
Pacific Journal of
Mathematics

AN OPTIMUM CUBICALLY CONVERGENT ITERATIVE
METHOD OF INVERTING A LINEAR BOUNDED OPERATOR

IN HILBERT SPACE

M. ALTMAN

Vol. 10, No. 4 December 1960



AN OPTIMUM CUBICALLY CONVERGENT ITERATIVE
METHOD OF INVERTING A LINEAR BOUNDED

OPERATOR IN HILBERT SPACE

M. ALTMAN

l In paper [1] we considered a power series method of inverting
a linear bounded operator in Hubert space. This method is actually
an iterative method with the same speed of convergence as a geometric
progression. A product of two linear operators we shall call briefly
a multiplication. Thus, in general, a power series approximative method
has the following two properties:

(1) at each iteration we use one multiplication;
(2) the convergence is linear.

In paper [2] we considered an iterative method of inverting an arbitrary
linear bounded operator in a Hubert space. This method requires two
multiplications at each iteration step, and the convergence is quadratic.
In the present paper we give an iterative method of inverting an
arbitrary linear bounded operator in a Hubert space. This method
requires three multiplications at each iteration step and is cubically
convergent. Thus, the quadratically convergent method which requires
two multiplications at each iteration step may be called the iterative
hyperpower method of order two. Analogously, the cubically convergent
iterative method which requires three multiplications at each iteration
step may be called the iterative hyperpower method of order three. The
following two problems arise now in a natural way:

(1) Is it possible to construct an iterative hyperpower method of
any degree?

(2) To give a comparison of the hyperpower methods of different
degrees, and to answer the question whether there exists an optimum
method. As a criterion for a hyperpower method to be better we can
assume the following:

The method / is better than the method / / if after some iteration
steps using the same amount of multiplications for both methods, the
method / gives better accuracy. In this paper we construct a certain
class of iterative hyperpower methods and for this class the answers to
both questions mentioned above is positive. It turns out that the opti-
mum method of this class is the iterative hyperpower method of degree
three.

Let A be a linear (i.e. additive and homogeneous) bounded operator
with the domain and the range in a Banach space X.

Let us assume that the operator A is non-singular, i.e. A has an
Received October 5, 1959. Based on research supported by O.N.R., U.S.A.
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inverse A"1 defined on the space X. Let us suppose that the linear
bounded operator Rx is an approximate reciprocal of A. Suppose also
that Rx satisfies the following condition

(1) | | I - ABxIl =a < 1 ,

where / is the identity mapping of X
Let p be any positive integer such that p Ξ> 2. We shall construct

an iterative hyperpower method of degree p with the following property

(2) I-ARn+1=(I-ARn)*,

where (Rn) is the sequence of the approximate inverses of A. It is easy
to see that this sequence can be defined as follows

(3) Rn+1 = Rn(i+ τn + τ\ + . . . + r r 1 ) ,

where

(4) Tn = I-ARn, w = l , 2 , . . . .

Multiplying both sides in (3) by A we get by (4)

ARn+1 = (I- Tn)(I+ Tn + Tl + . . . + TV) = I - Tl .

Hence we obtain the relationship (2).

Thus, we have the following theorem.

THEOREM 1. The sequence of the approximate inverses Rn defined
by formula (3) converges in the norm of operators toward the inverse
of the non-singular operator A, provided that Rλ satisfies condition (1).
The error estimate is given by the formula

(5 ) || A'1 — Rn+11| ^ || A'1 \\ap

or

(6) WA-'-R^W^WJ
1 I-a

Proof. Formula (2) gives by induction

(7)

Hence we get by (7)

(8) R-Rn+1 =

or

(9) Λ-Λ f ( + 1 = .R1(/-
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Formula (5) follows from (8) and formula (6) follows from (9).
For p = 2 formula (3) yields

(10) Rn+1 = Rn(2I-ARn).

This case was considered in [23], For p. = 3 we get

(11) Rn+1 = Rn(I +(I- ARn) + (I- ARnY)

or

(12) Rn+1 = Rn(SI- SARn + (ARnf)

Thus, we have a class of methods with the property (2).
The question is now if there is an optimum method in this class of

methods. To compare two methods we shall use the criterion mentioned
above, i.e. the method is better if using the same number of multipli-
cations gives a better accuracy.

Let p and q be two different positive integers. Consider the corre-
spondings methods Mp and Mq defined by the formula (3). At each itera-
tion step the method Mp takes p multiplications and the method Mp

takes q multiplications in the sense defined above. Suppose that after
a certain number of iteration steps which is different for both methods
we get the same number of multiplications which is equal to

(13) mp = nq .

Then in virtue of (5) the accuracy of the methods Mp and Ma is given
by the exponents pm and qn respectively. Suppose that

pm > qn .

Then we have by (13)

pm > qs ,

where

Hence,

(14)

we have

Q
o

mp
q

> q l l q

The inequality (14) shows that we obtain the optimum method Mp for
p such that the function pllP(p = 2, 3, •••) achieves its maximum. This
is the case when p — 3 since the maximum of the function

y — xllx , x > 0

is attained at x = e.
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2. We shall now apply Theorem 1 in order to find the approximate
inverse of a linear bounded operator in a Hubert space. Thus, we sup-
pose that X is a Hubert space H and A is a non-singular linear bounded
operator with the domain and the range in H.

Let us begin with the case when A is a self-adjoint and positive
definite operator, or, more precisely

where A* is the adjoint of A, and A satisfies the condition

m(x, x) ̂  (Ax, x) ̂  M(x, x) ,

where 0 < m < M, and m, M are the minimum and maximum eigen-
values of A respectively.

Consider the linear operator.

Ta = I- aA , 0 < α < 2/Λf .

In virtue of the critical value theorem1 we have

(13) ^ZL2?L^| |r β | |=α β <l if 0<α<2/M.
M + m

The minimum of the norm || Ta\\ is equal to

c M + m

and is reached precisely at the critical value ac of A, i.e. for

a = ac = — .
M + m

Thus, we get the following theorem.

THEOREM 2. Let us suppose that A is a self-adjoint positive de-
fined linear operator. If

(15) R, = al for 0 < a < 2/Jlf ,

then the sequence of operators Rn determined by the iterative process
in (3) converges in the norm of the operators toward the inverse of A.
The error estimate is given by the following formula

(16) \\A-i-Rn\\^±aln

m
1 See [1], [2]
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or

(17)

where aa = || Ta | |. 27&e convergence is best for the critical value of
A, i.e. for a~aG — 21M + m. Jw ίfeis case aa in formulae (16) and
(17) should be replaced by ac defined in (14).

Putting p = 3 in Theorem 2 we get the theorem for the optimum
method. Thus, we have

COROLLARY 1. The iterative process defined by the formula (11) or
(12) converges cubically toward the inverse of A provided that Rx is de-
fined by (14). The error estimate is given by formula (16) or (17),
where p = 3. The convergence is best for the critical value of A, i.e.
for a = ac = 2jM + m. In this case aa in formulae (16) and (17) should
be replaced by ac defined in (14).

REMARK 1. The convergence of the iterative process is uniform with
respect to a for any closed interval contained in the interval 0 < a < 2/Λf.
Let us observe that a in (15) can be replaced by any number 1/iΓ, where
K is greater than || A| | . However, the convergence is faster when K
is smaller. If the operator A is defined by a matrix

(18) A = (atJ) i,j = 1,2, -- ,k

satisfying the conditions of Theorem 2, then K can be replaced by any
of the following numbers

Tc Tc / Ίc \ l/2

(19) m a x Σ I a υ I m a x Σ I % I ( Σ I «w I2)

However, the convergence is faster when K is smaller.

3. We shall now consider the general case when A is an arbitrary
non-singular linear bounded operator in H.

Since the operator A A* is self-adjoint and positive definite, we have
the following inequalities

m\x, x) ^ (AA*x, x) ^ M\x, x) ,

where 0 < m2 < M2 and m2, M2 are the minimum and the maximum
eigenvalues of AA* respectively.

Let us consider the linear operator

TΛ = I- aAA* , 0 < a < 2/M2 .

Using the same argument as in §2, we get the following inequalities;
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instead of (13).

(20) ΐ~m[ ^ l l Γ , | | = α , < l if 0 < α < 2 / M 2 .
M2 + m2

The minimum of the norm || Ta\\ is reached at

a — ac —
M2 + m2

and is equal to

(21)

Thus we obtain the following theorem.

THEOREM 3. / /

(22) R, = αA* for 0 < a < 2/M2 ,

the sequence of operators Rn determined by the iterative process
in (3) converges in the norm of the operators toward the inverse of A.
The error estimate is given by the formulae (16) or (17), where aa

should be replaced by the expression in (18). The convergence is best
for

a = ac =

For the error estimate in this case aΛ in formulae (16) and (17) should
be replaced by ac defined in (21).

Putting p — 3 in Theorem 3 we get the theorem for the optimum
method in general case. Thus we have

COROLLARY 2. If R1 is determined by (22) then the iterative
process defined in (11) or (12) converges cubically toward the inverse of
A. For the error estimate we have the formulae (16) or (17), where
p = 3. The convergence is best for the critical value of AA*, i.e. for

a = ar =

In this case aΛ in formulae (16) and (17) should be replaced by ac de-
termined in (21).

REMARK 2. The convergence of the iterative process defined by-
Theorem 3 is uniform with respect to a for any closed interval contained
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in the interval 0 < a < 2/M2. Let us remark that a in (22) can be re-
placed by any number 1/iΓ, where K is greater than ||^4.||2. However,
the convergence is faster when K is smaller.

If the operator A is defined by the non-singular matrix in (18), then
for K we can take any of the numbers in (19) with the matrix AA*
replacing the matrix A. We can also take for K any of the squared
numbers in (19).

The table below shows the difference in rate of convergence between
the following three method: I, II, III, where

I is the power series method considered in [1] (see page 52)
II is the quadratically convergent defined in (10)

III is the cubically convergent optimum method defined in (11) or (12).

Number

I

6

12

18

24

of

II

3

6

9

12

Iterations

III

2

4

6

8

Number

I

6

12

18

24

of Multiplication

II III

6 6
12 12
18 18
24 24

REFERENCES

Accuracy (a

I

α6

α 1 2

α 1 8

α 2 4

II

α 8

α4096

<D
III

α 9

α 8 1

α 7 2 9

α6561
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