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ROBERT STEINBERG

The purpose of this note is to give a proof of the simplicity of
certain ‘‘Lie groups’’ considered in [2]. The main feature of the present
development is the proof of Lemma 2 below: it is superior to the cor-
responding proof given in [2], because no assumption on the number of
elements of the base field is required, and is very much shorter than
the one given by Chevalley [1] for the direct analogues, over arbitrary
fields, of the simple (complex) Lie groups. Thus it turns out that the
groups Ki(¢®) with ¢ < 4, and D% ¢*) with ¢ £ 3, to which the proof in
(2) is not applicable, are simple.

Assuming the notations of [1] and [2] to be in effect, we shall prove:

1. THEOREM. If G is ome of the groups of type G*, G* or G, defined
i [2], and the rank | of the corresponding Lie algebra is at least 3,
then G is simple.

It will be noticed that the case Al is excluded by the assumption
on [. This is of necessity, since the simplicity of A; is not universal,
but depends on the base field. The same is true of groups of type A,.

2. MAIN LEMMA. Let G be a group of type G, that 1is, ome of
the direct analogues of the ordinary simple Lie groups, or a group of
type G, G* or G3, but assume G is not of type A, or Al. Let 0 be the
nilpotent subgroup of G corresponding to the positive roots of the
underlying Lie algebra. Let H be a normal subgroup of G such that
|H| > 1. Then |HAT| > 1.

Proof. Assume first that G is of type G'. By 7.2 of [2], there is
x = who(w)e H with uell', he H.

If w=1, then [2, Lemma 8.5] yields the required conclusion.

If w # 1, consider first the case in which w = wy; with S a funda-
mental element of II'. Then there is a fundamental Ae I1* such that
B=wA>0 and wA + A (because A, and A} are excluded). Choose
yel} so that y # 1 and y € U,, the subgroup of I generated by those
X, for which At » = 2. Then we assert that the commutator z = (x, )
is in HNW' and that z#1. In fact, z=uho(w)yo(w) b uy ' =utu'y ™
with ¢eUi; hence ze HNW, and, since U/, is Abelian, we have z =
ty =1 modU,, by 4.3 of [2], whence z % 1.

Finally, consider the general case in which w # 1. Choose Re [T’

Received July 31, 1959.

1039



1040 ROBERT STEINBERG

so that —wR = S is fundamental in /', and then y e} so that y + 1.
Again form z = (%, y). In the present case, w(w)yw(w)*e UyD'w(ws)llg
by 7.3 of [2], so that z is conjugate to an element x, of the form w,h,w(ws)
with u, e, h,e . Clearly x, =1 and x,¢ H. Thus the situation is
that at the beginning of the preceding paragraph, and Lemma 2 is
proved for groups of type G".

Now to get a proof for groups of type other than G', we need only
delete all superscripts or replace them all by 2 or all by 3, depending
on the group under consideration.

From this point on, we assume that G is of type G', but not of
type A} (I even), and the ensuing discussion refers explicitely to this
case. For groups of type A} (I even), G* or G°, the changes to be made
are quite clear: a prototype for these changes is the replacement of (*)
below by an appropriate analogue. For groups of type G, the rest of
the proof of Theorem 1 is given in [1].

3. LEmmMmA. If G*' is not of type A} (I even) and H is a mormal
subgroup of G such that | H| > 1, then, for some Rell', | HN U] > 1.

It is convenient to precede the proof of this lemma by some pre-
paratory results.

4. LEMMA. If s,a,s +a and t are roots such that @ + a and
s+a=1t++a, then t = s.

Proof. We have s(a) < 0 and s(@) = (s + a)@) > 0. Hence s+ s,
and a simple calculation shows that ¢t — 8 =s + & — s — @ has length 0,
since all roots have the same length and the only possible angles are
the multiples of 7#/3 and ©/2. Hence t = s.

Let us recall that, for each positive integer m, 1, denotes the
subgroup of U generated by those ¥, for which At r = m.

5. LEMMA. Let s be a positive root, a a fundamental root, and
S and A the elements of II' which contain them. Assume s(a) <0,
xelly, yelly, and set ht s =n. Then

(a) (x,y) s congruent, mod U,.,, to an element of N* whose repre-
sentation 4.8 of [2] has all components other than those from X,., and
¥,z equal to 1, and

(b) if x is given and x + 1, then y can be chosen so that the %,,,
component s not 1.

Proof. Assume first |S|=]|A|=2. Then (s, a)<0, whence (s, @)=0,
because the contrary assumption yields the false conclusion that s+s+a+a

has length 0. Thus X, and X, commute elementwise with ¥; and ¥z, and
4.1 of [2] yields
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(*) (xs(k)xE(E)v xa(l)xﬁ(l_)) - xs+a(Nsakl)x§+E(Nsa,Ez) .

Thus (a) is true. If k& # 0, we can choose ! so that kIl + &l = 0, and
then coalesce the terms on the right of (*) if § + @ = s -+ a. Thus (b)
is also true. If |S|=1lor|A]| =1, we replace (*) in the above argument
by an appropriate analogue (see 4.1 and 8.8 of [2]).

Let us recall that a root d is dominant if d(a) = 0 for each funda-
mental root . Since these inequalities define a fundamental region for
W, and all roots are congruent under W in the present case, it follows
that there is a unique dominant root d. If s is any other root, then
(s, @) < 0 for some fundamental root @, and then s + @ is also a root.
Thus the dominant root d may also be described as the unique root of
maximum height; and one has d =d and d > s for each root s = d.

We now turn to the proof of Lemma 3. Among all xe HNU' for
which # # 1, choose one which maximizes the minimum S e /I* for which
Zs # 1 in the representation 4.5 of [2]. If this minimum is R, we show
X = Xp. Assuming the contrary, one can write £ = 2,2, +++ with ¢, # 1.
Set it R=n. If re R, then » is not dominant, since R < 7. Thus
r(a) < 0 for some fundamental root a, and » + @ is a root. Ifae Ae Il*,
we conclude from Lemma 5 that there is y e 1Y such that (x, %) is con-
gruent, mod1,,,, to an element of U' with the ¥,,, component not 1.
Since z = (x, y)e HNU,,,, and > respects heights, we need only show
z # 1 to reach a contradiction. We have (z, ¥) = (25, ¥)(€r, ¥) ++ - mod U, ,,.
Here the elements on the right are in 1,,,. By choice of y, the %,.,
component of (xz, ¥) is not 1, and by Lemmas 4 and 5, the %,., com-
ponent of each of (x,,¥) -+ is 1. Thus we conclude from 4.3 of [2]
and the fact that 1,,,/1,., is Abelian that (z, ¥) = 1 mod U,,,,. Therefore
(z,y) # 1, and Lemma 3 is proved.

The proof of Theorem 1 can now be completed, just as in [2].
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