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ON PARACOMPACTNESS

HlSAHIRO TAMANO

It is well known that the product of a paracompact space with any-
compact space is paracompact and hence normal1. In this paper, we
will establish the converse of this proposition by showing that if X x βX
is normal, then X is paracompact (Theorem 2)2.

The existence of a compactification is a characteristic property of
a Tychonoff space, and the Stone-Cech compactification (the largest one)
may reasonably be expected to play an important role in the theory of
Tychonoff space. Indeed, some properties of a Tychonoff space X can
be characterized by the properties of the Stone-Cech compactification
βX (more precisely, by the properties of X as a dense subspace of βXf,
and we shall give a new characterization of paracompactness in § 2
(Corollary of Theorem 1). In Theorem 1, we shall characterize paracom-
pactness by the property of βX x βX in connection with the uniformity
for X. This will yield an easy proof of the main theorem (Theorem 2).

1. Regularly open sets4* In the first place, we shall establish a
lemma concerning regularly open sets, which will be used in the sequel.
Let A be a subset of a topological space X. We shall denote by C\X(A)
the closure of A and by Intx(A) the interior of A.

A subset A of a topological space X is said to be regularly open
if and only if Intx(Cl X(A)) — A. It is easy to verify that the intersec-
tion of two regularly open sets is again regularly open, but the union
of them is, in general, not regularly open. The following lemma states
that if X is a dense subspace of a topological space Y, then the family
of all regularly open sets in X is in one to one correspondence with
the family of all regularly open sets in Y.

LEMMA. Let X be a dense subspace of a topological space Y.
(a) If A is regularly open in Y then the restriction A Π X of A

on X is regularly open in X. Conversely, any regularly open set B
in X is identical with the restriction of some regularly open set in Y.

(b) Let A be a regularly open set in Y and let A! be any open
set in Y such that A ί l l D A ' ί l l , then A D Ar. Therefore two re-
gularly open sets A, A! in Y are identical if and only if A ί l l =
Af n X.

* Received July 23, 1959.
1 See, [4], Th. 5 and Th. 1.
2 For [the] related results, the reader should refer to [1], [3], [5] and [8].
3 C.f. [6], p. 96 and p. 97, [7], Th. 28, [11], p. 84 and [9].
* C.f. [12].
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Proof of (a). An easy calculation shows that if X is a dense
subspace of Y, then Intx(C\x(A)) = Intγ(C\r(A)) Π X. Therefore we have
A n i c Intx(Clz(A n X)) = IntF(ClF(A Π X)) Π X c IntF(ClF(A)) Π X =
A f] X, and it follows that Intx(Clx(A n X)) = A n X. Hence A n I
is regularly open. If B is regularly open in X, then B = Intz(Clx(i?))
= IntF(ClF(£)) (Ί X and IntF(ClF(J3)) is obviously regularly open in Y.

Proof of (b). If A £ A, then we have A' ςt C\Y(A) because A =
IntF(ClF(A)). Therefore A! Π [C1F(A)]C is a non-void open set in Y, where
[C1F(̂ 4.)]C denotes the complement of C1F(A). Since Xis dense in Y, there
exists a point of X contained in A' Π [C1F(A)]C, and it follows that
A ' n l ί i n l . The first part of (b) is therefore true. The last
part of (b) follows immediately from the first.

2. Paracompactness Throughout the sequel, we shall restrict our-
selves to consideration of Tychonoff spaces (completely regular Tx-
spaces). A compactification of X is a compact Hausdorίf space containing
X as a dense subspace. The Stom-Cech compactification βX is charac-
terized among the compactifications of X by the fact that every bound-
ed continuous function on X has a continuous extension over βX\

THEOREM 1. X is paracompact if and only if for each compact
set F in βX — X there is a surrounding 6 V for X such that

v n AF = ψ ,

where V denotes the interior of the closure of V taken in βX x βX

V = I n t β x x β x (C\βzxβz(V)), and ΔF = {(p, p) e βX x βX; p e F}.

Proof. (Necessity) Assume that X is a paracompact space, and
let F be a compacts set contained in βX — X. Then, there is for each
point x e X an open neighborhood (in βX) Ut of x such that Clβx(£/J)
Π F = φ. Put Ux = Uί Π X and consider an open covering {Ux}xex of
X. Take a locally finite open refinement {£/λ} of {Ux}xex, and let
YJφλ = 1 be a locally finite partition of unity subordinate to {ί7λ}. Put
d(x, V) = Σ l?>λ(aθ - ^ ) l and put Vn = {(x, y) e X x X; d(x, y) < 1/2"}.
We shall show that V1 Π ΔF — φ, which will completes the proof.

Suppose, on the contrary, that there is a point p e F such that
(p, p) e VΊ, then U*(p) x Z7*(p) c Vλ for some open neighborhood (in
βX) U*(p) of p, because Vx is open in βX x /3X. Let x be a point of
U(p) = U*(p) (Ί X (there is surely such a point, since X is dense in βX),
then there exists only a finite number of φλ's, say ^ , •• ,^>

w, which
do not vanish at x. Put Hk — {y e X; <pk(y) > 0}, for 1 g k ^ n. Clearly

6 C.f. [2] p. 833.
6 We call V a surrounding for X if F is a member of a uniformity for X compatible

with the topology of X (= "entourage")
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y $ U L i Hk implies d(x, y) > 1, and it follows that EP(p)n
Hence p is contained in C\βx(\Jΐ=1Hk). On the other hand, Hk is
contained in some Ux because {Uλ} is a refinement of {Ux}xex, and
Clβx(ί7x) f] F = φ. Therefore, no point of F i s contained in C\βx(\Jΐ=1Hk)

We have thus a contradiction. It follows that

VλC\ ΔF = φ.

(Sufficiency). Let {0v} be any open covering of X. For "each 0v,
we take (and fix) one open set 0*(in βX) such that 0 v * ( l I = 0v. Put
Fv — [0J]c, where [0*]c denotes the complement of 0* in βX, and put
F = f\vFv, then F is a compact set contained in βX — X. By the
hypothesis of our theorem, we can construct a sequence of surrounding
{Vn} such that Vx Π ΔF — φ. Now, let us consider the uniform space
[X, <?/), where ^/ — {Vn}, and let τ be the uniform topology of ^Λ It is
clear that topological the space (X, τ) is pseudo-metrizable hence is para-
compact.8 Let d(x, y) be a pseudo-metric for X such that {(x, y) e J x X;
d(x, y) < 1} c V19 and put Wn = {(x, y) e X x X; d(α, T/) < 1/2W}. Since
Vx ID TΓx implies Vλ Z) WΊ and since Vx Γ\ AF ~ φ, we have 1^0 4 = Φ
Consider an open covering {W3(x)}xex of (X, τ) and let {ί7λ} be a locally
finite open refinement of {W3(x)}xex. Since the original topology of
X is stronger than τ, {ί7λ} is necessarily a locally finite open covering
of X with respect to the original topology of X.

We shall show presently that Clβx(ί7λ) Π F — φ for each Z7λ. Notice
first that the restriction dx(y) of d(x, y) on x x X is a bounded
continuous function on X with respect to the original topology and
hence it has a continous extension d* over βX. Suppose that C\βx(Uλ)
Π F Φ φ for some Z7λ, and let p be a point of Glβx(Uλ) Π F. Since
£/λ c WB(X0) for some x0 € X, p is an accumulation point of {y e X
d(x0, y) < 1/23} for some x0 e X. Therefore d%o(p)^ 1/23 < 1/22, and
there is a neighborhood (in /9X) 0*(p) of p such that dXo(i/) < 1/22 for
each 2/ e 0(p) = 0*(p) Π X. It follows that 0(p) x 0(p) c WΊ, and con-
sequently we have (p, p) e 0*(p) x 0*(p) c I n t β x x β x (C\βxitβz (0(p) x 0(p))
c Wλ. But this contradicts the above fact that Wx Π ΔF — φ, Hence
CW(C/λ) ΠF=φ.

Thus, we have a locally finite open covering {Uλ} of X such that
Glβχ(Uλ) f] F — φ for each λ. Returning to the original covering {0v}
of X, we find that {0*} covers Clβx(ί7λ) for each £7λ, and, since C\βx(Uλ)
is compact, there is a finite number of 0v*'s, say Of, •• ,0*ι such that
C\βx(Uλ) c UίΓ-=iOί. It follows that ί / λ cU?=i0 f c , and we have Uλ =
\Jΐ=ιHλ,k, where HλJc = Uλ Π 0ft. Thus, each i7λ can be represented as
a finite union of open sets of the form Hλ k. Constructing Hλ fc for
each Uλ in this way, we have a locally finite open refinement {Hλιk) of

7 By virtue of our lemma, it follows that U(p)x U(p)alntXχX(C\XχX(VΊ)), and there-
fore d(x,y)^ll2<l for each yeU{p).

8 See flO], p. 160.
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{0v}. It follows that X is paracompact.
From the proof of the preceding theorem, we obtain the follow-

ing characterization of paracompactness.

COROLLARY. X is paracompact if and onl if for each compact set
F in βX — X there is a locally finite open covering {Uλ} of X such
that C\βx(Uλ) Π F = φ. (Each Uλ is a subset of X.)

The following theorem gives also a characterizotion of paracompact-
ness.

THEOREM 2. X is paracompact if and only if X x βX is normal.

Proof. The necessity of the condition is clear9. To prove the
sufficiency, we have only to show that for each compact set F in
βX — X there is a surrounding V for X such that V Π ΔF — φ, by
virtue of Theorem 1.

Let F be a compact set contained in βX — X, then X x F and Δx

are disjoint closed sets in X x βX, and since X x βX is normal there
are two open sets Uu Wλ in X x βX such that Uλ ZD ΔX, Wλ ID X x F
and U1 Π Wλ — φ. Put Uo = I n t x x j 3 x (C\xxβx (E7Ί)), then Uo is a regularly
open set in X x βX such that Uo ID Δ X and Uo Π (X x F) = φ.

We now put U = Uo Π (X x X), and we will show that £7 Π ΔF =φ,

where U is the interior of the closure of U taken in βX x βX and

ΔF — {(p, p) e /3X x βX; p e F}. Suppose, on the contrary, that U Π

ΔF ^F φ, and let (p, p) be a point of U Π 4^. Then, there is a neigh-

borhood (in βX) 0*(p) of p such that 0*(p) x 0*(p) c t^. Let x be a

point of 0*(p) Π X (such a point exists, because X is dense in βX),

then x x 0* (p) c U and we have (a?, p) e (0*(p) x 0*(p)) Π (X x /3X)

c C/ Π (X x /9X). On the other hand, it is true that Uo = U Π (X x βX).

In fact, U= Uf] (X x X) by (a) of our lemma, and we have ί / o ί l ( I x X)

= U= U f](Xx X) = [U f](Xx βX)] n (X x X). That is, the re-
striction of Uo on (X x X) is identical with that of U Π (X x /5X).

Therefore we have Uo — U Π (X x /5X) by (b) of the lemma, since both

of Uo and U Π (X x βX) are regularly open in X x βX. It follows that

(x, p) e U Π (X x βX) — Uo, but this contradicts the fact that Uo Π

(X x F) = φ. Therefore U Π ΔF = φ.
We now consider the function i^(#, ί/) e C(X x ^X) such that F = 0

on Λx and JF7 = 1 outside of C/o (such a function exists because X x βX
is normal). Let i^. be the restriction of F on x x X, and define a
function G(#, #') by letting

G(x, xf) = \\FX- Fx,\\ = sup \F(x, z) - F(x', z)\ .
z€βX

9 See, [4], Th. 5 and Th. 1.
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It is easy to verify that G is a continuous function on X x X10 and
that

G(x, x') ^ 0 for each (x, xf) e X x X, G(x, x) = 0,

G(», x1) = G(a', aj),

and G(x19 x2) + G(x2, x3) ^ G(x19 x3) .

Moreover, we have

F(x, xf) = F(x, x') - F(x'y x') ^ sup \F(x, z) - F{x', z)\ = G(x, x'),
zββX

and therefore G(«, xr) < 1 implies that F(x, xf) < 1. Put

V = {(a, a;') e X x X G(a>, xf) < 1} ,

then V is evidently a surrounding for X and we have V a U. It

follows that V a U, and, since U Π ΛF = φ, we have F ίl 4 = </>.

The proof is completed.
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