < j < n} is a basis of A2U, T = aC2(P).
Now by Theorem 1,

S(A) - aPAP' for all A e S w

for n > 5 where P is an w-square non-singular matrix. If 2k = n then
clearly <xPP' is unimodular. Hence assume 2k < n.
We next show that

aPP' - / .

From the hypothesis,
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and hence

E2k(aPAP') = E2k(A), A e Sn

a™tr{C2k(PP')C2k(A)} = trC2k(A) .

By the polar factorization theorem let P = UB, where U is real or-
thogonal and B is positive definite symmetric. Let B — VDV, D
diagonal with positive entries and V real orthogonal. Then since VΆV
runs through all of Sn as A does we have

(3.9) a™tr{C2k(D*)C2k(A)} = trC2k(A) .

We assert that any diagonal C%A-squa,τe matrix is a linear combina-
tion of matrices C2k(A) for A e Sn. For, let 1 < ilf < < i2k < n. Let
A e Sn and consider the 2fc-square principal submatrix B of A where

Baβ =
aβ

and suppose A has 0 entries outside of B. Then define B as follows:

B2k-a,Λ+1 = - 1 , α = 0, , fc - 1

and 5 0 = 0 elsewhere. Then C2fc(A) = ± Eh...hic, where Eh...hΊc is the

(^W S ( * u a r e matrix with the single non-zero entry 1 in the ((t^ •••, iafc),

(iif * » is*)) position ordered doubly lexicographically in the indices of
the rows and columns of A. Returning to (3.9) we have

tr{C2k(aD2)X} = trX

for all ί 2 .̂Vsquare diagonal matrices X and hence C2k(aD2) — /, aD2 =

± I. From this we easily see that

aPP' = I,

and (3.3) follows. The mapping 2\ on h2U induces the map S1 on S4

where
0 α12 α18 α14\ / 0 au a2i α23\

d12 U €ί2,

— α 1 3 — α 2 3 0

\ #14 #24 #3- 0

0

\—«23 —

α 1 4 α 1 3

0 α 1 2

— α 1 9 0

This completes the proof.
We remark that Theorem 3 is no longer valid if k = 1: for consider the
transformation which interchanges positions (i, i) and (i, i) in A for
a fixed pair of integers 1 < i < j < n. This clearly preserves ^(A) but



924 MARVIN MARCUS AND ROY WESTWICK

does not have the form irL Theorem

/ 0 1
- 1 0

0 - 1
\ - l 0

3. For

0

1

0

- 1

example

1\

0

1

0/

is non-singular but interchanging the 1, 2 and 2, 1 entries results in
a singular matrix.

REFERENCES

1. Wei-Liang. Chow, On the Geometry of Algebraic Homogeneous Spaces, Annals of Math.
50 (1949), 32-67.
2. K. Morita, Schwarz's Lemma in a Homogeneous Space of Higher Dimensions, Japanese
J. of Math. 19, (1944), 45-56.

THE UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, CANADA



PACIFIC JOURNAL OF MATHEMATICS

EDITORS
DAVID GILBARG

Stanford University
Stanford, California

F . H. BROWNELL

University of Washington
Seattle 5, Washington

A. L. WHITEMAN

University of Southern California
Los Angeles 7, California

L. J. PAIGE

University of California
Los Angeles 24, California

ASSOCIATE EDITORS
E. F. BECKENBACH
T. M. CHERRY
D. DERRY

E. HEWITT
A. HORN
L. NACHBIN

M. OHTSUKA
H. L. ROYDEN
M. M. SCHIFFER

E. SPANIER
E. G. STRAUS
F. WOLF

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE COLLEGE
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE COLLEGE
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CALIFORNIA RESEARCH CORPORATION
HUGHES AIRCRAFT COMPANY
SPACE TECHNOLOGY LABORATORIES
NAVAL ORDNANCE TEST STATION

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be typewritten (double spaced), and the author should keep a complete copy. Manuscripts may !

be sent to any one of the four editors. All other communications to the editors should be addressed'
to the managing editor, L, J. Paige at the University of California, Los Angeles 24, California. „ ,

50 reprints per author of each article are furnished free of charge; additional copies may be <
obtained at cost in multiples of 50. - '

The Pacific Journal of Mathematics is published quarterly, in March, June, September, and
December. The price per volume (4 numbers) is $12.00; single issues, $3.50. Back numbers?
are available. Special price to individual faculty members of supporting institutions and to
individual members of the American Mathematical Society: $4.00 per volume; single issues,
$1.25.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 2120 Oxford Street, Berkeley 4, California.

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), No. 6^
2-chome, Fujimi-cho, Chiyoda-ku, Tokyo, Japan.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
The Supporting Institutions listed above contribute to the cost of publication of this Journal,

but they are not owners or publishers and have no responsibility for its content or policies.



Pacific Journal of Mathematics
Vol. 10, No. 3 November, 1960

Glen Earl Baxter, An analytic problem whose solution follows from a simple
algebraic identity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 731

Leonard D. Berkovitz and Melvin Dresher, A multimove infinite game with linear
payoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 743

Earl Robert Berkson, Sequel to a paper of A. E. Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . 767
Gerald Berman and Robert Jerome Silverman, Embedding of algebraic systems . . . . 777
Peter Crawley, Lattices whose congruences form a boolean algebra . . . . . . . . . . . . . . 787
Robert E. Edwards, Integral bases in inductive limit spaces . . . . . . . . . . . . . . . . . . . . . . 797
Daniel T. Finkbeiner, II, Irreducible congruence relations on lattices . . . . . . . . . . . . . 813
William James Firey, Isoperimetric ratios of Reuleaux polygons . . . . . . . . . . . . . . . . . . 823
Delbert Ray Fulkerson, Zero-one matrices with zero trace . . . . . . . . . . . . . . . . . . . . . . . 831
Leon W. Green, A sphere characterization related to Blaschke’s conjecture . . . . . . . . 837
Israel (Yitzchak) Nathan Herstein and Erwin Kleinfeld, Lie mappings in

characteristic 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 843
Charles Ray Hobby, A characteristic subgroup of a p-group . . . . . . . . . . . . . . . . . . . . . 853
R. K. Juberg, On the Dirichlet problem for certain higher order parabolic

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 859
Melvin Katz, Infinitely repeatable games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 879
Emma Lehmer, On Jacobi functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887
D. H. Lehmer, Power character matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 895
Henry B. Mann, A refinement of the fundamental theorem on the density of the sum

of two sets of integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 909
Marvin David Marcus and Roy Westwick, Linear maps on skew symmetric

matrices: the invariance of elementary symmetric functions . . . . . . . . . . . . . . . . . 917
Richard Dean Mayer and Richard Scott Pierce, Boolean algebras with ordered

bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 925
Trevor James McMinn, On the line segments of a convex surface in E3 . . . . . . . . . . . 943
Frank Albert Raymond, The end point compactification of manifolds . . . . . . . . . . . . . 947
Edgar Reich and S. E. Warschawski, On canonical conformal maps of regions of

arbitrary connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 965
Marvin Rosenblum, The absolute continuity of Toeplitz’s matrices . . . . . . . . . . . . . . . . 987
Lee Albert Rubel, Maximal means and Tauberian theorems . . . . . . . . . . . . . . . . . . . . . . 997
Helmut Heinrich Schaefer, Some spectral properties of positive linear

operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1009
Jeremiah Milton Stark, Minimum problems in the theory of pseudo-conformal

transformations and their application to estimation of the curvature of the
invariant metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1021

Robert Steinberg, The simplicity of certain groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1039
Hisahiro Tamano, On paracompactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1043
Angus E. Taylor, Mittag-Leffler expansions and spectral theory . . . . . . . . . . . . . . . . . . 1049
Marion Franklin Tinsley, Permanents of cyclic matrices . . . . . . . . . . . . . . . . . . . . . . . . . 1067
Charles J. Titus, A theory of normal curves and some applications . . . . . . . . . . . . . . . . 1083
Charles R. B. Wright, On groups of exponent four with generators of order two . . . . 1097

Pacific
JournalofM

athem
atics

1960
Vol.10,N

o.3


	
	
	

