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SUMMABILITY OF DERIVED CONJUGATE SERIES

B. J. BOYER

l Introduction. In a recent paper ([3] it was shown that the
summability of the successively derived Fourier series of a CP integrable
function could be characterized by that of the Fourier series of another
CP integrable function. It is the purpose of the present paper to give
analogous theorems for the successively derived conjugate series of a
Fourier series.

2. Definitions* The terminology used in [3] will be continued in
this paper. In addition let us define:

(1) ψ(t) = ψ(t, r, x) = \[f{x + t) + {-iγ-'fix - t)]
Li

( 2 ) Q{t) = S (r - 1 - 2i)lt

(3) g(t) = rlt'r[ψ(t) -

The rth derived conjugate series of the Fourier series of f(t) at
t = x will be denoted by DrCFSf(x), and the nth mean of order {a, β)
of DrCFSf(x) by Sr

Λtβ(f, x, n).

3 Lemmas.

LEMMA 1. For a = 0, β > 1 or a > 0, β ^ 0, and r ^ 0,

λίϊ .β(α) = -π~ιr\{-xγ+1 + Oflal^-log-* \x\)

+ Q{\x\-r~2) as | B | - > co .

This is a result due to Bosanquet and Linfoot [2].

LEMMA 2. For a > 0, β ^ 0 or a = 0, β > 0 and

r ^ 0, αjrλί?Λ+r>β(a?) = Σ B«(α, /3)λ1+α+r_ ί iβ+j(α?) ,
iJ-0

where the Br

i5 are independent from x and have the properties:
( i ) BUa,0) =
(ii) BU(a,β)^

(iii) ±BUa,β)
iJ-0
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1140 B. J. BOYER

The proofs of (i) and (ii) will be found in [3], Lemma 2, taking the
imaginary parts of the equations there. Part (iii) follows immediately
from the first part of the lemma and Lemma 1.

LEMMA 3. For n > 0, a == 0, β > 1 or a > 0, β ^ 0, and r ^ 0,

C-) sin vt\

fn

Proof. Smith ([6], Lemma 6) has shown that for every odd, Lebes-
gue integrable function, Z(t), of period 2ττ,

Sa,β(Z, 0, n) - - 2

Since the right side of this equation can be written

-2n[z(t) Σ \+»β[n(t + 2kπ)]dt

for every such Z(t), the lemma is true for r = 0. For r ^ 1 the inter-
change of (d/dty and Σ-~ is justified by uniform convergence.

The following lemma is a direct consequence of Lemma 3:

LEMMA 4. Let f(x) e CP[—π, π] and be of period 2π. For n > 0
and a = 0, β > 1 or a > 0, β ^ 0,

S;,β(/, a, rc) = 2(-nY+1['φ(t) Σ λfΛ.βWί + 2^)]dt .

LEMMA 5. For α ^ 0 , /9^0, ^ > 0 and r Ξ> 0,

nr+1[~Q(t)^Λ+r,β(nt)dt = 0 ,
Jo

where Q(ί) is defined by (2).

Proo/. If r = 0, then Q(ί) = 0. For r ^ 1 and i = 0,1, [r-1/2],
the truth of the lemma follows from the equation:

f °° -1-2 ~ r
Jθ l+Λ+r,β

which is easily verified by means of r — 1 — 2% integrations by parts.
The final two lemmas of this section give the appropriate representa-

tion of the nth mean of DrCFSf(x).
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LEMMA 6. Let f(x) e CλP[—π, π] and be of period 2π. Let m , 0 ^
m g λ + 1, be an integer for which Ψm(t)eL[0, π]. Then, for a = m,
β >1 or a> m, β ^ 0 and r ^ 0,

Sr

a+r.β(f> %> n) = 2(-nγA\ψ(t) - Q(t)]\$a+r,β(nt)dt + Cr + o(l)
Jo

as n —» Co, where

( 4 )

Proof. It follows from Lemmas 4 and 5 that

Sr

a+T.β(f, * . «>) = 2(-n)r+1\"[ψ(t) - Q(t)]XίrUr,β(nt)dt
JO

%+r!β[n(t + 2kπ)]dt

= Ix + Ja + J3 .

Since the degree of Q(ί) is r — 1, Lemma 1 shows that

( 6 ) J3 =

Let us define:

J(n, t) = 2(-nY+1±{X^Λ+r,β[n(t + 2kπ)]

- {-iγr\π-\n{t + 2kπ)]-r'1} .

Again appealing to Lemma 1, we see that lim^oo (θldt)3J(n, t) — 0 uni-
formly for 16 [0, π] and j — 0, 1, , m.

With the aid of the well-known cotangent expansion I2 may be
written:

I2 = \πψ(t)J(n, t)dt + (-l)r+12π-1[V(ί)(^-)Γ

Jo jo \ a t /

\l_ctn—t - t~Λdt .
L2 2 J

But after m integrations by parts, it is seen that

8 ) [*Ψ(t)J(n, t)dt = o(l) .
Jo
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The lemma now follows from equations (5), (6), (7), and (8).
A particular, but useful, case of Lemma 6 is

LEMMA 7. Let f(x)e CλP[—π, π] and be of period 2π. If g(t)e
CμP[0, π], where g(t) is defined by (3), then

Λ.β(ff> °> n ) = -2n\πg(t)X1+cύ>β(nt)dt
Jo

-2π-1[πg(t)(—ctn^-t - t~
Jo \2 2

for a = 1 + ξ, β > 1 or a > 1 + ξ, β ^ 0, where ξ = min [μ, max (r, λ)]..
The hypothese of Lemma 6 are fulfilled, because trg{t) e CλP[0,7rJ

implies G1+ζ(t) e L[0, π] by Lemma 6 of [3].

4 Theorems*

THEOREM 1. Let f(x)eCλP[—π, π] and be of period 2π. If there
exist constants αr_!_2ί, i = 0,1, [r — 1/2], such that

(i) g(t) e CμP[0, π] for some integer μ;
(ii) CFSg(0) = s(α, £) /or α = 1 + f, /3 > 1 or a > 1 + f, /3 ^ 0,

where ξ = min [//, max (r, λ)];

DrCFSf(x) = S(a + r,β),s =

S= - ί
Jo

where Cr is defined by equation (4).

THEOREM 2. Le£ / ( x ) e C λ P [ - T Γ , TΓ] αtic? δe o/ period 2π. If
DrCFSf(x) = S(α + r, /3) /or α = l + λ , / 9 > l or α > 1 + λ, /3 ^ 0,
then there exist constants ar-λ^2if i = 0,1, [r — 1/2], suc/z, £&α£

(i) ^(ί) e CμP[0, TΓ] /or some integer μ:
(ii) CFSg(0) = s(<x', /3'), where

a' = 1 + ξ, β' > 1 if l + λ ^ α < l + l or α = 1 + I, /? ^ 1 α f = α,
8̂f = /8 i/ α = 1 + I, 8̂ > 1 or α > 1 + £, /9 ^ 0, α^d | , s and S have

the values given in Theorem 1.
Before passing to the proofs of these theorems, let us observe that

the existence of the constants a,.-^^ implies their uniqueness from the
definition of g(t). In fact, it can be shown that the ar^x^2i are given by

i = 0f 1,

1 Bosanquet ([1], Theorem 1) has shown this for f(x) Lebesgue integrable and (C) re-
placed by Abel summability.
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In addition it can be shown that when f(x)eL, the sum, S, of
DrCFSf(x) may be written

S = -2π-Λ t-χg(t)dt .2

J->o«7)

Proo/ 0/ Theorem 1. That s = -πA*g{t)ctn{l!2)tdt follows from
Jo

the consistency of (a, β) summability and a result due to Sargent ([4],
Theorem 3). Therefore, both g(t)ctn(l/2)t and t~ιg(t) are CP integrable
over [0, π\.

From Lemma 7 we have

( 9 ) SΛιβ(g, 0, n) - s = - ί

The left side of (9) is o(l) by hypothesis. By consistency equation (9)
remains valid if a is replaced by a + r — i and β by β + i, i, j =
0, 1, r. Therefore,

[π r

Jo ίj=o j

With the aid of Lemmas 2 and 6, the last equation becomes

S;+r>β(/, a?, rc) = -2^-1[ V^ίQdί + Cr + o(l) .
Jo

This completes the proof of Theorem 1.

Proof of Theorem 2. Due to the length of this proof and its simi-
larity to the proof of Theorem 2, ([3]), only a brief outline of the proof
will be given.

Putting Q(t) — 0, β = 0 and p > a + r in Lemma 6 and integrating
the right-hand side of the resulting equation λ + 1 times, one can show
that

Dr+λ+1CFS(Ψλ+1, 0, n) is summable (C, p) .

A result due to Bosanquet ([1], Theorem 1) and the stepwise pro-
cedure employed in the proof of Theorem 2 ([3], equations 18 through
22) lead to the conclusion: £~r~1[ψ(£) — Q(t)] e CP[0, π] for an appropriate
polynomial Q(t), i.e., t~τg(t) e CP[0, π]. From this statement and a results
due to Sargent ([4], Theorem 3), g(t) e CμP[0, π] for some integer μ and

CFSg(0) = s(C), where s = πA*g(t)ctn(ll2)tdt .3

2 Ibid. The difference in sign is due to the distinction between allied and conjugate
series.

3 The CP integrability of g(f)ctn(lβ)t is equivalent to that of t^gif).
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That S, the (a + r, β) sum of DrCFSf(x), has the value

-2π~1\πt-1g(t)dt + Cr

Jo

follows immediately from Theorem 1 and the consistency of the sum-
mability scale.

Thus, it remains to prove only the order relations (a'f βr) in (ii) of
the theorem. A straightforward calculation using the representations
in Lemmas 6 and 7, the properties of the Br

υ(a, β) in Lemma 2, and
the consistency of the summability scale applied to DrCFSf(x), leads to
the following equations:

Σ
ίj=o

' + k, β')\sΛ,+k+r-itβ,+J(g, 0, n)

-πAπg{t)ctn—tdt\ = o(l) ,
Jo 2 J

for k = 0, 1,2, •••.
The expression in brackets may be considered t h e nth mean of order

(a' + k + r — i, βf + j) of a series formed from CFSg(0) by altering t h e
first t e r m . Since this series is summable (C) to 0, then Lemma 8 [3]
shows t h a t CFSg(0) = s(a', βr).

The following theorem gives a sufficient condition for t h e (a, β)
summability of CFSg(0) for β Φ 0. Since the proof follows the usual
lines for Riesz summability, it is omitted.

THEOREM 3. Let g(t) be an odd function of period 2π. If
C f cP[0, TΓ], where k is a non-negative integer, then

CFSg(0) - -πA*g(t)ctn—tdt(l + k, β), β > 1 .
Jo 2

As an application of these theorems it can be shown t h a t

DrCFSf(0, m) - S( l + m + 2r, β), β > 1 ,

where f(x; m) is either x~m sin x~x or x~m cos x"1, m — 0,1, 2,
The following results may be deduced from Theorems 1 and 2. I t

is assumed that f(x) e CλP [—π, π] and is of period 2π. The values of
S and 8, when either exists, and ξ are given in Theorem 1.

(A). If g(t) 6 CμP[0, π], then for a = l + ξ,β>l or a > 1 + ξr

β^0, DrCFSf(x) - S(a + r, β) if and only if CFSg(0) = β(α, β).

(B). For a = 1 + max (r, λ), /3 > 1 or α > 1 + max (r, λ), /3 ^ 0,
DrCFSf(x) = S(a + r,β) if and only if g(t) e CP[0, π] and CFSg(0) =
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These results generalize, to various degrees, results obtained by
Takahashi and Wang [7] and Bosanquet [1].

A weak, but none the less interesting, form of these results is

(C). If f(x) e CP[—π, π] and is of period 2π, then in order that
DrCFSf(x) be summable (C), it is necessary and sufficient that
g(t)eCP[0, π] and CFSg(0) be summable (C).
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