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1. Introduction* Let B be a Banach space with the strong topology
generated by the norm. An open and connected set is called a domain.
Let / be a complex valued functional defined in a domain D of a complex
Banach space Bc. Let L be a finite dimensional translated complex
linear subspace of Bc: L = {z \ z = z0 + τxax + τnan} where z0, aly , an

are fixed elements τ19 •• , τ w complex parameters. (In the following we
will call L an "affine subspace"). / is called "G-holomorphic" (=Gateaux-
holomorphic) if and only if the restriction of / to the intersection D n L
of D with any finite dimensional affine subspace L of Bc is holomorphic
(in the ordinary sense). (Compare Hille-Phillips [7], Soeder [9], Bremer-
mann [5].)

A functional that is G-holomorphic and locally bounded is called
"F-holomorphic" (Frechet-holomorphic). For finite dimension the notions
(ordinary) "holomorphic function" and "G- and i^-holomorphic functional"
coincide. (The theory of holomorphic functionals in finite dimensional
Banach spaces is equivalent to the theory of n complex variables.) For
infinite dimension, in general, there exist already linear (and hence
G-holomorphic) functionals that are not locally bounded (and hence not
i^-holomorphic).

In Bremermann [5] it has been shown that the phenomenon of
"simultaneous holomorphic continuation," well known for n complex
variables, persists for infinite dimension even for the very general
G-holomorphic functionals: There exist domains such that all G-holo-
morphic functionals can be continued into a larger domain.

A domain for which a G-holomorphic functional exists that cannot
be continued is called (in analogy to finite dimension) a "domain of
G-holomorphy." In Bremermann [5] it has been shown that a domain
of G-holomorphy is "pseudo-convex" (in a sense which is a natural ex-
tension from finite dimension).

We will apply these notions in the following to infinite dimensional
tube domains and moreover we will show that it is possible to define
and to determine the envelope of holomorphy of tube domains.

Finite dimensional tube domains and their envelopes of holomorphy
have been studied by Bochner [1], Bochner-Martin [2], Hitotumatu [8],
and Bremermann [3], [4]. It has been shown that a tube domain is
pseudo-convex if and only if it is convex, and that the envelope of
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holomorphy of any tube domain is its convex envelope. The former
property has been extended to infinite dimension in [5]. We extend
here the latter. To the author's knowledge this is the first time that
the envelope of holomorphy of a class of infinite dimensional domains
has been determined. At the same time the proof given in the following
is simpler than some previous proofs for finite dimension.

2 Tube domains, envelopes of holomorphy* Let Bc be a complex
Banach space that is split into a real and imaginary part, such that
every ze Bc is written

z = x + iy, where xeBr, yeBr ,

where Br is a real Banach space. Then a domain Tx is called a tube
domain with basis X if and only if it is of the form Tx — {z\xe X,y

arbitrary}, where X is a domain in Br.

Obviously, Tx is convex if and only if X is convex, and X is convex
if and only if the intersection of X with every finite dimensional affine
subspace Lr of Br is convex. (Lr = {x\x = x0 + t1a1 + , tn an}, where
x0, alf , an are fixed elements in Br, and tlf , tn real parameters).

It is somewhat difficult to define the envelope of holomorphy for
arbitrary domains. Already for finite dimension it may not be schlicht.
(Comp. [3], [6]). However, for finite dimension the following is true.
Let D be a given domain. Suppose we have a domain E(D) with the
following properties:

(I) Every function holomorphic in D can be continued as a (single-
valued) holomorphic function to E(D).

(II) To every finite boundary point z0 of E(D) there exists a function
that is holomorphic throughout E(D) and is singular at z0. If E(D) has
these properties, then E(D) is the envelope of holomorphy of D.

Analogously, if we have an infinite dimensional domain D and a
domain E(D) with the properties (I) and (II) (with respect to G-holo-
morphic functionals), then we call E(D) the envelope of G-holomorphy
of D.

3. Proof of the main theorem. Let Tx be a tube domain that is
not convex. Then, there exists an affine subspace

Lr = {x I x = x0 + tγ aλ + tnan)

(x0, alf , an e Br, tlf •••,*» real parameters) such that XΓ\Lr is not
convex.

Now it would be possible that XθLr is not connected and each
connected component is convex (for instance if Lr is one-dimensional).
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If X is not convex, then there exist two points xx and x2 that cannot
be connected by a straight line segment in X. However, X is connected,
and even arc wise connected. Hence we can connect xx and x2 by an
arc in X, and even by a "polygon" that is by finitely many straight
line segments. The polygonal arc spans a finite dimensional affine sub-
space Lr and the connected component of Lrf]X that contains xx and
x2 is not convex since xx and x2 cannot be connected by a straight line.

Thus Lr Π X has a connected component that is not convex. Hence
there exists a point xs on the boundary of Lrf]X and a line segment s
containing x3 such that s is locally a supporting line segment of the
complement of Lr Π X. In particular, xd and s can be chosen such that
in a neighborhood of x3 the line segment s has with the boundary
d(XPιLr) only the point x3 in common.

Let the equation of the line containing s be

s = {x ] x = x3 + bt) ,

where b is a fixed element in j?y., t a real parameter. Let b be normalized
such that || 6 || = 1. This real line lies in the analytic plane:

A = {z I z = x3 + δτ} ,

where τ is a complex parameter.
Let Sp be a disc on A with center at x3, radius p:

Sp = {z\z = x3 + 6τ, I τ I < p} .

If p is small enough, then Sp will lie entirely in TΣ, except for the
points

{z I z = #3 + ΐ&£, I £ I < jθ, £ real} .

We now apply the following lemma (which is an immediate conse-
quence of the "fundamental Lemma" 3.1 (and 3.2) of [5] and Theorem
6.3 of [6]).

To formulate the lemma we need the distance function dD(z) which
is defined as follows: Given a domain D, then

dD(z) = sup r 9 {z'\ || z — z'\\ < r} c D ,

in other words dD{z) is the distance of the points z from the boundary
of Dy measured in the norm of J5C.

LEMMA. Let h(z) be the solution of the boundary value problem

h{τ) = log dFχ(xs + bτ) for \ τ \ - p ,

h(τ) harmonic for \ τ \ < p .
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Then any function that is G-holomorphic in TΣ can he continued G-
holomorphically into the point set:

C = {z I z' = xz + τ6, IT | < p, || z - z' | | < eΛ(τ)} .

(We note that even though log dTχ(x) becomes infinite at the two points
z = x3 ± ήofr, the solution of the boundary value problem exists and is
finite for all | r | < p).

The point set C is a neighborhood of the point z = xz. In particular
it contains the points \\z — x3\\ < eM0), and eM0) =£ 0. This continuation
procedure can be repeated at any point z — x3 + ίy, where y is arbitrary.
We always get the same neighborhood, independently of y, because the
function dTχ(x3 + iy) and hence h does not depend upon y. Hence any
function G-holomorphic in Tx can not only be continued into a larger
domain but into a larger tube domain Tx,, that means X c X', X Φ X'.

We have to observe however one difficulty: If the intersection
Xf]{X\ || x — αs311 < em)) consists of more than one component, then
continuation into Tx, with X1 = X\J{x\\\x — xs\\ < eh{0)} could possibly be
such that the continued function would no longer be single-valued in
Tx,. In order to keep the continuation single-valued we remove from
Xf all components of X[\{x \\\ x — cc8|| < ehm] except the one that
intersects Sp. In this way the continuation remains single-valued.

Thus we have the result: If Tx is a tube domain such that X is
not convex, then any function that is G-holomorphic can be continued
G-holomorphically (and single-valued) into a larger tube domain with
basis X\ Then we can apply the same result to Tx,, and obviously
the process can be iterated as long as the enlarged tube is not yet
convex. Thus we have proved:

Given a tube domain Tx, then any function that is G-holomorphic
in Tx can be continued G-holomorphically into the convex envelope of Tx.

(The convex envelope of Tx equals Tmx), where C(X) is the convex
envelope of X.)

On the other hand there exists to every boundary point z0 of Tϋ{X)

a supporting affine subspace of Bc and a linear functional l{z) that be-
comes zero exactly on the affine subspace. (This is an immediate con-
sequence of the Hahn-Banach theorem.) The functional lβ(z) is then
G-holomorphic in TC{X) and becomes singular at zQ. Hence we have shown:

To every boundary point z0 of a convex tube domain there exists a
functional that is G-holomorphic in the domain and singular at z0. The
two statements combined give:

THEOREM. Let Tx be a tube domain in a complex Banach space
{of arbitrary dimension). Then the envelope of G-holomorphy of Tx

is the convex envelope of Tx, which equals TC{X), where C(X) is the
convex envelope of X.
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