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INVOLUTIONS ON LOCALLY COMPACT RINGS

PAUL CIVIN

By a proper involution * on a ring R we mean a mapping x —> x*
defined on R with the following properties:

( i ) (x + y)* = x* + y*,
(ii) (xy)* = #*£*,
(iii) (x*)* = x and
(iv) xx* = 0 if and only if a? = 0. If (iv) is not assumed, the

mapping is simply termed an involution. If F is a field with an involu-
tion # and R is an algebra over F, we say that an involution on R is
an algebra involution if in addition to (i)-(iv) above the following holds:

(v) (ax)* = α%* for all x e R and a e F.
We are concerned principally with involutions on two types of

locally compact semi-simple rings, namely those which are compact or
connected. The main result is that involutions on such rings are auto-
matically continuous. As a byproduct we determine the form of any
proper involution on a total matric ring R over a division ring. If in
addition R is topological and the division ring admits only continuous
involutions, then we note that R has only continuous involutions.

LEMMA Let D be a division ring with center Z. Let R be a total
matric ring over D. Any ring involution * on R induces an involu-
tion # on Z, and * is an algebra involution on R with respect to the
involution # on Z.

Direct calculation shows that the center of R consists of the totality
of elements of the form al where a e Z and I is the identity of R.
Suppose x is in the center of R and y e R, then x*y = (y*x)* — (xy*)* =
yx*9 so x* is in the center of R, Since I* = / is immediate, it follows
that for any a e Z, there is a β e Z such that (al)* = βl. Denote β
by α*. It is clear that # is an involution on Z. Moreover, if a e Z
and x e R, (ax)* = [(al)x]* = x*a*I = a*x, so * is an algebra involution
on R with respect to the involution # on Z.

THEOREM 2. Let R be a total matric ring over D, where D is a
division ring with center Z. Let * be a proper ring involution on R,
and let % be the induced involution on Z. Then there exist a set of
matrix units {gi3} in R such that g% — git and a set of non-zero elements
% of Z such that γf = γt such that the involution * has the following
form: If x = Σ ai3eiό, with ai3 e D, then x* = Σ ΎTlaijΎteH'
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Let eiJf i,j = l,-* ,n be a set of matric units for R. The right
ideal enR is minimal, so by a theorem of Rickart [7] there is a unique
idempotent ux e enR such that u* = ux Φ 0. Let Lx — Ruly and Lk —
Relk = Rekk, k = 2, ,n. The Lk are minimal left ideals so by the
Rickart theorem there are unique idempotents uk e Lk such that uk =
uk Φ 0, k = 1, , n.

We denote by [A, B, , C] the smallest left ideal containing A, B,
• , C. The linear independence of uλ and the elk, k — 2, , n, implies
that Lk ςt [Llf , L ^ ] for 1 < k ^ n. It is readily verified that R =
[Llf...,Ln].

Let g± = ^ and suppose that &, , gk-ι have been defined so that
9j = 92j = 9* Φ 0, gj e [L l f , L J and gigj = 0 for i =£ i , i, i = 1, 2, ,
fc — 1. We next show that βrfc may be defined with the corresponding
properties.

Let v = uk - Σ3=lu*9j Since Lk qL [Llf , Lfc_J, uk 0 [Llf , Lfc_J
and thus v Φ 0. Since Lfc = jB f̂c is a minimal left ideal ukRuk is a
division ring with unit uk. The propriety of the involution then yields
vv* Φ 0. Since vv* e ukRuk, there is an element s e ukRuk such that
8(vv*) — (vv*)s = uk. If we apply the involution to the prior relation
(vv*)s* = 8*(vv*) = uk, and the uniqueness of inverses in a division ring
yields s = s*.

It is claimed that gk = Έ ; * ^ has the desired properties. Since
vgkv* = ^t;*s7;t;* = ^fc^v* = v-z;* Φ 0, it follows that gk Φ 0. Clearly
ί/fc = g* and ^ | = v*svv*sv = v*uksv = 'ŷ s'y = flrfc. If i = 1, , fc — 1,
r̂.̂ * = ^.(^fc — ^*=i9juk) — 0 by the inductive hypothesis, thus ^ ^ —

gtv*sv — 0. By applying the involution we obtain gkgι— 0. The induction
is thus complete and we may suppose that gu , gn have been defined.

Clearly [gλ] = [LJ. Suppose that for 1 < k ^ n, [glf , gk-^\ —
[L19 , Lfc_i]. The defining property for gk yields [glf , gk] c
[L l f , Lk] = [[glf , gk^]f Lk]. Thus srfc = xxgx + + x^g^ + xkelk.
Right multiplication of the last relation by gk shows that xkelk Φ 0.
Since Lk is a minimal left ideal, there is a 2 e R such that 2#fceifc = elk.
This may be expressed as z[gk — aαSΊ — xk-λgk-^\ = elk. Thus Lk c
[Λ, >9JC] and hence [^, , gk] = [Llf ., Lk] for k = 1, , n. In
particular R = [glf , gn].

The spaces Rgk must be irreducible over R, otherwise we would
have R decomposed into sums of irreducible iϋ-spaces of different lengths.
Thus the ideals Rgk are minimal. Furthermore if we denote the unit
element of R by β, we have e = yλgτ + + yngn. Right multiplication
by g5 shows that gό = yόg3 and thus e — g1 + + gn.

The form of an idempotent in enR and Rekky k = 2, , n, together
with the fact that Xeυ = e^X yields Xuk = ukX — ukXuk, k = 1, , n for
any X e D. The inductive method of defining gk then permits one to
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deduce that λ ^ = gkX — gkXgk. For suppose that λ ^ = ̂ λ for j = 1,
• , k — 1. From the way in which v and v* were defined Xv = vX and
Xv* = v*X. Since Xgk = v*Xsv = v*ukXsukv, and gkX = t>*sλΐ; = v*uksXukv,

it is sufficient if we show that ukXsuk = uksXuk for all X e D. But
(̂ sλWfcXOT*) = sw*λ = ukX = Xuk = Xsvv* = wfcλswfc(OT*). Since ukRuk is
a division ring, uksXuk = ukXsuk as desired. Hence Xgk = #fcλ for all
X e D and fc = 1, , w.

Since (0) Φ RgtR is a two sided ideal of R, RgtRgk = i?#fc =£ (0), and
thus flr4/?flrfc 7̂  (0). Suppose ί <ky and ^ r ^ Φ 0. Then, by the propriety
of the involution, 0 Φ {g%rgk){g%rgky — gtrgkr*gt. Since the left ideal
Rgt is minimal, g^Rg^ is a division ring, and there exists t e R such that
(9ii9i)(9iWic^9i) — Qί- If we take ad joints of the expressions in the
preceding equation, we see that gitgi — g^g^ Let gik = gίtgίrgk and
β*i = 0*r*gt. Then gikgki = gl9 and consequently (gίkgkί)(gίkgkί) = gt9 so

0 Φ guΰih € gkRgk, which is a division ring. Also gkigίk is idempotent so
Qjciffiic — Qk- Finally if we define gu = glf we obtain a set of matrix
units {gtj} for R such that g*t = ̂ H. The form of the involution * on
R is then an immediate consequence of a theorem of Jacobson and
Rickart [2].

We are now in a position in which we may discuss the continuity
of involutions.

THEOREM 3. Let D be a topological division ring such that any
involution on D is continuous. If R is a total matric ring over D,
then any proper ring involution on R is continuous.

The result is immediate by virtue of the representation of the
involution given in Theorem 2, together with the fact that convergence
in 12, when it is regarded as a finite dimensional vector space, involves
[1] convergence of the coefficients of the representation in terms of a
given basis.

We turn now to locally compact semi-simple rings which are either
connected or compact. The first item needed concerns their topological
algebraic structure.

LEMMA, (a) A compact semi-simple ring is the topological direct
sum of total matric algebras over finite fields.

(b) A locally compact connected semi-simple ring is the topological
direct sum of a finite number of total matric rings over locally com-
pact division rings.

Statement (a) is immediate from Theorem 16 of Kaplansky [4]. In
the second statement, the semi-simplicity allows the use of Theorem 2
of Kaplansky [5], which shows that the ring is the direct sum of a
semi-simple algebra over the reals with a unit and a totally disconnected
ring. Since the decomposition is the Peirce decomposition relative to
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the algebra unit, it is easily seen that one has a topological direct sum.
The connectedness then forces the second summand to be zero. The
conclusion of the lemmas then follows from Theorem 10 of [5].

It might further be noted that the division rings involved must be
connected. Consequently, since the only connected locally compact di-
vision rings are the reals, the complexes and the quaternions [3], [6],
these are the only rings involved in the conclusion of (6).

LEMMA 5. If * is a proper involution on a direct sum of total
matric rings over division rings, then each matric ring is invariant
under *. Thus * restricted to an individual matric ring is a proper
involution on that ring.

Let R be the direct sum of rings R3. Let e° be the unit of a
summand R°. Say e° = e1 + ••• + en is the decomposition of e° in
terms of the vector units of R°. The right ideal etR — e^0 is a minimal
right ideal of R. Hence, by the theorem of Rickart used previously,
there exists a unique idempotent fk in etR such that 0 Φ /«—/«*. Thus
ei — fiei and ef — efft. Consequently if x e R°, x = eλx + + enx =
f&x + +fnenx, and x* = x*eff1 + + x*elfn is in R°.

We are now in a position to establish the continuity of proper
involutions on the class of semisimple rings under discussion.

THEOREM 6. If R is a semi-simple locally compact ring which is
either compact or connected then any proper involution * on R is
continuous.

In view of Lemmas 4 and 5, it is sufficient to prove the continuity
of * on an individual matric ring. Thus the proof is complete for the
compact ring. For the connected ring, all we need note is that the
only involutions on the reals, complexes and quaternions are automati-
cally continuous. Hence Theorem 3 applies and the proof is complete.
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