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ON EXPANSIVE HOMEOMORPHISMS

B. F. BRYANT

1. Introduction* A homeomorphism Φ of a compact metric space
X onto X is said to be expansive provided there exists d > 0 such that
if x, y e Xwith xΦy, then there exists an integer n such that p(xψn, yφn)>d
(see [1] and [3]). The question arises as to the possibility of extending
the results concerning expansive homeomorphisms to compact uniform
spaces. The extension is possible, although trivial in light of the corol-
lary to Theorem 1.

In §§ 3 and 4 the setting is a compact metric space X. Theorem 2
is stronger than Theorem 10.36 of [1] in that we do not require X to be
self-dense. Also, the lemmas of which Theorem 2 is a consequence are
perhaps of some interest in themselves. In § 4 we show that if X is
self-dense, then for each x e X and each ε > 0 there exists y e U(e, x)
such that x and y are not doubly asymptotic.

2 A homeomorphism φ of a compact uniform space (X, ^/) onto
(X, ^ ) is said to be expansive provided there exists Ue^/ such that
U φ Δ (the diagonal) and if x, y e X with x Φ y, then there exists an in-
teger n such that (xφn, yφn) 0 U. For uniform spaces we use the notation
of [2], but following Weil [4] we suppose (X,<%/) is Hausdorff; i.e.,
Π{U: Ue^/} = Δ. We also suppose that each Ue^/ is symmetric.

THEOREM 1. Let (X, <%/) be a compact uniform space which is not
metrizable and let φbe a homeomorphism of X onto X. If Ue^/, then
there exist x, y e X with x Φ y such that (xφn, yφn) e U for each integer
n. (Compare with Theorem 10.30 of [1].)

Proof. Select Ve^/ such that VoVoVaU and VaU (see [2], p.
180). Since φn, for each integer n, is uniformly continuous, we may
choose U1 e ^/ with U^V such that (p, q) e Ux implies (pφfc, qφk) e V for
k = ± 1. For i > 1, choose Ut e <%/ with Z74c Ui-1 such that {p, q) e Ut

implies (pφk, qφ*) e V ΐor k = ± i. Since (X, ^ ) is not metrizable, the
countable set {Ut \ i = 1, 2, •} is not a base for the uniformity ^([4],
p. 16). Thus there exists Weψ/ with W a U such that i ^ 1 implies
Ui Π comp W Φ 0. Choose, for each i,{xif yd e ί74 Π comp W. Since Xx X
is a compact Hausdorff space, there exists (x, y) such that each neigh-
borhood of (x, y) contains (xif yt) for an infinite number of positive in-
tegers i. Let n be an arbitrary positive integer, then there exists m>n
such that (xm, ym) e Un(x) x Un(y). Hence (x, xm) e Un and (y, ym) e Un;

Received October 3, 1959, and in revised form, February 1, 1960.

1163



1164 B. F. BRYANT

therefore (xφk, xmφk) e V and (yφk, ymφk) e V for k = ± n. Also (xm, ym) e
Uma Un so that (xmφk, ymφk) e Ffor k= ± n. Hence (xφk, yφk) e Vo Vo F c U
for k = ± n. Each (xi9 yt) e ^ c F and Vc U; hence (x, y) e U. Finally,
xΦy. For otherwise we could choose Sef/ such that SoSc W; then
(%kf Vic) € S(x) x S(x) for some k, and hence (cc, #fc) e S, (a?, j/fc) e S so that
(#fc> I/*) e Ί^ This completes the proof.

An immediate consequent of the theorem is the following

COROLLARY. // (X, W) is a compact uniform space on which it is
possible to define an expansive homeomorphism, then (X, f/) is metriz-
able.

3. The author is indebted to the referee for suggesting the ar-
rangement of the material in this section. In the original version, Lemma
2 had a slightly stronger hypothesis and Lemma 3 was essentially con-
tained in the proof of Theorem 2. In this section we suppose that X
is an infinite compact metric space and (with the exception of Lemma 3)
that φ is an expansive homeomorphism (with expansive constant d) of
X onto X.

LEMMA 1. If x φ y and if there is an integer N such that n>N
{n < N} implies ρ(xφn, yφn) ^ d, then x and y are positively {negatively}
asymptotic under φ.

Proof. If x and y are not positively asymptotic under φ, then there
exist ε > 0 and positive integers nλ < n2 < such that p(xφnί, yφni) ^ ε
with lim^+ooίcφ71* = u and lim^+^yφ711 — v. Obviously uΦv. Let m be an
arbitrary integer. For all i sufficiently large nt + m > N; hence
ρ(xφnt+m, yφni+m) ^ d. Since lim^+OQxψnί+m = uφm and \imί^+ooyφni+m = vφm

J

it is clear that p(uφm, vφm) ίg d for each integer m. This contradicts
the hypothesis that φ is expansive. The alternative statement may be
proved by a similar argument.

LEMMA 2. If ω{x){a(x)} contains a periodic point p and ω(x){a(x)}
is not identical with the orbit of p, then there exist w and z in ω(x)
{α(x)} such that w and p are positively asymptotic and z and p are
negatively asymptotic.

Proof. Suppose p is of period k. There exist positive integers
nλ < n2 < such that lim^+^xφ711 = p. Let ki be the smallest non-
negative integer such that ni + k% is a multiple of k. Since 0 ̂  k% < k,
there exists m such that ki — m for an infinite number of integers i.
Thus there are positive integers m1 < m2 < such that
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lim xψmι+m = lim xpkji = pφm .
i-»+oo i-»+oo

Denote φfc by θ (with expansive constant dλ) and p£m by q (see [1], p.
86). Thus \imi^+ΰOxθJi = q and qθ = g. We can assume that p(xθji, q)<dx

for each i.
The points a? and q are not positively asymptotic under θ, since other-

wise ω(x) under φ would consist of the k points in the orbit of p. Hence,
by Lemma 1, there exist arbitrarily large integers r such that p(xθr, q)>dλ.
Therefore we can assume that sx < s2 are positive integers where st is
the smallest positive integer such that p(xθji+s\ q) > dλ andlim^+ o ox#^+ S ί =
ueω(x). Let — a be an arbitrary negative integer, then for all i suffi-
ciently large 0 < st — a < st. Hence ρ(xθH+Si~a, q) ^ dlr and therefore
p{uθ~a, q) <£ dλ for each negative integer — a. Thus, by Lemma 1, u is
negatively asymptotic to q under θ and hence under Φ([l], p. 85). We
can assume j \ < j \ + st < j i + 1 and hence that there exist positive integers
t2<t3<*» where ίt is the smallest positive integer such that p(xθ5i~H, q) > dλ

and lim^+ooa;̂ *-** = v 6 ω(£c). By an argument similar to the above, v
is positively asymptotic to q under φ. Since a(x) under φ coincides with
ω(x) under φ"1, this completes the proof.

In the following lemma we do not require φ to be expansive.

LEMMA 3. If x is not periodic and ω(x){a(x)} is the orbit of a
periodic point p, then there exists a point q in the orbit of p such that
q and x are positively {negatively} asymptotic.

Proof. Let peω(x) and, as in the first paragraph of the proof of
Lemma 2, select positive integers j \ < j 2 < such that lim^+ooίc^* =
q = pφ,m and qθ = q, θ — φk. If x and q are not positively asymptotic
under θ, then there exists a positive constant a and a sequence ^ 1 <?ι 2 <
of integers such that p(xθn\ q) > a. Let ε > 0 and choose β > 0 such
that β < ε, β < a, and p(z, w) ^ β implies p(zθ, wθ) < ε. We can assume
that p(xθji, q) < β. Let st be the smallest positive integer such that
ρ(xθJ*+sι, q) > β. Then for each i, β < ρ(xθ^+s\ q) < ε. But the sequence
{xθii+Si} has a convergent subsequence. Let s be the limit of such a
convergent subsequence, then s Φ q, s e ω(x) and p(s, q) ^ ε. Thus ω{x)
is not finite, contrary to hypothesis. It follows that x and q are posi-
tively asymptotic under θ, and hence under φ.

Similarly, if a(x) is the orbit of a periodic point p, then there exists
a point q in the orbit of p such that q and x are negatively asymptotic
under φ.

THEOREM 2. 77^r£ exist a, b, c, d e X such that a and b are posi-
tively asymptotic under φ and c and d are negatively asymptotic under
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Proof. There exists a minimal set NczX([l], p. 15). If N is infinite,
then N is self-dense and the conclusion follows from Theorem 10.36 of
[1]. Henceforth, suppose each minimal set in X is finite and thus is a
periodic orbit.

Since X is compact and infinite, there exists a non-isolated point r.
If r is not periodic, let r = p. If r is periodic, then there exists x Φ r
such that x and r are asymptotic ([1], p. 87). But then x is not periodic
and we let x = p.

There exists a minimal set N<z.ω(p), and a minimal set Maa(p).
Both N and M are periodic orbits. If N Φ ω(p) or M Φ a(p) the con-
clusion of the theorem follows from Lemma 2. If N = ω(p) and M=a(p),
the conclusion of the theorem follows from Lemma 3.

4. In addition to the standing hypothesis of § 3 we require X to
be self-dense.

LEMMA 4. If y e Z7(ε, x) implies that each neighborhood of y con-
tains z such that p(yφn, zφn) > d/2 for some positive {negative} n, then
there exists w e U(e, x) such that w and x are not positively {negatively}
asymptotic.

Proof. Let 0 < a < ε, then there exist xλ e U(a, x) and a positive
integer nλ such that p(xxφ

nχ, xφnι) > d/2. Suppose xλ and x are positively
asymptotic (otherwise the lemma holds); hence there exists m1 > nx such
that n > m1 implies p(x^n, xφn)<d/8. Choose a^X) such that U(alf xj c
U(a, x) and p(p, q) < ax implies ρ{pφn, pφn) < dβ for 0 g n ^ mx. For
i > 1 we select xu nt, mif and at > 0 such that ^ e [/(α^, cc4_x), n^m^^
ρ(xtφ

ni, Xι-ιΦni) > d\2y mi >niyn> m% implies p(x$n, xφn)<dβ, U(aif aj4) c
U(at^19 oJί-J, and />(p, g) < α^ implies p(pφn, qφn) < d/8 for 0 ^ w ^ m i e

We can suppose lim^+oo^ = we U(a, x)aU(ε, x) and w Φ x. If i > 1,
then ^ > m^! and hence p{x^ΛΦ

n\ xφnή < d/8. But p{x$ni, ^i_1φ
720>^/2,

and the triangle inequality implies p{XiΦn\ xφnή > 3d/8. If j > i,
then Xj e ί7(α4, £c4) and, since mt > wt, p(xjφn\ x$ni) < cZ/8. Therefore
p{x$ni

y xφnή > a/A for j ^ i. If ί > 1 is fixed, then ρ(xjφn\ wφnή is
arbitrarily small for j sufficiently large. Hence p(xφn\ wφni) ^ cZ/4. Since
{tij is an increasing sequence of positive integers, w and x are not
positively asymptotic. This proof establishes the alternative statement
by using φ"1 rather than </>.

THEOREM 3. For each x e X and each ε > 0 there exists y e U(ε, x)
such that x and y are not doubly asymptotic.

Proof. Suppose there exist xeX and ε > 0 such t h a t zeU(ε, x)

implies x and z are positively asymptotic. Suppose ε < d/2, then, by
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the above lemma, there exist y e U(e, x) and a > 0 such that U(a, y) c
Z7(ε, x) and t e U{a, y) implies that ρ(tφn, yφn) ^ d/2 for n^O. Therefore
u, v e U(a, y) implies p(uφn, vφn) ^ d for w ^ 0. Thus, since φ is ex-
pansive, u, v e Z7(α, ̂ /) implies ρ(uφn, vφn) > c£ for some negative w. By
the alternative form of the lemma above, there exists w e U{a, y) such
that w and y are not negatively asymptotic. Therefore either w and x
are not negatively asymptotic or y and x are not negatively asymptotic,
which establishes the theorem.

If X is an infinite minimal set, then a stronger statement can be
made. Since X is pointwise almost periodic under Φ([l], p. 31), ε > 0
implies p(x, xφn) < ε for some n Φ 0. It is easy to show that x and xφn

are neither positively nor negatively asymptotic.
If X is not self-dense, then, as shown by the following example,

each pair of distinct points may be both positively and negatively asymp-
totic. Let X consist of the real numbers 0, l/n{n = ± 1, ± 2, •}, and
let

jΌ if x = 0 .

xφ = \ l/(n + 1) if x — 1/n and n Φ — 1 .

(l if x = - 1 .
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