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CRITERION FOR rTH POWER RESIDUACITY

N. C. ANKENY

The Law of Quadratic Reciprocity in the rational integers states:
If p, q are two distinct odd primes, then q is a square (modp) if and
only if ( — l){p-1)l2p is a square (modg).

One of the classical generalizations of the law of reciprocity is of
the following type. Let r be a fixed positive integer, φ(r) denotes the
number of positive integers <£ r which are relatively prime to r; p, q
are two distinct primes and p == 1 (mod r). Then can we find rational
integers aλ(p)f a2(p), , ah{p) determined by p, such that q is an r th
power (modp) if and only if ajjή, •• ,α/i(;p) satisfy certain conditions
(mod q).

The Law of Quadratic Reciprocity states that for r = 2, we may
take aλ{p) = (-l)(2J~1)/2p.

Jacobi and Gauss solved this problem for r = 3 and r = 4, respective-
ly. Mrs. E. Lehmer gave another solution recently [2].

In this paper I would like to develop the theory when r is a prime
and q = 1 (modr). I then show that q is an r th power (modp) if and
only if a certain linear combination of aλ{p), , αr-i(p) is an r th power
(mod q). a1(p)f , αΓ_x(p) are determined by solving several simultaneous
Diophantine equations. This determination appears mildly formidable
and to make the actual numerical computations would certainly be so
for a large r. (See Theorem B below.) Also given is a criterion for
when r is an r th power (mod p) in terms of a linear combination of
Gi(p), * >αr-i(p) (modr2). (See Theorem A below.)

It is possible by the methods developed in this paper to eliminate
the conditions that r is a prime and q = 1 (mod r). This would com-
plicate the paper a great deal, and the cases given clearly indicate the
underlying theory.

Consider the following Diophantine equations in the rational integers:

r Σ
5=1

~ ( § ^ ) 2 = (r -
M=l /

V (1

where Xl f c ) denotes the sum over all j l f , j k + 1 — 1, 2, , r — 1, with

t h e condition jx+ + j k — kjk+1 = i (mod r ) .
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(3) H-ΣI jH Σ J Z , S 0 (mod r)
5=ι 5=1

(4) not all of the Xj = 0 (mod p) and

- 0 (mod

for & = 2, , r - 2; ί = 1, 2, , r — 1.
We shall prove in § II that there exist exactly r — 1 distinct in-

tegral solutions of the equations (1) through (4). In particular let {X5 =
aJf j = 1, , r — 1} be a solution. Then we prove that the a^p) = a3

satisfy our residuacity criterion, namely

THEOREM A. r is an r th power (mod p) if and only if

r-i 1

Σ Ja5 + — rar-i — 0 (mod r2) .
5=i 2

THEOREM B. If q = 1 (mod r) and h is any integer such that hr

is the least power of h which is = 1 (mod q), then q is an r th power
(modg) if and only if Σ^Zlaft is an r t h power (mod^).

At the end of § II various special cases are considered.
In particular, for q — 2, r = 5, then 2 is a quintic power (mod p)

if and only if a5 = a5-j (mod 2), j = 1, 2.
For q = 2, r = 7, then 2 is a 7th power (mod p) if and only if a5 = 1

(mod2), £ = 1, . . . , 6 .
Let r = 3. Then the solutions to the Diophantine equations (1) to

(4) are (α^ a2) and (α2, α j , where

( 5 ) p — α2 — αjC&a + αl, ^ Ξ α2 = 1 (mod 3) .

Multiplying (5) by 4 and grouping terms gives

4p = (αx + α2)
2 + 3(αx - α2)

2 .

Let L — —aλ — α2, M — {aλ — α2)/3. This gives the representation
which Lehmer employs:

4p = L2 + 27Λf2, L = 1 (mod 3) .

Theorem A states that 3 is a cubic residue (mod p) if and only if
aγ = a2 (mod 9). This, in turn, is equivalent to M being divisible by 3,
the condition quoted by Lehmer.

I. Notation, r denotes a prime number, ξr a primitive r th root of
unity, Q the rational numbers, Q(ζr) the cyclotomic field over Q generat-
ed by ξr. For j = 1, 2, , r — 1, σ5 are the automorphisms of Q(ζr)IQ
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such that σό{ζr) = ζ3

r. σ~\ζr) = ζζ, where jj' = 1 (mod r) . p denotes a
positive rational prime Ξ= 1 (mod r), and Xp = X will be any primitive r th
power character (modp).

will be the Gaussian sum associated with χp. <α> denotes the fractional
part of a; i.e., <α> — a — [a].

LEMMA 1. ( i)

(ϋ)

(iii) g(X)reQ(ζr), and

(iv) σfc(flr(χr) - g(X«Y

for jfe = 1, 2, •••, r — 1.

Proof, (i) is the classical result about the absolute value of
and can easily be deduced from the definition of g(X). (ii), (iii) and (iv)
follow from Galois Theory using the relation Σl~AX{n)ζf = χ(ί)"^(Z) for
any integer t prime to p.

LEMMA 2. There exists a prime ideal p in Q(ζr) dividing p such

that (g(χ«Y) - Σra<r7Ywlry.
Conversely, given any prime ideal ρ1 in Q(ξr) dividing p, there

exists a k such that

Proof. Lemma 2 is a result of Stickelberger. For a proof see Daven-
port and Hasse [1]. See especially the elegant proof on page 181-2.
In Q(ξr), the ideal (r) - (1 - ζrγ-\

LEMMA 3. (1 - #)(1 - t ,)" 1 = < (mod (1 - ζr)) and r ( l - ξi)-r+1 =
- 1 (mod (1 - ζr)) for (t, r) = 1.

Proo/. The first fact follows as

(1 - ζ *)(1 - ξ',)"1 = Σ ? } = Σ l Ξ ί (mod (1 - ξV)) .

The second follows from Wilson's Theorem as

= Π (1 - r?)(l - ? ' ) " = (r - 1)! = -l(mod (1 - ζr)) .
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THEOREM 1. For any t not divisible by r,

g(XΎ + 1 = r(l - χ(r)-0 (mod (1

and consequently, χ(r) = 1 if and only if

g(TY + 1 = 0 (mod (1 - ζrY

Proof. As

Σ

the binomial theorem yields

-ff(Z)r = ( - Σ S + Σ (1 ~ Un))ζ;)r = (1 + Σ (1 - l{n))ζl)r

= 1 + r Σ (1 - Z(n))Sί + Σ (1 - Z(^))rr7 (mod (1 - £r)"+1) ,
n n

as all other terms are divisible by at least r(l — ξrf. By Lemma 3, if
X(n) Φ 1, (1 - Z(w)Γ: s - r (mod (1 - ζr)

r), and clearly, if χ(n) = 1,

(1 - χ(n))r = - r ( l - χ(Λ» (mod (1 - ^ Γ 1 ) .

Thus,

g(X)r = 1 +

s 1 + r Σ (1 - Z(«))« - (1 ~

= 1 + r(l - χ(r)-1) (mod (1 - ^ + 1 ) .

By (iv) of Lemma 1,

~9(XΎ - -^(^(Z) r) s 1 + r(l - χ(r)- ) (mod (1 -

which completes the first statement of Theorem 1. The second state-
ment in Theorem 1 then follows immediately.

Let q denote any positive rational prime other than r,f the least
positive integer such that qf = 1 (mod r), and ef = r — 1. Then in Q(ζr)
the ideal (q) = S ί ^ 2Ie, where the 21̂  are prime ideals and

( 6 ) Norm (%) = qf .
Q(ζr),Q

In the following let Si be any of the e prime divisors %3, j = 1, , e.

THEOREM 2. Let q, p, and r be distinct.
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Then

( 7 ) gixf-1 = x(q)-f (mod q).

Consequently χ(q) = 1 if and only if

( 8 ) g(χ)r = βr (mod SI) for some β e Q(ζΛ) .

Proof. g{χγ = (£#%)

^ΣχinY'ζ"/ (mod?)

= Σ X(n)ζn/ (mod g), as r | g' - 1 ,
n

= X(Q)~f9(X) (mod q) .

Multiplying both sides of the above congruence by g(χ), and noting
(i) of Lemma 1, yields

^ (mod g) or ^(χ) 9 ^ 1 = χ(q)~f (mod g) ,

as p and g are distinct primes. Hence, we have proved (7).
Note that as r \ qf — 1, (7) becomes a congruence in Q(ζr). As

/1 r - 1, (/, r) = 1, we have by (7) that χ(g) = 1 if and only if giχ)^-1 =
1 (mod SI).

(Note that 1 - fί ΐ 0 (mod 51) unless # = 1.)
If g(χγ = βr (mod 21) for some β e Q(ζr), then

giχy'-1 = β^-1 = 1 (mod 21)

by (6).
Conversely, if gilΫ'1 = 1 (mod2X) then (α(Z)r)(g/~1)/r = 1 (mod 21).

By Lemma 1, #(χ)r e Q(ζr). By (6) this implies g(χ)r = /3r (mod 81).
(Euler's Criterion for r th powers.)

In the above argument we must bear in mind that g(χ) $ Q{ζr).

II. In the last section we have developed a criterion for r th power
residuacity in Q(ξr). From this we derive a criterion in the rational
numbers Q, which is the purpose of Theorems A and B.

First let us assume that there is a rational integral solution X3 =
dj of equations (1), (2), (3) and (4). In Q(ζr) define the algebraic integer
a — Σ*rj=lajζi- We shall prove that a satisfies

( 9 ) I <**((*) I2 = Pr~2 , fc = l , 2 , . . . , r - l .

( 1 0 ) (pafa^pa)-1

is also an algebraic integer in Q(ξr), for k = 1, 2, , r — 1.
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To prove (9) we note that

\<x\* =

By (2) all of the coefficients of ζ\ are equal, since for any i, the
sums corresponding to ί and r — ί are identical. Thus

Z I

r—\

= r(r - I ) - Σ«5 - (r - l ) " 1 ^ Σί" « ^
J ΐ — 0

= r(r - I)-1 Σ α? - (r - l )" l (t ^
ji Vi /

by (1). Similarly | σk(a) |2 = pτ~\ Thus (1) and (2) imply (9).
Let A; be a fixed integer 2 ^ k ^ r — 1. Then

(11) {pa)kσk{paγx — φp-WσJa)-1

= p - W M a ) I σ,(α) | "2

by (10). Now

(12)

Σ

Condition (4) implies that each coefficient of f* in (12) is divisible
by jf"*"1. Placing this information in (11) states that (pαj^ίpα)"" 1 is
an integer; thus proving (10).

(4) also tells us that p, but not p2, divides pa, as not all the coef-
ficients of ζ{ in a = Σij=l<ijζjr are divisible by p.

If we restate the above facts in terms of ideals, we have that (pec)
is an integral ideal in Q(ζr) divisible only by the prime ideals which
divide p.

There exists one prime ideal, say p, dividing p, which divides pa
but p2 does not divide pa. All other prime factors of p in Q(ξr) are of
the form σ^p. Hence,



CRITERION FOR rTH POWER RESIDUACITY 1121

(13) (pa) = Σ σϊY* where dx == 1, dt > 0 .

By (9)

= (pa I α |2) = p1"

= Π <7Γ1

or

(14) d4 + dr-t = r .

By (10), (pa^σ^pa)-1 is integral, or

(pa)\a,{pa))-1 = Π ffΓV* Π o^rH
i i

= Π σΐYίίc-dik

is an integral ideal. (The index of dίJc is interpreted mod r.) Hence,

As di = 1, k ^ 4 for k = 2, 3, , r - 2. By (14) this yields that
dk — k. By Lemma 2, we arrive at the fact that in terms of ideals

(15) (pa) = (g(t)r) for some 1 ^ ί < r .

In proving (15) we have used (1), (2) and (4). We wish to prove
that pa = g(χι)r. To do this we now utilize (3). By (15) we have that
for some unit η e Q(ξr), g{χι)r = rjpay or

(16) g(χtkY = σ^ηpa) = σ^σ^pa) .

Taking the absolute value of both sides of (16) and utilizing (i) of
Lemma 1 and (9) gives pr = \σk(η)\2pr, or | σk(η) |2 = 1. By a Theorem
of Dirichlet on units (See [3] Theorem IV 9, A pp. 174), any unit which
has all of its conjugates with absolute value 1 is then a root of unity.
As yeQ(ζr),7]= ±ζs

r.
Now

a - ±a£i = Σ ^ - Σ ^ (l - ζΐ)
3=1 3 3

= Σ ^ - Σ i α / l - ξr) (mod (1 - ξrY) ,

by Lemma 3. As p = 1 (mod r), p = 1 (mod (1 - ξrf). By (3),

1 + Σ,a} = Σ i « j = 0 (modr) .

Hence, p α s - 1 (mod(1 - £r)
2). By Theorem 1, sr(χt)r = - 1 (mod 1 - £ r ) 2 .

Therefore, J ? S 1 (mod(l-f,.)2) But y=±ζs

r= ± ( l + β ( l - ? r ) ) (mod(l-ξ- r)
2);

i.e., s = 0 (mod r) and the + sign holds. Hence, η = 1.
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Therefore, if the a5 are any integral solution of (1), (2), (3) and (4),
there exists an integer H ί ^ r - 1 such that

(17) pΣa& = g{lΎ -
3 = 1

C o n v e r s e l y , g i v e n a n y i n t e g e r ί, l ^ ί ^ r — 1, a n d w r i t i n g

we can prove that the a5 are rational integers which satisfy (1), (2),
(3), and (4). The proof is merely reversing the above steps we used in
proving (17). By Lemma 2 the prime factorizations of (g(χs)r) and (^(χc)r)>
l S s < t ^ r — 1, are distinct, and thus g(χs)r Φ gixΎ- Hence, we have
shown that there are precisely r — 1 rational integral solutions of (1),
(2), (3), and (4).

We are now in a position to prove Theorems A and B. First for
Theorem A.

Let dj be an integral solution of (1) through (4). Then we have
shown that p ΣrjZlcLjζ3

r = gWT for some integer t relatively prime to r.
By Theorem 1, the above states that %(r) — 1 if and only if p Σjajζjr —

( ( r , ) )
Define b8, s = 0,1, , r - 2, by bo= — par-lf bs = p(as - αr_x), s

1,2, « , r - 2. Then

Further let

where ( •) is the binomial coefficient. Then

P Σ a£l = Σ b& = Σ 6.(1 - (1 - ζr)Y
3=1 S=0 S

r—2

Σ
ί=0

= ΣQi-rr)4.

The first statement in Theorem 1 states that g(χι)r + l = 0 (mod (l-ξr)
r).

Hence,

Σ c,(i - ζry +1 s (c0 +1) + Σ Q I - rΓ)«

= 0 (mod(l-?Γ)')
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This implies that Co + 1 = 0 (mod r2). Hence,

Σ C4(l - ζrY = Cx(l - f r) (mod (1 - f r r
+ 1 )

i=0

or that χ(r) = 1 if and only if

(18) d = 0 (mod r2) .

Now

(19) ^ = ( - 1 ) 2 5,= - Σ « * .
r - 2

r - 2

S = l

= - p Σ«α, + A-p(r - 2)(r - 1 ) ^
S = l 2

s -p(j£8a, + Y ^ r - i ) (modr2) .

Equations (18) and (19) complete the proof of Theorem A.
Theorem B is also derived immediately from Theorem 2. If q = 1

(mod r), q a positive rational prime, then in Q(ξr), (q) = 2Ix2I2 2tr-i»
where 21̂  are prime ideals and N o r m ρ ( ^ ) ρ 2 ^ = q.

We may take 0,1, 2, , q — 1 as a set of residues (mod 2t2). Hence,
as 1 - f * =£ 0 (mod 210, unless ζ\ = 1, ζr = h (mod 2I2), where λ is a ra-
tional integer such that hr = 1 (mod g).

Thus by Theorem 2, χ(g) = 1 if and only if there is a β e Q(ξr) such

that g(χ*γ =' p Σ i ^ ? ί = P Σ J *fi = /5r (mod 21,).
We may take β = beQ by the above remarks.
Hence, χp(?) = 1 if and only if χq(p Σ J a A3) = 1 where χq is a primi-

tive r th power character (modg).

If we had chosen another hλ whose order was r (mod q), then hλ =

hι (modSίj), and

p Σ ^ ^ ί s p Σ α ^ ? s fl(χ )' (mod 2ί2) .

Thus, any Λ whose order (mod q) is r works equally well in Theorem B.
There are several special cases one can derive when q Φ 1 (mod r),

in particular, when q = 2, and r = 5, 7.
If # = 2, r = 5, then in Q(ζr), 2 remains a prime because 24 is the

least power of 2 congruent to 1 (mod 5). One can easily compute that
the only elements in Q(ζδ) which are fifth powers (mod 2) are 1 =
-Σ5=i? j

δ, f5 + ζϊ\ and ζl + £5-
2 (mod 2). Hence, for r = 5, χp(2) = 1 if

and only if aό Ξ α5_^ (mod 2).
For ? - 2, r = 7, then 23 = 1 (mod 7). Hence, in Q(ξ7), (2) - 2 1 ^

where Norm 2ί, = 8. For a = β7 (mod 2IJ, β & 0 (mod 2ίx), and /5 e Q(ζ7)
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implies a = 1 (mod S^). Hence, for r = 7, χp (2) = 1 if and only if a} =
1 (mod2) for j = 1, . . . , 6 .

One could easily generalize this to the case when r .= 2s — 1. Then
χp (2) = 1 if and only if α, = 1 (mod 2) for j = 1, , r - 1.
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